July 5, 19111 Bulletin No
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
'Muscat Bailey (V. Labrusca 3 V. Vinifera) A' and Korean Wild Grape
HORTSCIENCE 52(5):786–788. 2017. doi: 10.21273/HORTSCI11784-17 several regions of Korea and evaluated their agricultural traits (Park et al., 2005a, 2005b). From pilot experiments, we found ‘Black Eye’: A Unique Korean Grape that a wide genetic variation existed among accessions and that ‘KW-51’ had attrac- Variety Developed from a Cross tive agricultural characteristics such as unique fruit characteristics and high disease between ‘Muscat Bailey (V. labrusca 3 resistance. The original ‘Black Eye’ seedling was V. vinifera planted in 2005. Because of its self-fertile ) A’ and Korean Wild Grape flowers, high disease resistance, and high V. amurensis strength of fruit attachment to the bunch, it ( ) was propagated for further field tests. From 1 2008 to 2010, vine and fruit characteristics Young-Sik Park of ‘Black Eye’ were compared with those Gangwon Provincial Agricultural Research and Extension Services, Chuncheon of its parents and one reference grape cultivar 24226, Korea (Gaeryangmeoru) that had been developed from a cross between wild grape species and Jae-Yun Heo the ‘Concord’ grape cultivar (Park et al., Agriculture and Life Sciences Research Institute, Kangwon National University, 2007). Five vines of each cultivar/line were Chuncheon 24341, Korea established at the Gangwondo Agricultural Research and Extension Services farm in Sun-Bai Bang Chuncheon, Korea. Vines for the field exam- Gangwon Provincial Agricultural Research and Extension Services, ination were spaced 4 m (between rows) · Chuncheon 24226, Korea 2 m (between plants) and trained to an over- head arbor. No special irrigation was applied, Additional index words. disease resistance, pomology, Vitis amurensis and the soil surface was managed by sod culture during the growing season. -
Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico
Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Kansas Biological Survey Report #151 Kelly Kindscher, Randy Jennings, William Norris, and Roland Shook September 8, 2008 Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico Cover Photo: The Gila River in New Mexico. Photo by Kelly Kindscher, September 2006. Kelly Kindscher, Associate Scientist, Kansas Biological Survey, University of Kansas, 2101 Constant Avenue, Lawrence, KS 66047, Email: [email protected] Randy Jennings, Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] William Norris, Associate Professor, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Roland Shook, Emeritus Professor, Biology, Department of Natural Sciences, Western New Mexico University, PO Box 680, 1000 W. College Ave., Silver City, NM 88062, Email: [email protected] Citation: Kindscher, K., R. Jennings, W. Norris, and R. Shook. Birds, Reptiles, Amphibians, Vascular Plants, and Habitat in the Gila River Riparian Zone in Southwestern New Mexico. Open-File Report No. 151. Kansas Biological Survey, Lawrence, KS. ii + 42 pp. Abstract During 2006 and 2007 our research crews collected data on plants, vegetation, birds, reptiles, and amphibians at 49 sites along the Gila River in southwest New Mexico from upstream of the Gila Cliff Dwellings on the Middle and West Forks of the Gila to sites below the town of Red Rock, New Mexico. -
The Role of the Brown Bear Ursus Arctos As Seed Disperser: a Case Study with the Bilberry Vaccinium Myrtillus
