'Potentialities of Short-Rotation Forestry for Developing Countries B

Total Page:16

File Type:pdf, Size:1020Kb

'Potentialities of Short-Rotation Forestry for Developing Countries B D4 of short-rotation forestry for 'Potentialitiesdeveloping countries b KlevSeloinbec co nt ieoiCE: Thiscopyright material law may(Title be 17 protected U.S. Code) by KlauIs Steinbeck USA School of Forest Resources. University of Georgia, Athens. GA 30602. of An old forest managemcnt system holds new promise for meeting the fuel. food. and fibre demands an boureoning humanity. Intensively practised coppice forestry adapted to local conditions, can be and a important source notably of fuelwood but also of raw mawr*al for reconstituted wood products possible source of other fuels such as alcohol or gas. meet the energy The increasing scarcity of fuelwood in soeic from adequate to halt erosion or as well as the accelerating use of needs of many countries. Reforestatiol programmes developing countries utilization as an energy alternative in general are cause for should serve multiple conseivation and wood infiltration capacity of concern [1. The Food and Agriculture Organization purposes. Forests enhance the fuelwood soils. therby reducing overland wate'r flow and ha'; p-epared a map of the world-wide the [2] which shows that in 1980 more than 100 erosion. They also restore soil fertility and tilth by situation nutrient human beings living in developing countries addition of organic matter and efficient million on to could not meet their minimum energy needs and cycling. Where agr:rulture is expanding 1.05 billion lived in areas where fuckood was submarginal soils. especially on hilly lands, another or of trees being depleted. This situation was especially acute in combinations of tree and agricultural crops to the sites Asia and Africa. One of the principal findings in the and pasture crops could be less detrimental forestry sector of a global study prepared for the than food crops alone. President of the United States [3] is that 'for the of humankind that depends primarily on 'Coppice' and 'short-rotation forestry' defined one-quarter the major wood for fuel. the outlook is bleak. Needs for Coppice forestry is likely to become fuelwood because it fuelwood will exceed available supplies by about 25 silvicultural system for producing means of cent before the turn of the century.' Deforestation 'is the simplest and most dependable per production and soil erosion are accelerating in many regions: both approaching the maximum average annual species' [4]. uic linked to the demands of a bourgeoning human theoretically attainable from a given the stumps of population for food, fuel. and fibre. "'either receives Coppice refers to sprout regrowth from of most broadleaved appropriate attention from governments because there cut trees which is characteristic of coppice stands are no inexpensive, short-term cures or immediate and a few coniferous species. Yields a root system profits to be derived from tackling either. Both are high because the sprouts grow on to soil water and problems are especially acute in subtropical and with previously estabIshed access reserves which tropical areas where demands are especially high and nutrients and with stored carbohydrate rootstocks, also are partially met by a combination of forest clearing. are cycled into the new growth. The harvests of relatively often followed by conversion to cropland. or by higher called stools. proviC: several for a variety of crop yields on existing lands through increased labour small material of uniform size suitable short as two years are intcn.sity or improved practices of cultivation [31. end uses. Harvesting cycles as stand establishment The worsening fuclwood situation has engendered biolog cally sustainable [5] and further planting or site concern among lending institutions such as the World after harvest is assured without be critical in denuded Bank and the Asian Development Bank; other preparation. These factors can of fuel, fodder, and international organizations such as the FAO and UN; areas where chronic shortages %\ellas national assistance agencies of various fibre persist. as extensively, both European countries. Japan. and the US. Reforestation Coppice forestry can be practised and of few cultural projects with emphasis on artificial regeneration have in the sense of large land areas 19th century Europe initiated. especially in the humid and semi-arid operations. This was common in been stakes, and bark of Africa and Asia. Such reforestation projects when firewood. mineprops. vineyard recions were indemand. from incentives and technical assistance for used in the hide tanning process ranue relatively recent or villages for planting fuclwood plot,, zo Intensive coppice forestry is a individuals inthe late 1960s by establishment of forest plantings on thousands of development. It was originated the of Georgia by governmental forestry agencies. U.S. Forest Service and University hectares called short­ Substantial as some of thcse fuclwood and research workers and is now generally It may involve large or small watershed reforestation programmes arc. they are far rotation forestry. plantings, manuring, and cultivation. Agroforestry combining coppiced tree crops with agricultural crops is alreadys practised Outlook on Agriculture. Volume 12.No. 4. 