0412Eic - EXHIBITION CHEMISTRY.Indd 12 6/12/2012 8:15:40 AM

Total Page:16

File Type:pdf, Size:1020Kb

0412Eic - EXHIBITION CHEMISTRY.Indd 12 6/12/2012 8:15:40 AM ExhibitionS pectacular deMonStratIonS For teacher chS Emistry Demonstrations to capture the stuDent’s imagination, by Declan Fleming oF pate’s grammar school, cheltenham. In thIS ISSue: MagIc Metal Fusible alloys students with the composition of the When teaching metals there are a mixture and ask them to predict number of ways to show how mixing what they expect to see from the metals together can alter their alloy: Do students expect the alloy to properties. Fusible alloys (ones which take on a melting point lower than melt at a low temperature) are an all three components or higher, or attractive and underused opportunity the same as the largest component, to show how far we can manipulate a or a weighted average of all three? material’s properties. The idea that mixtures can have a Fusible alloys are used for solders, lower melting point than a pure as temperature triggers in sprinkler substance is covered with younger systems (where the plug is held in students and is used with older place with a fusible alloy which melts students when discussing melting in a fire), as mercury replacements point determination. (eg galinstan thermometers) and even as experimental coolants in fast Storing energy neutron reactors. The result is unexpected both in Field’s metal is one such alloy which terms of how depressed the melting melts at a low temperature (61°c) point is and the fact that Field’s metal and, unusually for a fusible alloy, is a eutectic alloy – it melts at a contains neither lead nor cadmium. specific temperature rather than over Kit a range as will happen with other s ample of Field’s metal (~30 g is a Magic metal – see how to perform this demonstration at alloys. This suggests it has a single good size) www.rsc.org/EiC0412ec chemical composition as opposed to c eramic crucible being a mixture. This defined, 250 cm3 conical flask acrylic cut on the school’s laser cutter. Composition of depressed melting point has many o ptional moulding paraphernalia Jewellery moulding compound is Field’s metal and novel uses. (eg ice cube trays, plasticine, available from craft shops. This will melting points new solar molten salt technologies jewellery moulding compound) produce a reusable mould and you are being developed so that Procedure won’t need to spend time scratching the sun’s energy can be you can make Field’s metal yourself, out bits of plasticine from crevices in Sn used to melt a salt although it’s difficult to obtain small the metal. it is possible to produce a 16.5% (eg a eutectic quantities of indium, which can make mould for a ‘magic spoon’ but this (232°C) mixture of this prohibitively expensive. requires more metal. nano3 and mindsets will supply the metal in In Kno3), sensible quantities at approx £1 per In front of the audience 51% effectively gram and it is available through other s imply place your piece of metal into Bi (156°C) storing online sellers. a beaker of freshly boiled water and 32.5% energy for if you’ve done this demonstration watch it melt! (271°C) use later (eg. before, you will potentially have a at night). piece of metal in the shape of the t eaching goal EMLA bottom of the container you last used Fundamentally the idea here is to (eutectic mixture – this will make it difficult for your show how mixing different elements of local anesthetic) audience to see what’s happening. i in an alloy can fine tune its is a mixture of normally prepare a specific shape in properties to a specific application. lidocaine and prilocaine. advance by steaming it in a ceramic you could, however, provide your individually, these compounds crucible over a conical flask. This would be solids at room avoids over-heating the alloy and also temperature, but together they melt avoids having to decant off water if Safety to an oil at 18°c, avoiding the use of you melt it by submersion. Goggles should be worn for this demonstration. Wash your hands non-aqueous solvents for application i prepared a small mould in after touching the metal. and also increasing the dose that can plasticine by pressing into a piece of be applied. ■ 12 | Education in chEmistry | July 2012 www.rsc.org/eic 0412EiC - EXHIBITION CHEMISTRY.indd 12 6/12/2012 8:15:40 AM.
