Mid-Band Opportunities
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
FCC Public Notice
PUBLIC NOTICE Federal Communications Commission News Media Information 202 / 418-0500 th Internet: http://www.fcc.gov 445 12 St., S.W. TTY: 1-888-835-5322 Washington, D.C. 20554 FCC 17-46 Released: April 24, 2017 FCC SEEKS COMMENT AND DATA ON ACTIONS TO ACCELERATE ADOPTION AND ACCESSIBILITY OF BROADBAND-ENABLED HEALTH CARE SOLUTIONS AND ADVANCED TECHNOLOGIES GN Docket No. 16-46 Comment Date: May 24, 2017 Reply Comment Date: June 8, 2017 Broadband networks are increasingly important to our national well-being and everyday lives. As such, we must maximize their availability and ensure that all Americans can take advantage of the variety of services that broadband enables, including 21st century health care. In this Public Notice, the Federal Communications Commission (FCC or Commission) seeks information on how it can help enable the adoption and accessibility of broadband-enabled health care solutions, especially in rural and other underserved areas of the country. We expect to use this information to identify actions that the Commission can take to promote this important goal. Ensuring that everyone is connected to the people, services, and information they need to get well and stay healthy is an important challenge facing our nation.1 Technology innovations in clinical practice and care delivery coupled with burgeoning consumer reliance on mHealth2 and health information technology (or healthIT)3 are fundamentally changing the face of health care, and a widespread, accessible broadband infrastructure is critical to this ongoing shift. Indeed, the future of modern health care appears to be fundamentally premised on the widespread availability and accessibility of high-speed connectivity.4 By some estimates, broadband-enabled health information technology can help to improve the quality of health care and significantly lower health care costs by hundreds of billions of dollars in the 1 See, e.g., Healthy People 2020, U. -
Spectrum Management: a State of the Profession White Paper
Astro2020 APC White Paper Spectrum Management: A State of the Profession White Paper Type of Activity: ☐ Ground Based Project ☐ Space Based Project ☐ Infrastructure Activity ☐ Technological Development Activity ☒ State of the Profession Consideration ☐ Other Principal Author: Name: Liese van Zee Institution: Indiana University Email: [email protected] Phone: 812 855 0274 Co-authors: (names and institutions) David DeBoer (University of California, Radio Astronomy Lab), Darrel Emerson (Steward Observatory, University of Arizona), Tomas E. Gergely (retired), Namir Kassim (Naval Research Laboratory), Amy J. Lovell (Agnes Scott College), James M. Moran (Center for Astrophysics | Harvard & Smithsonian), Timothy J. Pearson (California Institute of Technology), Scott Ransom (National Radio Astronomy Observatory), and Gregory B. Taylor (University of New Mexico) Abstract (optional): This Astro2020 APC white paper addresses state of the profession considerations regarding spectrum management for the protection of radio astronomy observations. Given the increasing commercial demand for radio spectrum, and the high monetary value associated with such use, innovative approaches to spectrum management will be necessary to ensure the scientific capabilities of current and future radio telescopes. Key aspects include development of methods, in both hardware and software, to improve mitigation and excision of radio frequency interference (RFI). In addition, innovative approaches to radio regulations and coordination between observatories and commercial -
International Spectrum Management, Basics and Implications for Radioastronomy