1883.prm in various spacing configurations to m" promise for the ('p,Pergamon Press. Printed InGreatBItiln) t* . , to some extent. and holds much 00317270183/0401G-05 $03.00. future. Intensively practised coppice forestry is the shade-tolerant, valuable species such as mahogan) main topic of this article. (Swietenia). The fast-growing legume could be Short-rotation forests are plantations of broadleaved coppiced several times while also serving as a nurse trees in which each rootstock occupies an area of 3 crop for the mahogany. square metres or less and which are harvested at Species-screening studies have been established in intervals of less than 10 years. Once planted, the same man) regions of the world, ranging from the dry-zone rootstocks provide several harvests of relatively small of Sri Lanka to the wet-lands of Sweden. Broad­ but uniform raw material. It can be utilized either in leaved species with rapid. juvenile growth rates: the reconstituted wood products such as chipboards, ability to sprout from stump or rootsystem: and good cartons, and paper; or be used as firewood; or growth rates o.. ? variety of sites are being sought. converted into other fuels such as charcoal, alcohols, Other selection criteria include high pest resistance, or gas. In the future, wood may also substitute for high genetic variability, ease of vegetative petroleum as chemical feedstock in the manufacture of propagation, and tolerance of competition in plastics [6]. plantings. Native species with these characteristics In summary, forest resource managers should should be used rather than exotics: unpublished consider short-rotation forestry rather than information often exists in the files of forestry 4igencies conventional silviculture when: which will provide promising leads. Species with these characteristics frequently are the pioneer species 1. A rapid financial return is desired and small, ecological succession. Where no suitable native speciesin uniform stems or the entire above-round portions of for short-rotation the trees can be utilized. forestry can be found. the 2. High biomass yields and 'automatic' regrowth of publication 'Firewood Crops: Shrub and Tree Species plantations are important. for Energy Production* [7] will be a useful guide. 3e(Also see [7a].) Various species in the genera Acacia. 3.A combination of tree crops and food or pasture Albizia, Abnus, Eucalyptus, Gmelim,. and Leucuena crops lead to land conservation and yield increases. have been planted otuside their native ranges with feasiblc4. Diversification and desirable. from a coniferous monoculture is considerableosdrbesces success. Favouring one species over another because of Many of these conditions are met in heavily higher energy c-)ntent per unit weight of wood holds deforested, developing countries where planning little promise. The calorific content of wood averages horizons at the local level are often short and demands about 4800 cal/g and tree species will generally vary for energy wood, small timbers, and newsprint are less than 10 per cent from this value [8. 9]. The species generally strong. to be planted on particular sites should. therefore, be Biomass yields from short-rotation forests depend chosen on the basis of its biomass production on the choice of tree species to be planted, as well as potential. This is easier said than done because as on site quality and interactions between the site and more plantations are being established it becomes the species chosen. Length of harvesting cycles apparent that there are few species that grow well on a (rotations), cultural practices such as chemical and range of sites. Instead, most have rather specific site physical cultivation, irrigation, spacing. and pests also requirements and research to determine their growth affect yields. and yield potential will. of necessity. also be quite site-specific. Choice of tree species for planting Forest trees can provide a variety of non-woody Plantation ebtablishment products, such as nutritious animal fodder; several Broad-leaved trees require better site-preparation and tons edible fruits per hectare; or excellent bee ).asture. longer care after plantir ! than conifers. The site must In addition, the woody biomass produced in short- first be cleared of large vegetation by mechanical rotation plantations also can serve a multiplicity of
Recommended publications
  • Short Rotation Forestry and Agroforestry in CDM Countries and Europe
    Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD project is funded by the European Union under the 7th Framework Programme for Research and Innovation 1 KENYA BRAZIL CHINA EUROPE INDIA Short Rotation Forestry and Agroforestry in CDM Countries and Europe Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD The DVD is also available project is for a small fee which covers funded by shipping cost. See details the European Union on how to obtain it from the under the 7th BENWOOD website Framework Programme www.benwood.eu. The BENWOOD consortium for Research and Innovation Compiled by Falko Kaufmann, Genevieve Lamond, Marco Lange, Jochen Schaub, Christian Siebert and Torsten Sprenger KENYA BRAZIL CHINA EUROPE INDIA Foreword As the Head of Unit for ‘Agriculture, Forestry, countries where increased investment will occur. Fisheries and Aquaculture’ within the European In addition, it should lead not only to increased Commission DG Research and Innovation, investment in forestry, but also to increasing mar- I am very pleased to introduce this summarized kets for equipment linked to biomass processing findings presenting the results of the BENWOOD as well as generating markets for forest products project. with a focus on biofuel producers. Project Coordinator BENWOOD The BENWOOD project has been funded by I hope that the outputs from the project, concen- Thomas Lewis the European Commission under the Seventh trated in this summarized findings, will help to energieautark consulting gmbh Research Programme (FP7) Theme addressing support a new era for the production of renew- Hauptstrasse 27/3 ‘Food, Agriculture and Fisheries, and Biotechno- able, carbon-neutral alternatives to non-renewable 1140 Wien – Austria logy’ in order to make relevant information on fossil fuels.