Recommended publications
  • Safety Data Sheet According to 29CFR1910/1200 and GHS Rev
    Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 02.11.2015 Page 1 of 6 Onions Fusible Alloy SECTION 1: Identification of the substance/mixture and of the supplier Product name: Onions Fusible Alloy Manufacturer/Supplier Trade name: Manufacturer/Supplier Article number: S25776A Recommended uses of the product and restrictions on use: Manufacturer Details: AquaPhoenix Scientific, Inc 9 Barnhart Drive, Hanover, PA 17331 (717) 632-1291 Supplier Details: Fisher Science Education 6771 Silver Crest Road, Nazareth, PA 18064 (724)517-1954 Emergency telephone number: Fisher Science Education Emergency Telephone No.: 800-535-5053 SECTION 2: Hazards identification Classification of the substance or mixture: Acute toxicity (oral, dermal, inhalation), category 4 Reproductive toxicity, category 1A Specific target organ toxicity following repeated exposure, category 2 Acute hazards to the aquatic environment, category 1 Chronic hazards to the aquatic environment, category 1 Hazard statements: Harmful if swallowed. Harmful if inhaled. May damage fertility or the unborn child. May cause damage to organs through prolonged or repeated exposure. Very toxic to aquatic life. Very toxic to aquatic life with long lasting effects. Precautionary statements: Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product. Avoid release to the environment. Avoid breathing dust/fume/gas/mist/vapours/spray. Use only outdoors or in a well-ventilated area. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Use personal protective equipment as required. Rinse mouth. IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
    [Show full text]
  • Electrical and Thermal Characteristics of Pb-Free Sn-Zn Alloys for an AC-Low Voltage Fuse Element
    Materials Transactions, Vol. 48, No. 5 (2007) pp. 1105 to 1112 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Electrical and Thermal Characteristics of Pb-Free Sn-Zn Alloys for an AC-Low Voltage Fuse Element Kazuhiro Matsugi1, Gen Sasaki1, Osamu Yanagisawa1, Yasuo Kumagai2 and Koji Fujii2 1Department of Mechanical Materials Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan 2The Chugoku Electric Power Co. Inc., Hiroshima 730-8701, Japan The temperature dependence of specific resistivity and thermal conductivity for some Sn-Zn alloys was measured to use their values in electrical and thermal calculations on the basis of Ohm’s and Fourier’s laws, in order to obtain the temperature-distribution in lead-free fuse elements of electric power line. The interaction between microstructures and their properties was also investigated in Sn-Zn alloys. Specific resistivity and thermal conductivity could be estimated as a function of temperature and alloy composition in the compositional ranges classified from the standpoint of continuity or non-continuity of constituent phases such as primary Zn, Sn-solid solution and eutectic in microstructures of Sn-1 to 100Zn alloys. In the proposed estimations, not only volume fraction of Zn and Sn-solid solution phases but morphologies of both phases were considered in Sn-Zn alloys. [doi:10.2320/matertrans.48.1105] (Received January 23, 2007; Accepted March 1, 2007; Published April 25, 2007) Keywords: specific resistivity, thermal conductivity, lead-free tin-zinc alloys, fuse element,
    [Show full text]
  • Design and Experimentation of a Tunably Compliant Robotic Finger
    DESIGN AND EXPERIMENTATION OF A TUNABLY COMPLIANT ROBOTIC FINGER USING LOW MELTING POINT METALS by HEON JOO A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN MECHANICAL ENGINEERING WASHINGTON STATE UNIVERSITY Department of Mechanical and Materials Engineering JULY 2017 c Copyright by HEON JOO, 2017 All Rights Reserved c Copyright by HEON JOO, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of HEON JOO find it satisfactory and recommend that it be accepted. John Swensen, Ph.D., Chair Arda Gozen, Ph.D. Matthew Taylor, Ph.D. ii ACKNOWLEDGMENTS I would like to thank my advisor, Dr.Swensen who has taught and guided so far for this thesis completion and also thank Dr.Taylor for joining me in his project. During the last two years, my wife sincerely supported me with a lot of courage and hope and my son was another delight that made me endure here to the end. I would like to express my deepest gratitude to all of the families in Korea, especially my grandmother. She is the most appreciated and precious person in my life that made me today. Also, I would like to appreciate many Koreans we have known in Pullman. Lastly, I would like to give my infinite glory and gratitude to God who gave me and my family the strength, courage, and wisdom to overcome any difficulties. iii DESIGN AND EXPERIMENTATION OF A TUNABLY COMPLIANT ROBOTIC FINGER USING LOW MELTING POINT METALS Abstract by Heon Joo, M.S.