The role of the brown bear Ursus arctos as seed disperser: a case study with the bilberry Vaccinium myrtillus Rola niedźwiedzia brunatnego Ursus arctos w rozprzestrzenianiu nasion: studium przypadku na przykładzie borówki czarnej Vaccinium myrtillus PhD thesis Alberto García-Rodríguez Kraków, 2021 To the memory of José Ignacio and Javier Rodríguez Val Female brown bear with two cubs of the year feeding on bilberry fruits in Tatra National Park (July 2020) “They thought they were burying you, they did not know they were burying a seed” Ernesto Cardenal, Nicaraguan priest, poet and politician PhD CANDIDATE mgr. ALBERTO GARCÍA-RODRÍGUEZ Institute of Nature Conservation of the Polish Academy of Sciences Al. Adama Mickiewicza 33, 31-120, Krakow, Poland SUPERVISOR dr. hab. NURIA SELVA FERNÁNDEZ Institute of Nature Conservation of the Polish Academy of Sciences Al. Adama Mickiewicza 33, 31-120, Krakow, Poland CO-SUPERVISOR dr. JÖRG ALBRECHT Senckenberg Biodiversity and Climate Research Centre (SBiK-F) Senckenberganlage 25, 60325, Frankfurt am Main, Germany. The PhD thesis was prepared during doctoral studies in the Doctoral Study of Natural Sciences of the Polish Academy of Sciences in Kraków. CONTENTS SUMMARY…………..……………..…………………………...………………………………………………...5 STRESZCZENIE……...………….……………………………………………………………………………….8 INTRODUCTION……………………...………………………………………………….……………………...11 PAPER I The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser………………..…30 PAPER II The bear-berry connection: ecological and management implications of -
The Influence of the Grapevine Bacterial and Fungal Endophytes
plants Article The Influence of the Grapevine Bacterial and Fungal Endophytes on Biomass Accumulation and Stilbene Production by the In Vitro Cultivated Cells of Vitis amurensis Rupr. Olga A. Aleynova * , Andrey R. Suprun , Nikolay N. Nityagovsky, Alexandra S. Dubrovina and Konstantin V. Kiselev Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; [email protected] (A.R.S.); [email protected] (N.N.N.); [email protected] (A.S.D.); [email protected] (K.V.K.) * Correspondence: [email protected]; Tel.: +7-4232-310718; Fax: +7-4232-310193 Abstract: Plant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Vitis amurensis Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the V. amurensis cell suspension on biomass accumulation and stilbene biosynthesis. The cocultivation of the V. amurensis cell culture with the bacteria Agrobacterium sp., Bacillus sp., and Curtobacterium sp. for 2 weeks did not significantly affect the accumulation of cell culture fresh biomass. However, it was significantly Citation: Aleynova, O.A.; Suprun, inhibited by the bacteria Erwinia sp., Pantoea sp., Pseudomonas sp., and Xanthomonas sp. and fungi A.R.; Nityagovsky, N.N.; Dubrovina, Alternaria sp., Biscogniauxia sp., Cladosporium sp., Didymella sp. 2, and Fusarium sp. Cocultivation A.S.; Kiselev, K.V. The Influence of the of the grapevine cell suspension with the fungi Didymella sp. 1 and Trichoderma sp. resulted in cell Grapevine Bacterial and Fungal death. -
Identification of Micrornas from Amur Grape (Vitis Amurensis Rupr.) By
Wang et al. BMC Genomics 2012, 13:122 http://www.biomedcentral.com/1471-2164/13/122 RESEARCHARTICLE Open Access Identification of microRNAs from Amur grape (vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics Chen Wang1, Jian Han1, Chonghuai Liu2, Korir Nicholas Kibet1, Emrul Kayesh1, Lingfei Shangguan1, Xiaoying Li1 and Jinggui Fang1* Abstract Background: MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results: A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va- miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. -
The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins. -
Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods. -
Woody Floras from Mid-Northern Korea, Southeastern Manchuria, and Southern Sakhalin Adaptable to the North Central United States