    [Show full text]
  • Energy Forestry Exemplar Trials Establishment
    Energy Forestry Exemplar Trials Establishment Guidelines Energy Forestry Exemplar Trials Energy Forestry Exemplar Trials Contents Page INTRODUCTION… ....................................................................................2 2. AIMS..................................................................................................2 3. THE TRIAL SITES .................................................................................2 4. GENERAL SITE MANAGEMENT................................................................3 5. SRC and SRF.......................................................................................4 6. RESEARCH, DEVELOPMENT AND MONITORING.........................................4 6.1. Environmental Research..............................................................5 6.2. Silviculture - Short Rotation Forestry (SRF) ...................................7 6.3. Silviculture - Short Rotation Coppice (SRC).................................. 10 6.4. Carbon balance........................................................................ 11 6.5. Regeneration or reinstatement................................................... 11 7. CONCLUSION .................................................................................... 11 BIBLIOGRAPHY ..................................................................................... 12 APPENDICES: Appendix 1: Experiment plans and protocols ............................... 15 - 52 a. Soil sampling and analysis ........................................................... 15
    [Show full text]
  • 7. Shrubland and Young Forest Habitat Management
    7. SHRUBLAND AND YOUNG FOREST HABITAT MANAGEMENT hrublands” and “Young Forest” are terms that apply to areas Shrubland habitat and that are transitioning to mature forest and are dominated by young forest differ in “Sseedlings, saplings, and shrubs with interspersed grasses and forbs (herbaceous plants). While some sites such as wetlands, sandy sites vegetation types and and ledge areas can support a relatively stable shrub cover, most shrub communities in the northeast are successional and change rapidly to food and cover they mature forest if left unmanaged. Shrub and young forest habitats in Vermont provide important habitat provide, as well as functions for a variety of wildlife including shrubland birds, butterflies and bees, black bear, deer, moose, snowshoe hare, bobcat, as well as a where and how they variety of reptiles and amphibians. Many shrubland species are in decline due to loss of habitat. Shrubland bird species in Vermont include common are maintained on the species such as chestnut-sided warbler, white-throated sparrow, ruffed grouse, Eastern towhee, American woodcock, brown thrasher, Nashville landscape. warbler, and rarer species such as prairie warbler and golden-winged warbler. These habitat types are used by 29 Vermont Species of Greatest Conservation Need. While small areas of shrub and young forest habitat can be important to some wildlife, managing large patches of 5 acres or more provides much greater benefit to the wildlife that rely on the associated habitat conditions to meet their life requirements. Birds such as the chestnut- sided warbler will use smaller areas of young forest, but less common species such as golden-winged warbler require areas of 25 acres or more.
    [Show full text]
  • Short Rotation Forestry (SRF) Versus Rapeseed Plantations: Insights from Soil Respiration and Combustion Heat Per Area
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 76 ( 2015 ) 398 – 405 European Geosciences Union General Assembly 2015, EGU Division Energy, Resources & Environment, ERE Short Rotation Forestry (SRF) versus rapeseed plantations: Insights from soil respiration and combustion heat per area כ,Kamal Zurbaa, Jörg Matschullata aTU Bergakademie Freiberg, Interdisciplinary Environmental Research Centre, Freiberg 09599, Germany Abstract Bioenergy crops may be an important contributor to mitigating global warming risks. A comparison between willow and poplar Short Rotation Forestry and rapeseed cultivation was designed to evaluate the ratio between soil respiration and the combustion heat obtained from the extracted products per hectare. A manual dynamic closed chamber system was applied to measure CO2 emissions at the SRF and rapeseed sites during the growing season. Our results show that poplar and willow SRF has a very low ratio compared to rapeseed. We thus recommend poplar and willow SRF as renewable sources for bioenergy over the currently prevalent rapeseed production. © 20152015 The The Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the GFZ German). Research Centre for Geosciences. Peer-review under responsibility of the GFZ German Research Centre for Geosciences Keywords: Soil respiration; manual dynamic closed chamber; SEMACH-FG; bioenergy crops; climate change mitigation * Corresponding author. Tel.: +49 3731 39-3399; fax: +49 3731 39-4060. E-mail address: [email protected] Nomenclature ha 104 m2 t 103 kg d.w. dry weight yr year MJ 106 joules PAR Photosynthetically active radiation eq equivalent 1876-6102 © 2015 The Authors.