    [Show full text]
  • Fire Detection Fusible Links
    9 FIRE DETECTION FUSIBLE LINKS A fusible link is a mechanical part that breaks at a preset temperature, they are used in fire detection system to open or close door, dampers, vents etc..., if ambient temperature rise upon a certain value. The professional solution: an extended, rational, and consistent range of products Technical catalogue for R&D department Edition 27/02/2013 JPC sas, 2 voie Gallo Romaine, ZAC de la Bonne Rencontre, 77860 Quincy Voisins, France Tel: +33(0)1 60046644 Fax: +33(0)1 60048444 E-Mail: [email protected] Web: www.jpcfrance.fr General Terms of Sales GENERAL: our sales are made under the here below terms of sales. Any contrary conditions provided by the buyer shall not be binding and shall not have any legal effect. The execution and delivery of any purchase order is made in conformity with the present general terms of sales and it is noted that the buyer first has full knowledge of these terms. In case of dispute on any of the herein below terms, we will consider ourselves as completely free from any contract related to the execution of any pending order. If some specific conditions are stated by the buyer, these conditions will be considered by us as a formal acceptance only after our written consent. ORDER: we will commit only on orders for which an order acknowledgement has been issued. The sale is regarded executed at the date of order acceptance by JPC. Any cessation or cancellation of pending orders, for whatever reasons, cannot be accepted by JPC without a compensation equal to the ordered goods value.
    [Show full text]
  • Liquid-Based Reconfigurable Antenna Technology
    sensors Review Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future Habshah Abu Bakar 1, Rosemizi Abd Rahim 2,* , Ping Jack Soh 2,3 and Prayoot Akkaraekthalin 4,* 1 Department of Electrical Engineering, Politeknik Sultan Abdul Halim Muadzam Shah, Jitra 06000, Kedah, Malaysia; [email protected] 2 Faculty of Electronic Engineering Technology, Pauh Putra Campus, Universiti Malaysia Perlis, Pauh 02600, Perlis, Malaysia; [email protected] 3 Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia 4 Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand * Correspondence: [email protected] (R.A.R.); [email protected] (P.A.) Abstract: Advances in reconfigurable liquid-based reconfigurable antennas are enabling new pos- sibilities to fulfil the requirements of more advanced wireless communication systems. In this review, a comparative analysis of various state-of-the-art concepts and techniques for designing reconfigurable antennas using liquid is presented. First, the electrical properties of different liquids at room temperature commonly used in reconfigurable antennas are identified. This is followed by a discussion of various liquid actuation techniques in enabling high frequency reconfigurability. Next, the liquid-based reconfigurable antennas in literature used to achieve
    [Show full text]
  • Solder Alloy Directory Indalloy® Specialty Alloys Sorted by Temperature
    Solder Alloy Directory Indalloy® Specialty Alloys Sorted by Temperature Coefficient Temperature °C (°F) Density Electrical Thermal of Thermal Latent Specific Heat Elemental Conductivity Conductivity Expansion Tensile Shear Young’s Heat of ® Indalloy Composition (1.72µohms-cm) @ 85°C @ 20°C Strength Strength Modulus Elongation Brinell Fusion SOLID LIQUID Number Liquidus Solidus (% By Mass) lb/in3 gm/cm3 % of IACS W/cm-° C PPM/° C PSI PSI PSI x 10 6 % Hardness J/g J/g- ° C J/g- ° C Comments 61.0Ga/25.0In/ 46L 8 (46) 7 (44) 0.2348 6.50 Liquid metal used as a replacement for mercury 13.0Sn/1.0Zn 66.5Ga/20.5In/ 51E 11 (52) E 0.2283 6.32 13.0Sn 60 16 (60) E 75.5Ga/24.5In 0.2294 6.35 62.5Ga/21.5In/ 51 17 (63) 11 (51) 0.2348 6.50 16.0Sn 77 25 (77) 16 (60) 