INTERNATIONAL SPECTRUM MANAGEMENT, BASICS AND IMPLICATIONS FOR RADIOASTRONOMY Dr. Vadim Nozdrin, Counsellor of Study Groups, Radiocommunication Bureau International Telecommunication FiftH International IUCAF ScHool in Spectrum Management for Radio Union Astronomy, StellenboscH, SoutH Africa, 2-6 MarcH, 2020 The United Nations System © 2019 United Nations. All rights reserved worldwide UN PRINCIPAL Subsidiary Organs Funds and Programmes1 Research and Training Other Entities Related Organizations ORGANS • Main Committees UNDP United Nations Development Programme UNIDIR United Nations Institute for ITC International Trade Centre (UN/WTO) CTBTO PREPARATORY COMMISSION Disarmament Research Preparatory Commission for the Comprehen- • Disarmament Commission • UNCDF United Nations Capital Development UNCTAD1,8 United Nations Conference on Trade sive Nuclear-Test-Ban Treaty Organization Fund UNITAR United Nations Institute for and Development • Human Rights Council 1, 3 Training and Research 1 IAEA International Atomic Energy Agency • International Law Commission • UNV United Nations Volunteers UNHCR Office of the United Nations UNSSC United Nations System Staff UNEP8 United Nations Environment Programme High Commissioner for Refugees ICC International Criminal Court • Joint Inspection Unit (JIU) College GENERAL UNOPS1 United Nations Office for IOM1 International Organization for Migration • Standing committees and UNFPA United Nations Population Fund ASSEMBLY UNU United Nations University Project Services ad hoc bodies UN-HABITAT8 United Nations -
Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications .............................................................................. -
Spectrum for the Next Generation of Wireless 11-012 Publications Office P.O
Communications and Society Program MacCarthy Spectrum for the Spectrum for the Next Generation of Wireless Next Generation of Wireless By Mark MacCarthy Publications Office P.O. Box 222 109 Houghton Lab Lane Queenstown, MD 21658 11-012 Spectrum for the Next Generation of Wireless Mark MacCarthy Rapporteur Communications and Society Program Charles M. Firestone Executive Director Washington, D.C. 2011 To purchase additional copies of this report, please contact: The Aspen Institute Publications Office P.O. Box 222 109 Houghton Lab Lane Queenstown, Maryland 21658 Phone: (410) 820-5326 Fax: (410) 827-9174 E-mail: [email protected] For all other inquiries, please contact: The Aspen Institute Communications and Society Program One Dupont Circle, NW Suite 700 Washington, DC 20036 Phone: (202) 736-5818 Fax: (202) 467-0790 Charles M. Firestone Patricia K. Kelly Executive Director Assistant Director Copyright © 2011 by The Aspen Institute This work is licensed under the Creative Commons Attribution- Noncommercial 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The Aspen Institute One Dupont Circle, NW Suite 700 Washington, DC 20036 Published in the United States of America in 2011 by The Aspen Institute All rights reserved Printed in the United States of America ISBN: 0-89843-551-X 11-012 1826CSP/11-BK Contents FOREWORD, Charles M. Firestone ...............................................................v SPECTRUM FOR THE NEXT GENERATION OF WIRELESS, Mark MacCarthy Introduction .................................................................................................... 1 Context for Evaluating and Allocating Spectrum ........................................ -
A Layman's Interpretation Guide L-Band and C-Band Synthetic
A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar data Version 2.0 15 November, 2018 Table of Contents 1 About this guide .................................................................................................................................... 2 2 Briefly about Synthetic Aperture Radar ......................................................................................... 2 2.1 The radar wavelength .................................................................................................................... 2 2.2 Polarisation ....................................................................................................................................... 3 2.3 Radar backscatter ........................................................................................................................... 3 2.3.1 Sigma-nought .................................................................................................................................................. 3 2.3.2 Gamma-nought ............................................................................................................................................... 3 2.4 Backscatter mechanisms .............................................................................................................. 4 2.4.1 Direct backscatter ......................................................................................................................................... 4 2.4.2 Forward scattering ...................................................................................................................................... -
Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context. -
Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV
remote sensing Article Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV Laura Sirro 1,*, Tuomas Häme 1, Yrjö Rauste 1, Jorma Kilpi 1 ID , Jarno Hämäläinen 2, Katja Gunia 2, Bernardus de Jong 3 and Fernando Paz Pellat 4 1 VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT FI-02044, Finland; tuomas.hame@vtt.fi (T.H.); yrjo.rauste@vtt.fi (Y.R.); jorma.kilpi@vtt.fi (J.K.) 2 Arbonaut Ltd., Kaislakatu 2, Joensuu FI-80130, Finland; [email protected] (J.H.); [email protected] (K.G.) 3 El Colegio de la Frontera Sur, Av. Rancho Polígono 2-A, Parque Industrial Lerma, Campeche, Campeche CP 24500, Mexico; [email protected] 4 Colegio de Postgraduados, Km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico; [email protected] * Correspondence: laura.sirro@vtt.fi; Tel.: +358-40-538-7769 Received: 9 May 2018; Accepted: 11 June 2018; Published: 14 June 2018 Abstract: The applicability of optical and synthetic aperture radar (SAR) data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment. -
RADIO SPECTRUM MANAGEMENT for a CONVERGING WORLD Original: English GENEVA — ITU NEW INITIATIVES PROGRAMME — 16-18 FEBRUARY 2004
INTERNATIONAL TELECOMMUNICATION UNION Document: RSM/07 February 2004 WORKSHOP ON RADIO SPECTRUM MANAGEMENT FOR A ONVERGING ORLD C W Original: English GENEVA — ITU NEW INITIATIVES PROGRAMME — 16-18 FEBRUARY 2004 BACKGROUND PAPER: RADIO SPECTRUM MANAGEMENT FOR A CONVERGING WORLD International Telecommunication Union Radio Spectrum Management for a Converging World This paper has been prepared by Eric Lie <[email protected]>, Strategy and Policy Unit, ITU as part of a Workshop on Radio Spectrum Management for a Converging World jointly produced under the New Initiatives programme of the Office of the Secretary General and the Radiocommunication Bureau. The workshop manager is Eric Lie <[email protected]>, and the series is organized under the overall responsibility of Tim Kelly <[email protected]>, Head, ITU Strategy and Policy Unit (SPU). This paper was edited and formatted by Joanna Goodrick <[email protected]>. A complementary paper on the topic of Spectrum Management and Advanced Wireless Technologies as well as case studies on spectrum management in Australia, Guatemala and the United Kingdom can be found at: http://www.itu.int/osg/sec/spu/ni/spectrum/. The views expressed in this paper are those of the author and do not necessarily reflect the opinions of ITU or its membership. 2 Radio Spectrum Management for a Converging World Table of Contents 1 Introduction............................................................................................................................... 4 1.1 Trends in spectrum demand ........................................................................................... -
VHF and L-Band Scintillation Characteristics Over an Indian Low Latitude Station, Waltair (17.7◦ N, 83.3◦ E)
Annales Geophysicae, 23, 2457–2464, 2005 SRef-ID: 1432-0576/ag/2005-23-2457 Annales © European Geosciences Union 2005 Geophysicae VHF and L-band scintillation characteristics over an Indian low latitude station, Waltair (17.7◦ N, 83.3◦ E) P. V. S. Rama Rao, S. Tulasi Ram, K. Niranjan, D. S. V. V. D. Prasad, S. Gopi Krishna, and N. K. M. Lakshmi Space Physics Laboratories, Department of Physics, Andhra University, Visakhapatnam 530 003, India Received: 30 April 2005 – Revised: 6 August 2005 – Accepted: 10 August 2005 – Published: 14 October 2005 Abstract. Characteristics of simultaneous VHF (244 MHz) tures in the Range-Time-Intensity (RTI) images of HF radars, and L-band (1.5 GHz) scintillations recorded at a low- intensity bite-outs in airglow intensity