    [Show full text]
  • Short Rotation Forestry, Short Rotation Coppice and Perennial Grasses in the European Union: Agro-Environmental Aspects, Present Use and Perspectives"
    "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. F. Dallemand , J.E. Petersen, A. Karp EUR 23569 EN - 2008 The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production. European Commission Joint Research Centre Institute for Energy Contact information Address: Joint Research Centre Institute for Energy Renewable Energy Unit TP 450 I-21020 Ispra (Va) Italy E-mail: [email protected] Tel.: 39 0332 789937 Fax: 39 0332 789992 http://ie.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 47547 EUR 23569 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Proceedings of the Expert Consultation: "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J.
    [Show full text]
  • Carbon Sequestration in Short-Rotation Forestry Plantations and in Belgian Forest Ecosystems
    Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems ir. Inge Vande Walle to S. and J. Promoter : Prof. dr. Raoul LEMEUR Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology Dean : Prof. dr. ir. Herman VAN LANGENHOVE Rector : Prof. dr. Paul VAN CAUWENBERGE ir. Inge VANDE WALLE Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Koolstofvastlegging in plantages met korte omloopstijd en in Belgische bosecosystemen Illustrations on the cover : Front : birch trees at a short-rotation plantation (Zwijnaarde) Back : Maskobossen (Jabbeke) Illustrations between chapters : Page 15 : short-rotation plantation (Zwijnaarde), washing of roots (greenhouse at the Faculty of Bioscience Engineering, Gent) Page 115 : Aelmoeseneiebos (Gontrode), Maskobossen (Jabbeke), Merkenveld (Zedelgem), domain Cellen (Oostkamp) Page 245 : Merkenveld (Zedelgem) Citation : Vande Walle, I. 2007. Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems. Ph.D. thesis, Ghent University, Ghent, 244 p. ISBN-number : 978-90-5989-161-6 The author and the promoter give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord vooraf In principe is het schrijven van een 'Woord vooraf' niet zo'n moeilijke opdracht. Er is immers geen statistiek voor nodig, er moet niets bewezen worden, en verwijzingen naar andere publicaties zijn ook al niet van toepassing. In de praktijk echter is het niet zo eenvoudig om in enkele woorden of zinnen alle mensen te bedanken die er toe bijgedragen hebben dat ik de afgelopen tien jaar met veel plezier wetenschappelijk onderzoek heb uitgevoerd, en dat ik er in geslaagd ben het boek dat nu voor u ligt af te werken.
    [Show full text]
  • Storage of Short Rotation Coppice Willow Fuel
    Harvesting / Transport No. 30 © COFORD 2012 • Willow short rotation coppice is difficult to store in large amounts, Storage of short rotation coppice because dry matter losses due to fungi will be high willow fuel Willow short rotation coppice whole • 1 shoots can be stored with success Pieter D. Kofman over a summer and will lose much water, making it a good fuel for small scale installations Background • If the willow is harvested as chips, The area of short rotation coppice (SRC) willow in Ireland is slowly increasing it should be delivered straight to the to meet local renewable energy demands, with some additional use in cofiring large scale consumer of peat for electricity generation. Increased demand for willow biomass poses a • Fungi and bacteria can cause huge problem: it can only be harvested when it is leaf-free, over the period from end of losses in dry matter, especially November-April, whereas cofiring and other applications generally need a year- in small chips, up to 30 % over 9 round fuel supply. Potentially, cofiring and CHP will require very large volumes months storage of wood fuel from forests and short rotation coppice, meaning that large volumes of fuel may have to be stored for prolonged periods of time, in some cases up to 8 months. Also, for small scale use, fuel has to be stored and probably also dried. Willow has a moisture content of 50-55% at harvest, but most small-scale boilers are only designed to combust fuel at maximum moisture content (MC) of 30%. Another factor to consider is that the bark:wood ratio of willow SRC is much higher than forest-derived wood chips.
