Forestry for a Low-Carbon Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases
POLICY AND PRACTICE REVIEWS published: 04 March 2021 doi: 10.3389/fclim.2021.638805 Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9 OECD Cases Felix Schenuit 1,2*, Rebecca Colvin 3, Mathias Fridahl 4, Barry McMullin 5, Andy Reisinger 6, Daniel L. Sanchez 7, Stephen M. Smith 8, Asbjørn Torvanger 9, Anita Wreford 10 and Oliver Geden 2 1 Center for Sustainable Society Research, University of Hamburg, Hamburg, Germany, 2 German Institute for International and Security Affairs (SWP), Berlin, Germany, 3 Crawford School of Public Policy, Australian National University, Canberra, ACT, Australia, 4 Department of Thematic Studies, Environmental Change, Centre for Climate Science and Policy Research, Linköping University, Linköping, Sweden, 5 Dublin City University, Dublin, Ireland, 6 Ministry for the Environment, Wellington, New Zealand, 7 Department of Environmental Science, Policy, and Management (ESPM), University of California, Berkeley, Berkeley, CA, United States, 8 Smith School of Enterprise and the Environment, Oxford University, Oxford, United Kingdom, 9 Center for International Climate Research (CICERO), Oslo, Norway, 10 Agribusiness and Economics Research Unit (AERU), Lincoln University, Christchurch, New Zealand Edited by: William C. Burns, Since the adoption of the Paris Agreement in 2015, spurred by the 2018 IPCC Special American University, United States Report on Global Warming of 1.5◦C, net zero emission targets have emerged as a Reviewed by: new organizing principle of climate policy. In this context, climate policymakers and Phillip Williamson, University of East Anglia, stakeholders have been shifting their attention to carbon dioxide removal (CDR) as United Kingdom an inevitable component of net zero targets. The importance of CDR would increase Charithea Charalambous, Heriot-Watt University, further if countries and other entities set net-negative emissions targets. -
Short Rotation Forestry and Agroforestry in CDM Countries and Europe
Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD project is funded by the European Union under the 7th Framework Programme for Research and Innovation 1 KENYA BRAZIL CHINA EUROPE INDIA Short Rotation Forestry and Agroforestry in CDM Countries and Europe Kenya Brazil China Europe India Short Rotation Forestry and Agroforestry in CDM Countries and Europe The BENWOOD The DVD is also available project is for a small fee which covers funded by shipping cost. See details the European Union on how to obtain it from the under the 7th BENWOOD website Framework Programme www.benwood.eu. The BENWOOD consortium for Research and Innovation Compiled by Falko Kaufmann, Genevieve Lamond, Marco Lange, Jochen Schaub, Christian Siebert and Torsten Sprenger KENYA BRAZIL CHINA EUROPE INDIA Foreword As the Head of Unit for ‘Agriculture, Forestry, countries where increased investment will occur. Fisheries and Aquaculture’ within the European In addition, it should lead not only to increased Commission DG Research and Innovation, investment in forestry, but also to increasing mar- I am very pleased to introduce this summarized kets for equipment linked to biomass processing findings presenting the results of the BENWOOD as well as generating markets for forest products project. with a focus on biofuel producers. Project Coordinator BENWOOD The BENWOOD project has been funded by I hope that the outputs from the project, concen- Thomas Lewis the European Commission under the Seventh trated in this summarized findings, will help to energieautark consulting gmbh Research Programme (FP7) Theme addressing support a new era for the production of renew- Hauptstrasse 27/3 ‘Food, Agriculture and Fisheries, and Biotechno- able, carbon-neutral alternatives to non-renewable 1140 Wien – Austria logy’ in order to make relevant information on fossil fuels. -
Carbon Innovation for Business Impact
Carbon Innovation for Business Impact Accelerating climate solutions and private sector finance to make real change possible Contents Executive summary ............................................................................................. 3 Introduction ........................................................................................................... 4 Advancing practical and scalable solutions ................................................ 6 Evaluating carbon finance projects ............................................................... 8 Proven methodologies ................................................................................ 9 Emerging methodologies .........................................................................13 High-potential technologies ...................................................................15 Experimental technologies .....................................................................16 Adding value with values.................................................................................17 Delivering quality carbon credits .................................................................19 Ensuring credible standards ..........................................................................20 Conclusion ............................................................................................................22 Teak Afforestation, Mexico Cover Photo: SELCO Solar Energy Access, India 2 Executive summary Since the Paris Agreement was existing and new methodologies to signed -