.~uw. HORTICULTURE SERIES NO. 407 R , 0 C4: JULY 1974 %f * OCT 15 ']4 tlBHAi(\ Woody Floras from Mid-Northern Korea, Southeastern Manchuria, and Southern Sakhalin Adaptable to the North Central United States MAKOTO KAWASE 1. Southeastern Manchuria 2.Mid-Northem Korea 3.Southern Sakhalin DEPARTMENT OF HORTICULTURE OHIO AGRICULTURAL RESEARCH AND DEVELOPMENT CENTER WOOSTER, OHIO Cont~nts Mid-northern Korean Woody Flora ...•••••••.•••..•••....••.•..•...•..•....•••.••. 1 Southeastern Manchurian Woody Flora •••••.•••.••...••••.•••....••.••.•••••••••• 10 Woody Flora in Southern Sakhalin ...••••••••..•.••.•••••••••...••••••••••••.••. 20 Foreword One of the most important requirements for woody plant materials in the North Central region of the United States is winter hardiness. Some hardy plant materials in the region are those introduced from high latitude areas of the U. S. A. or other countries. Some are also progenies of introduced hardy plant materials. For instance, about 11% of the shrubs and 12% of the trees recommended in Zones I through V of the U. S. are native in northern Japan. Some of these species are undoubtedly native also in Korea, Manchuria, Sakhalin, and other areas of the world. It is possible that they include much hardier ecotypes than those introduced earlier in this country. Mid-northern Korea (approximately between latitudes 370 North and 42.50 North); Southeastern Manchuria (approximately between latitudes 400 North and 48.5° North) including the basins of the rivers Ussuri, Sungari, and Amur; and Southern Sakhalin (approximately between latitudes 460 North and 500 North) are known to be rich sources of hardy woody plant materials. Introduction of woody plant materials from these areas would increase not only numbers of hardy plant species, but also the hardiness of the existing plant materials by hybridization. -
Phylogenetic Analysis of Vitaceae Based on Plastid Sequence Data
PHYLOGENETIC ANALYSIS OF VITACEAE BASED ON PLASTID SEQUENCE DATA by PAUL NAUDE Dissertation submitted in fulfilment of the requirements for the degree MAGISTER SCIENTAE in BOTANY in the FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG SUPERVISOR: DR. M. VAN DER BANK December 2005 I declare that this dissertation has been composed by myself and the work contained within, unless otherwise stated, is my own Paul Naude (December 2005) TABLE OF CONTENTS Table of Contents Abstract iii Index of Figures iv Index of Tables vii Author Abbreviations viii Acknowledgements ix CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Vitaceae 1 1.2 Genera of Vitaceae 6 1.2.1 Vitis 6 1.2.2 Cayratia 7 1.2.3 Cissus 8 1.2.4 Cyphostemma 9 1.2.5 Clematocissus 9 1.2.6 Ampelopsis 10 1.2.7 Ampelocissus 11 1.2.8 Parthenocissus 11 1.2.9 Rhoicissus 12 1.2.10 Tetrastigma 13 1.3 The genus Leea 13 1.4 Previous taxonomic studies on Vitaceae 14 1.5 Main objectives 18 CHAPTER 2 MATERIALS AND METHODS 21 2.1 DNA extraction and purification 21 2.2 Primer trail 21 2.3 PCR amplification 21 2.4 Cycle sequencing 22 2.5 Sequence alignment 22 2.6 Sequencing analysis 23 TABLE OF CONTENTS CHAPTER 3 RESULTS 32 3.1 Results from primer trail 32 3.2 Statistical results 32 3.3 Plastid region results 34 3.3.1 rpL 16 34 3.3.2 accD-psa1 34 3.3.3 rbcL 34 3.3.4 trnL-F 34 3.3.5 Combined data 34 CHAPTER 4 DISCUSSION AND CONCLUSIONS 42 4.1 Molecular evolution 42 4.2 Morphological characters 42 4.3 Previous taxonomic studies 45 4.4 Conclusions 46 CHAPTER 5 REFERENCES 48 APPENDIX STATISTICAL ANALYSIS OF DATA 59 ii ABSTRACT Five plastid regions as source for phylogenetic information were used to investigate the relationships among ten genera of Vitaceae. -
Haas Halo Hydrangea
Out in the Garden Rockport Garden Club, May 2021 What alternatives to harmful insecticides and The Garden Diary: pesticides are available to us? What’s Bugging Stop bugs BEFORE they become a problem: You? 1. Clean up weeds and standing water in your yard which host insects. Did you know there are 200,000,000 insects for every man, woman, and child on earth? Yes, 2. Keep your plants healthy. A healthy plant that is 200 million for each of us! Insects will has its own defenses against many predators. always outnumber us. That is the bad news. 3. Don’t over-fertilize. Too much fertilizer cre- ates weak growth which attracts insects. The good news is that most bugs are either bene- ficial or benign, having no noticeable impact on 4. Be sure plants receive adequate water. Too our lives. We rarely give the good bugs credit little water stresses plants and attracts in- for the work they do. Bees and butterflies polle- sects. nate our plants. Tiny parasitic wasps lay eggs on 5. If bugs are large enough to hand pick, squish larger in- sects and them or put them in a jar of soapy water. kill them 6. Use a garden hose to spray off other insects. in the pro- 7. Create an oasis for birds and butterflies cess. Pray- ing mantis- since birds and other bugs are the worst ene- es kill bee- mies of bad bugs. tles and spiders in Ultimately you may need to use a pesticide. Opt large num- for an organic product whenever possible. -