    [Show full text]
  • Glossary and Acronyms Glossary Glossary
    Glossary andChapter Acronyms 1 ©Kevin Fleming ©Kevin Horseshoe crab eggs Glossary and Acronyms Glossary Glossary 40% Migratory Bird “If a refuge, or portion thereof, has been designated, acquired, reserved, or set Hunting Rule: apart as an inviolate sanctuary, we may only allow hunting of migratory game birds on no more than 40 percent of that refuge, or portion, at any one time unless we find that taking of any such species in more than 40 percent of such area would be beneficial to the species (16 U.S.C. 668dd(d)(1)(A), National Wildlife Refuge System Administration Act; 16 U.S.C. 703-712, Migratory Bird Treaty Act; and 16 U.S.C. 715a-715r, Migratory Bird Conservation Act). Abiotic: Not biotic; often referring to the nonliving components of the ecosystem such as water, rocks, and mineral soil. Access: Reasonable availability of and opportunity to participate in quality wildlife- dependent recreation. Accessibility: The state or quality of being easily approached or entered, particularly as it relates to complying with the Americans with Disabilities Act. Accessible facilities: Structures accessible for most people with disabilities without assistance; facilities that meet Uniform Federal Accessibility Standards; Americans with Disabilities Act-accessible. [E.g., parking lots, trails, pathways, ramps, picnic and camping areas, restrooms, boating facilities (docks, piers, gangways), fishing facilities, playgrounds, amphitheaters, exhibits, audiovisual programs, and wayside sites.] Acetylcholinesterase: An enzyme that breaks down the neurotransmitter acetycholine to choline and acetate. Acetylcholinesterase is secreted by nerve cells at synapses and by muscle cells at neuromuscular junctions. Organophosphorus insecticides act as anti- acetyl cholinesterases by inhibiting the action of cholinesterase thereby causing neurological damage in organisms.
    [Show full text]
  • Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020
    Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020. Report 1 - Forestry in Ireland. Gerry Lawson MICFor CBiol Forest Transitions, Calle Morera 5, Castillo de Bayuela, Toledo 45641, Spain. ​ Environmental Consultancy Services Consultancy Report for Luke Ming Flanagan MEP | 20 September 2018 1. Introduction 2 2. MTR - Call for Submissions March 2017 3 3. MTR - Comparison with EU Common Evaluation Principles. 7 4. MTE - EU State Aid to Forestry Rules 7 4.1 EU Guidelines for state aid in the agricultural and forestry sectors and in rural areas 2014-2020 7 4.2 European Agricultural Fund for Rural Development (EAFRD), as described in Regulations 1305/2013 and 1306/2013 of the European Parliament and of the Council 9 5. MTR - submissions and responses (TOR 4 & 6). 10 5.1 Afforestation and Creation of Woodland (76.2% of total budget) 14 5.1.1 How to increase the species diversity and the proportion of broadleaves? 14 5.1.2 How to achieve the targets for new planting? 16 5.1.3 How to increase the average size of new planting blocks? 19 5.1.4 How to make the Forestry for Fibre scheme more attractive? 19 5.1.5 How to make the agroforestry scheme more attractive?y systems 20 5.2 NeighbourWood Scheme (0.4% of total budget) 22 5.3 Forest Roads (10.5% of total budget) 24 5.4 Reconstitution Scheme (1.8% of total budget) 26 5.5 Woodland Improvement Scheme (2.6% of total budget) 27 5.6 Native Woodland Conservation Scheme (2.8% of total budget) 29 5.7 Knowledge Transfer Measure (3.3% of total budget) 32 5.8 Producer Groups (0.1% of total budget) 33 5.9 Innovative Forest Technology (0.3% of total budget) 34 5.10 Forest Genetic Reproductive Material (0.2% of total budget) 35 5.11 Forest Management Plans (0.7% of total budget) 37 5.12 General Issues 38 5.12.1 How to enhance environment, biodiversity, climate? 38 5.12.2 How to change land use policies? 41 5.12.3 How to enhance the species mix in planting schemes? 43 5.12.4 How to increase collaboration between forest owners? 45 6.