Energy Forestry Exemplar Trials Establishment
Energy Forestry Exemplar Trials Establishment Guidelines Energy Forestry Exemplar Trials Energy Forestry Exemplar Trials Contents Page INTRODUCTION… ....................................................................................2 2. AIMS..................................................................................................2 3. THE TRIAL SITES .................................................................................2 4. GENERAL SITE MANAGEMENT................................................................3 5. SRC and SRF.......................................................................................4 6. RESEARCH, DEVELOPMENT AND MONITORING.........................................4 6.1. Environmental Research..............................................................5 6.2. Silviculture - Short Rotation Forestry (SRF) ...................................7 6.3. Silviculture - Short Rotation Coppice (SRC).................................. 10 6.4. Carbon balance........................................................................ 11 6.5. Regeneration or reinstatement................................................... 11 7. CONCLUSION .................................................................................... 11 BIBLIOGRAPHY ..................................................................................... 12 APPENDICES: Appendix 1: Experiment plans and protocols ............................... 15 - 52 a. Soil sampling and analysis ........................................................... 15 -
Greenhouse Gas Removal (GGR) Policy Options – Final Report
Greenhouse Gas Removal (GGR) policy options – Final Report Report prepared for BEIS Final June 2019 Greenhouse Gas Removal (GGR) policy options – Final Report Contents Executive Summary ........................................................................................................................... 4 Introduction ....................................................................................................................................... 7 1 Scale and cost of future Greenhouse Gas Removal ........................................................................... 9 2 The need for a policy portfolio to support GGRs ............................................................................. 17 3 Review of current GGR policies ....................................................................................................... 22 4 Policy pathways to support GGR ..................................................................................................... 25 5 Enabling and integrating policies ..................................................................................................... 41 6 Frequently Asked Questions ............................................................................................................ 50 7 References ....................................................................................................................................... 52 8 Appendix: Assessment of direct policies ........................................................................................ -
Short Rotation Forestry (SRF) Versus Rapeseed Plantations: Insights from Soil Respiration and Combustion Heat Per Area
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 76 ( 2015 ) 398 – 405 European Geosciences Union General Assembly 2015, EGU Division Energy, Resources & Environment, ERE Short Rotation Forestry (SRF) versus rapeseed plantations: Insights from soil respiration and combustion heat per area כ,Kamal Zurbaa, Jörg Matschullata aTU Bergakademie Freiberg, Interdisciplinary Environmental Research Centre, Freiberg 09599, Germany Abstract Bioenergy crops may be an important contributor to mitigating global warming risks. A comparison between willow and poplar Short Rotation Forestry and rapeseed cultivation was designed to evaluate the ratio between soil respiration and the combustion heat obtained from the extracted products per hectare. A manual dynamic closed chamber system was applied to measure CO2 emissions at the SRF and rapeseed sites during the growing season. Our results show that poplar and willow SRF has a very low ratio compared to rapeseed. We thus recommend poplar and willow SRF as renewable sources for bioenergy over the currently prevalent rapeseed production. © 20152015 The The Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license (Peer-reviewhttp://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of the GFZ German). Research Centre for Geosciences. Peer-review under responsibility of the GFZ German Research Centre for Geosciences Keywords: Soil respiration; manual dynamic closed chamber; SEMACH-FG; bioenergy crops; climate change mitigation * Corresponding author. Tel.: +49 3731 39-3399; fax: +49 3731 39-4060. E-mail address: [email protected] Nomenclature ha 104 m2 t 103 kg d.w. dry weight yr year MJ 106 joules PAR Photosynthetically active radiation eq equivalent 1876-6102 © 2015 The Authors. -