measurements and latitude station, Waltair (17.7◦ N, 83.3◦ E), during the low scintillations on amplitude, as well as the phase of VHF and sunspot activity year of March 2004 to March 2005, sug- UHF signals from satellites, and are commonly referred to as gest that the occurrence of scintillations is mainly due to two Equatorial Spread-F irregularities (ESF). The ESF is mostly types, namely the Plasma Bubble Induced (PBI), which max- confined to the equatorial belt of ±20◦ magnetic latitudes, imizes during the post sunset hours of winter and equinoctial encompassing the Equatorial Ionization Anomaly (EIA) re- months, and the Bottom Side Sinusoidal (BSS) type, which gion. maximizes during the post-midnight hours of the summer Woodman and Lahoz (1976) classified the irregularities solstice -
Soil Dielectric Characterization at L-Band Microwave Frequencies
https://doi.org/10.5194/hess-2020-291 Preprint. Discussion started: 10 July 2020 c Author(s) 2020. CC BY 4.0 License. Soil dielectric characterization at L-band microwave frequencies during freeze-thaw transitions Alex Mavrovic1-2, Renato Pardo Lara3, Aaron Berg3, François Demontoux4, Alain Royer5- 2, Alexandre Roy1-2 5 1 Université du Québec à Trois-Rivières, Trois-Rivières, Québec, G9A 5H7, Canada 2 Centre d’Études Nordiques, Université Laval, Québec, Québec, G1V 0A6, Canada 3 University of Guelph, Guelph, Ontario, N1G 2W1, Canada 4 Laboratoire de l'Intégration du Matériau au Système, Bordeaux, 33400 Talence, France 5 Centre d’Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, Québec, 10 J1K 2R1, Canada Correspondence to: Alex Mavrovic ([email protected]) Abstract. Soil microwave permittivity is a crucial parameter in passive microwave retrieval algorithms but remains a challenging variable to measure. To validate and improve satellite microwave data products, 15 precise and reliable estimations of the relative permittivity (ɛr = ɛ/ɛ0 = ɛ’-jɛ’’; unitless) of soils are required, particularly for frozen soils. In this study, permittivity measurements were acquired using two different instruments: the newly designed open-ended coaxial probe (OECP) and the conventional Stevens HydraProbe. Both instruments were used to characterize the permittivity of soil samples undergoing several freeze/thaw cycles in a laboratory environment. The measurements were compared to soil permittivity 20 models. We show that the OECP is a suitable device for measuring frozen (ɛ’frozen = [3.5;6.0], ɛ’’frozen = [0.4;1.2]) and thawed (ɛ’thawed = [6.5;22.8], ɛ’’thawed = [1.4;5.7]) soil microwave permittivity. -
National Telecommunications and Information Administration FY 2022 Budget As Presented to Congress
U.S. DEPARTMENT OF COMMERCE National Telecommunications and Information Administration FY 2022 Budget as Presented to Congress May 2021 Exhibit 1 DEPARTMENT OF COMMERCE NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION Budget Estimates, Fiscal Year 2022 Congressional Submission Table of Contents Exhibit Number Exhibit Page Number 2 Organization Chart NTIA - 1 3 Executive Summary NTIA - 3 3T Transfer Change Detail by Object Class (Domestic and International Policies) NTIA - 5 3T Transfer Change Detail by Object Class (Spectrum Management) NTIA - 7 3T Transfer Change Detail by Object Class (Advanced Communications Research) NTIA - 9 3T Transfer Change Detail by Object Class (Broadband Programs) NTIA - 11 3T Transfer Change Detail by Object Class (Public Safety Communications Programs) NTIA - 13 4A Program Increases/Decreases/Terminations NTIA - 15 4T FY 2022 Transfer Summary Table NTIA - 16 Salaries and Expenses 5 Summary of Resource Requirements: Direct Obligations NTIA - 17 6 Summary of Reimbursable Obligations NTIA - 19 7 Summary of Financing NTIA - 20 8 Adjustments-to-Base NTIA - 21 10 Program and Performance: Direct Obligations (Domestic and International Policies) NTIA - 23 12 Justification of Program and Performance (Domestic and International Policies) NTIA - 25 13 Program Change for 2022 (Domestic and International Policies) NTIA - 29 14 Program Change Personnel Detail (Domestic and International Policies) NTIA - 30 15 Program Change Detail by Object Class (Domestic and International Policies) NTIA - 31 10 Program and