    [Show full text]
  • Carbon Storage and Sequestration Potential of Selected Tree Species in India
    Mitig Adapt Strateg Glob Change (2010) 15:489–510 DOI 10.1007/s11027-010-9230-5 ORIGINAL ARTICLE Carbon storage and sequestration potential of selected tree species in India Meenakshi Kaul & G. M. J. Mohren & V. K. Dadhwal Received: 19 November 2009 /Accepted: 19 April 2010 / Published online: 30 April 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg Cha−1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg Cha−1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg Cha−1yr−1) and Eucalyptus (6 Mg Cha−1yr−1) plantations followed by moderate growing teak forests (2 Mg Cha−1yr−1) and slow growing long rotation sal forests (1 Mg Cha−1yr−1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees+soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length.
    [Show full text]
  • Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada
    Chapter 17 Short-Rotation Coppice of Willows for the Production of Biomass in Eastern Canada Werther Guidi, Frédéric E. Pitre and Michel Labrecque Additional information is available at the end of the chapter http://dx.doi.org/10.5772/51111 1. Introduction The production of energy by burning biomass (i.e. bioenergy), either directly or through transformation, is one of the most promising alternative sources of sustainable energy. Contrary to fossil fuels, bioenergy does not necessarily result in a net long-term increase in atmospheric greenhouse gases, particularly when production methods take this concern into account. Converting forests, peatlands, or grasslands to production of food-crop based biofuels may release up to 400 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. On the other hand, biofuels from biomass grown on degraded and abandoned agricultural lands planted with perennials do not have a negative effect on carbon emissions [1]. In addition, when properly managed, bioenergy can enhance both agricultural and rural development by increasing agricultural productivity, creating new opportunities for revenue and employment, and improving access to modern energy services in rural areas, both in developed and developing countries [2]. Biofuels constitute a very broad category of materials that can be derived from sources including municipal by-products, food crops (e.g. maize, sugar cane etc.), agricultural and forestry by-products (straws, stalks, sawdust, etc.) or from specifically-conceived fuel crops. Our analysis focuses on agricultural biofuel crops that can be grown in temperate regions. These crops can be divided into four main categories (Table 1).
    [Show full text]
  • Mechanization in Short Rotation, Intensive Culture Forestry"; 1994 March 1-3; Mobile, AL
    Proceedings of the IEA/BA Task IX, Activity 1 International Conference Mobile, Alabama USA March 1-3, 1994 Edited by Bryce J. Stokes and Timothy P. McDonald U.S.D.A. Forest Service DeVall Drive Auburn University, Alabama 36849 Hosted by Scott Paper Company Sponsored by IEA/BA Task IX, Activity 1 Electric Power Research Institute Oak Ridge National Laboratory U.S. Department of Energy Southern Forest Engineering Center Auburn University Southern Forest Experiment Station U.S.D.A. Forest Service Southeastern Regional Biomass Energy Program Demonstration Sponsored by Morbark Industries Table Of Contents Foreward Session I (Moderator - Jim Decosmo) Industrial short rotation intensive culture operations,Thomas H. Morgan, Jr Harvesting costs and utilization of hardwood plantations, Timothy P. McDonald and Bryce J. Stokes Short rotation forestry in loblolly pine, Alan P. Bruce Utilization of cottonwood plantations, C. Jeffrey Portwood Stand Establishment and Culture of Hybrid Poplars, Charles E. Kaiser, Donald E. Rice, and Kirk R. Wallace Development of a flail harvester for small diameter brush and coppiced trees to produce energy/chemical feedstock, Robert A. McLauchlan, Andrew Conkey, Greg Scherer, Peter Felker, and Stan Brown Mechanization of short rotation intensive-culture wood crops, William B. Stuart Growing Eucalyptus for Pulp and Energy, James A. Rydelius Session II (Moderator - Sam Foster) Management of irrigated hybrid poplar plantations in the Pacific Northwest, Charles A. Wierman Mechanization potential for industrial-scale fiber and energy plantations, Bruce Hartsough and Randall Richter Establishing and tending poplar plantations in the North-Central U.S., Dan Netzer and Ed Ward Hansen Silvicultural techniques for short rotation Eucalyptus plantations in Brazil, Ken McNabb The effects of whole tree harvesting on fuel quality and coppicing ability of SRIC willow crops, Juha Nurmi and Jyrki Hytönen Utilization of short rotation forestry from an effluent disposal scheme, Hamish T.
    [Show full text]