Short Rotation Forestry, Short Rotation Coppice and Perennial Grasses in the European Union: Agro-Environmental Aspects, Present Use and Perspectives"
"Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. F. Dallemand , J.E. Petersen, A. Karp EUR 23569 EN - 2008 The Institute for Energy provides scientific and technical support for the conception, development, implementation and monitoring of community policies related to energy. Special emphasis is given to the security of energy supply and to sustainable and safe energy production. European Commission Joint Research Centre Institute for Energy Contact information Address: Joint Research Centre Institute for Energy Renewable Energy Unit TP 450 I-21020 Ispra (Va) Italy E-mail: [email protected] Tel.: 39 0332 789937 Fax: 39 0332 789992 http://ie.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 47547 EUR 23569 EN ISSN 1018-5593 Luxembourg: Office for Official Publications of the European Communities © European Communities, 2008 Reproduction is authorised provided the source is acknowledged Printed in Italy Proceedings of the Expert Consultation: "Short Rotation Forestry, Short Rotation Coppice and perennial grasses in the European Union: Agro-environmental aspects, present use and perspectives" 17 and 18 October 2007, Harpenden, United Kingdom Editors J. -
Carbon Sequestration in Short-Rotation Forestry Plantations and in Belgian Forest Ecosystems
Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems ir. Inge Vande Walle to S. and J. Promoter : Prof. dr. Raoul LEMEUR Department of Applied Ecology and Environmental Biology, Laboratory of Plant Ecology Dean : Prof. dr. ir. Herman VAN LANGENHOVE Rector : Prof. dr. Paul VAN CAUWENBERGE ir. Inge VANDE WALLE Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Koolstofvastlegging in plantages met korte omloopstijd en in Belgische bosecosystemen Illustrations on the cover : Front : birch trees at a short-rotation plantation (Zwijnaarde) Back : Maskobossen (Jabbeke) Illustrations between chapters : Page 15 : short-rotation plantation (Zwijnaarde), washing of roots (greenhouse at the Faculty of Bioscience Engineering, Gent) Page 115 : Aelmoeseneiebos (Gontrode), Maskobossen (Jabbeke), Merkenveld (Zedelgem), domain Cellen (Oostkamp) Page 245 : Merkenveld (Zedelgem) Citation : Vande Walle, I. 2007. Carbon sequestration in short-rotation forestry plantations and in Belgian forest ecosystems. Ph.D. thesis, Ghent University, Ghent, 244 p. ISBN-number : 978-90-5989-161-6 The author and the promoter give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord vooraf In principe is het schrijven van een 'Woord vooraf' niet zo'n moeilijke opdracht. Er is immers geen statistiek voor nodig, er moet niets bewezen worden, en verwijzingen naar andere publicaties zijn ook al niet van toepassing. In de praktijk echter is het niet zo eenvoudig om in enkele woorden of zinnen alle mensen te bedanken die er toe bijgedragen hebben dat ik de afgelopen tien jaar met veel plezier wetenschappelijk onderzoek heb uitgevoerd, en dat ik er in geslaagd ben het boek dat nu voor u ligt af te werken. -
England Tree Strategy Erattum
Department for Environment, Food and Rural Affairs England Tree Strategy Consultation - Technical Annex June 2020 Erattum 17th August 2020: The estimate of vacant land on page 11 has been updated to replace an error and explain the source of the estimate on page 12 of the consultation document. Contents Erattum ................................................................................................................................ 1 General background, ............................................................................................................ 1 Expanding and connecting our woods ................................................................................. 3 Ambition ........................................................................................................................... 4 Creating space for nature ................................................................................................. 5 Planting trees for water .................................................................................................... 6 Helping landowners create woodlands ............................................................................. 8 Working together to create landscape scale change ...................................................... 10 Restoring degraded land ................................................................................................ 11 Funding future woodland creation – markets for ecosystem services such as carbon ... 12 Supplying the trees we need to plant and -
WWC V2.0 08March2018.Pdf
Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 2.0 March 2018 © Crown Copyright 2018 You may re-use this information (not Contents including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit: www.nationalarchives.gov.uk/doc/ open-government-licence or write to the Information Policy Team, The National Introduction 1 Archives, Kew, London, TW9 4DU or e-mail: [email protected] 1. Eligibility 4 Version 2.0 published March 2018 1.1 Key project dates 4 1.2 Eligible activities 5 ISBN 978-0-85538-843-0 1.3 Eligible land 5 FCMS017/FC-GB(KA)/0K/MAR2018 1.4 Compliance with the law 6 Enquiries relating to this publication should 1.5 Conformance to the UK Forestry Standard 6 be sent to: 1.6 Additionality 7 [email protected] 2. Project governance 8 2.1 Commitment of landowners and project/group managers 8 2.2 Management plan 9 2.3 Management of risks and permanence 10 2.4 Consultation 11 2.5 Monitoring 11 2.6 Registry and avoidance of double counting 12 2.7 Carbon statements and reporting 13 3. Carbon sequestration 14 3.1 Carbon baseline 14 3.2 Carbon leakage 15 3.3 Project carbon sequestration 15 3.4 Net carbon sequestration 16 4. Environmental quality 17 5. Social responsibility 18 Glossary 19 O2 CO2 C C Introduction Background and purpose Application Process Trees and forests can mitigate climate change through Registration sequestering carbon. Woodland creation therefore All projects should be registered on the UK Woodland provides an attractive option for companies, organisations Carbon Registry within two years of the start of planting. -
Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020
Evaluation of the Mid Term Review of the Irish Forestry Programme 2014-2020. Report 1 - Forestry in Ireland. Gerry Lawson MICFor CBiol Forest Transitions, Calle Morera 5, Castillo de Bayuela, Toledo 45641, Spain. Environmental Consultancy Services Consultancy Report for Luke Ming Flanagan MEP | 20 September 2018 1. Introduction 2 2. MTR - Call for Submissions March 2017 3 3. MTR - Comparison with EU Common Evaluation Principles. 7 4. MTE - EU State Aid to Forestry Rules 7 4.1 EU Guidelines for state aid in the agricultural and forestry sectors and in rural areas 2014-2020 7 4.2 European Agricultural Fund for Rural Development (EAFRD), as described in Regulations 1305/2013 and 1306/2013 of the European Parliament and of the Council 9 5. MTR - submissions and responses (TOR 4 & 6). 10 5.1 Afforestation and Creation of Woodland (76.2% of total budget) 14 5.1.1 How to increase the species diversity and the proportion of broadleaves? 14 5.1.2 How to achieve the targets for new planting? 16 5.1.3 How to increase the average size of new planting blocks? 19 5.1.4 How to make the Forestry for Fibre scheme more attractive? 19 5.1.5 How to make the agroforestry scheme more attractive?y systems 20 5.2 NeighbourWood Scheme (0.4% of total budget) 22 5.3 Forest Roads (10.5% of total budget) 24 5.4 Reconstitution Scheme (1.8% of total budget) 26 5.5 Woodland Improvement Scheme (2.6% of total budget) 27 5.6 Native Woodland Conservation Scheme (2.8% of total budget) 29 5.7 Knowledge Transfer Measure (3.3% of total budget) 32 5.8 Producer Groups (0.1% of total budget) 33 5.9 Innovative Forest Technology (0.3% of total budget) 34 5.10 Forest Genetic Reproductive Material (0.2% of total budget) 35 5.11 Forest Management Plans (0.7% of total budget) 37 5.12 General Issues 38 5.12.1 How to enhance environment, biodiversity, climate? 38 5.12.2 How to change land use policies? 41 5.12.3 How to enhance the species mix in planting schemes? 43 5.12.4 How to increase collaboration between forest owners? 45 6. -
Carbon Storage and Sequestration Potential of Selected Tree Species in India
Mitig Adapt Strateg Glob Change (2010) 15:489–510 DOI 10.1007/s11027-010-9230-5 ORIGINAL ARTICLE Carbon storage and sequestration potential of selected tree species in India Meenakshi Kaul & G. M. J. Mohren & V. K. Dadhwal Received: 19 November 2009 /Accepted: 19 April 2010 / Published online: 30 April 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract A dynamic growth model (CO2FIX) was used for estimating the carbon sequestration potential of sal (Shorea Robusta Gaertn. f.), Eucalyptus (Eucalyptus Tereticornis Sm.), poplar (Populus Deltoides Marsh), and teak (Tectona Grandis Linn. f.) forests in India. The results indicate that long-term total carbon storage ranges from 101 to 156 Mg Cha−1, with the largest carbon stock in the living biomass of long rotation sal forests (82 Mg Cha−1). The net annual carbon sequestration rates were achieved for fast growing short rotation poplar (8 Mg Cha−1yr−1) and Eucalyptus (6 Mg Cha−1yr−1) plantations followed by moderate growing teak forests (2 Mg Cha−1yr−1) and slow growing long rotation sal forests (1 Mg Cha−1yr−1). Due to fast growth rate and adaptability to a range of environments, short rotation plantations, in addition to carbon storage rapidly produce biomass for energy and contribute to reduced greenhouse gas emissions. We also used the model to evaluate the effect of changing rotation length and thinning regime on carbon stocks of forest ecosystem (trees+soil) and wood products, respectively for sal and teak forests. The carbon stock in soil and products was less sensitive than carbon stock of trees to the change in rotation length.