Retail Plant List by Scientific Name
1404 Citico Rd. Vonore, TN 37885 423.295.2288 office 423.295.2252 fax www.overhillgardens.com 423-295-5003 Avi 423-836-8242 Eileen [email protected] Retail Plant List by Scientific Name Latin Name Common Name Size Price Acer leucoderme Chalk Maple 10 gal $95.00 Acer negundo Boxelder Maple qt+ $16.00 Acer pensylvanicum Striped Maple 2 gal $30.00 Achillea millefolium White Yarrow qt $10.00 Achillea millefolium 'Paprika' Paprika Yarrow qt+ $12.00 Acmella oppositifolia Oppositeleaf Spotflower gal $12.00 Acorus americanus American Sweet Flag qt+ $11.00 Adiantum pedatum Maidenhair Fern gal+ $18.00 Aesculus flava Yellow Buckeye 2 gal $25.00 Aesculus parviflora Bottlebrush Buckeye 3 gal $28.00 Aesculus pavia Red Buckeye gal $18.00 Agarista populifolia (syn. Leucothoe populifolia) Florida Leucothoe 2 gal $25.00 Agastache rupestris Threadleaf Giant Hyssop qt+ $15.00 Aletris farinosa Colic Root qt+ $16.00 Alisma subcordatum American Water Plantain gal+ $16.00 Allium cernuum Nodding Onion qt $10.00 Allium tricoccum Ramps qt $14.00 Alnus incana Speckled Alder 3 gal $28.00 Alnus serrulata Tag Alder 3 gal $25.00 Amelanchier arborea Downy Serviceberry 25/band $15.00 Amelanchier laevis Allegheny Serviceberry 2 gal $25.00 Amelanchier sanguinea Roundleaf Serviceberry 2 gal $30.00 Amelanchier x grandiflora Serviceberry gal $18.00 Amorpha canescens Downy False Indigo gal $16.00 Amorpha fruticosa False Indigo 3 gal $25.00 Amorpha herbacea Hairy False Indigo gal+ $20.00 Amorpha nana Dwarf False Indigo gal $16.00 Amorpha ouachitensis Ouachita False Indigo gal+ $20.00 Ampelaster carolinianus (syn. -
Plant Pathology 2019
Plant Pathology (2019) Doi: 10.1111/ppa.13027 Assessment of Pierce’s disease susceptibility in Vitis vinifera cultivars with different pedigrees E. Deyetta†, J. Pouzouletb†, J.-I. Yangc, V. E. Ashwortha, C. Castrod, M. C. Roperd and P. E. Rolshausena* aDepartment of Botany and Plant Sciences, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA; bUnite Mixte de Recherche, 1287 Ecophysiologie et Genomique Fonctionnelle de la Vigne (EGFV), INRA, Institut des Sciences de la Vigne et du Vin, 33883 Villenave d’Ornon, France; cDepartment of Plant Pathology and Microbiology, National Taiwan University, Taipei 106, Taiwan; and dDepartment of Microbiology and Plant Pathology, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA Pierce’s disease (PD) of grapevine is caused by the bacterium Xylella fastidiosa. In this study, an integrated approach was applied to assess PD susceptibility among different Vitis vinifera cultivars that incorporated disease severity, bacterial pathogen abundance and loss of stem xylem hydraulic conductivity. It was hypothesized that levels of PD susceptibility in V. vinifera can be attributed in part to the host anatomical features that are shaped by its pedigree background. Two pop- ular wine grape cultivars were initially selected from the occidentalis group, Merlot and Cabernet Sauvignon, and one from the orientalis group, Thompson Seedless. The more recently bred table grape cultivar Scarlet Royal, that has mixed pedigree parentage, was also included. PD susceptibility was compared to the known PD resistant b43-17 V. arizonica/ candicans wild grape species from North America. The data indicated that Thompson Seedless was ranked as the most susceptible to PD because it significantly exhibited the most severe disease symptoms at 12 weeks post-inoculation and hosted the highest X.