95.0Ga/5.0In 0.2222 6.15 14 30 (86) MP 100.0Ga 0.2133 5.90 42.9Bi/21.7Pb/ 15 43 (109) 38 (100) 18.3In/8.0Sn/ 0.3353 9.28 5.1Cd/4.0Hg 44.7Bi/22.6Pb/ 117 47 (117) E 19.1In/8.3Sn/ 0.3310 9.16 4.5 .15 25 5400 37.5 note 4 16.5 note1 36.8 0.163 0.197 See Table 1 5.3Cd 44.7Bi/22.6Pb/ 16 52 (126) 47 (117) 16.1In/11.3Sn/ 0.3310 9.16 5.3Cd 49.1Bi/20.9In/ 17 56 (133) 54 (129) 17.9Pb/11.6Sn/ 0.3255 9.01 0.5Cd 49.0Bi/21.0In/ Poor wettability but adequate for mechanical joining of metallic substrates when highly active flux is 136 58 (136) E 0.3255 9.01 2.43 .10 23 6300 20 note 4 16.5 note1 28.9 0.167 0.201 18.0Pb/12.0Sn used.
    [Show full text]
  • A Complete Interfacial System Solution for Liquid Metal Electronics
    A Complete Interfacial System Solution for Liquid Metal Electronics A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Materials Science & Engineering of the College of Engineering & Applied Science by Sarah E. Holcomb B.S., Rensselaer Polytechnic Institute, 2013 Committee Chair: Jason C. Heikenfeld, Ph.D. Abstract Liquid metal electronic devices have numerous advantages over traditional solid devices such as the ability to be flexed and stretched or reconfigured. Examples of such devices are wires, switches, polarizers, and antennas. Previously, mercury has been used as the room temperature liquid metal of choice but has been recently replaced by gallium liquid metal alloys (GaLMAs) which are non-toxic, have extremely low vapor pressures, and can remain liquid at temperatures as low as -19°C. A key difference in the performance of GaLMAs vs. mercury is the mechanically stabilizing, passivating oxide which forms instantly on the surface of GaLMAs in as little as 1 ppm oxygen environments. This oxide presents a significant challenge for reconfigurable device applications because it “sticks” to most surfaces, preventing reversible shape change, which alters the desired electrical performance. Proposed here are two novel methods of overcoming this challenge. These methods enable new capabilities for reconfigurable electronic devices. The first approach involves removing the oxide in situ as it is continuously formed in all practically achievable device environments. Oxide removal is commonly done through the use of hydrochloric acid (aqueous or vapor), which reacts with the gallium oxide to produce gallium chloride, which is not mechanically stabilizing, and water.
    [Show full text]
  • Gallium-Based Liquid Metals and Their Hybrids As Smart Electronic Materials
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2018 Gallium-based liquid metals and their hybrids as smart electronic materials Long Ren University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Ren, Long, Gallium-based liquid metals and their hybrids as smart electronic materials, Doctor of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2018.
    [Show full text]
  • Soft Multifunctional Composites and Emulsions with Liquid Metals
    PROGRESS REPORT Soft Materials www.advmat.de Soft Multifunctional Composites and Emulsions with Liquid Metals Navid Kazem, Tess Hellebrekers, and Carmel Majidi* of liquid metal (LM) and low-melting- Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in point alloys (LMPAs). Referring to an elastomeric or fluidic carrier medium can exhibit unique combinations of Figure 1, LM systems span a wide range electrical, thermal, and mechanical properties. This emerging class of soft of length scales and architectures: mm- [8,9] multifunctional composites have potential applications in wearable com- scale channels embedded in elastomer (Figure 1A,B), traces deposited on a puting, bio-inspired robotics, and shape-programmable architectures. The substrate with a pressurized syringe[10] dispersion phase can range from dilute droplets to connected networks that (Figure 1C), microscale traces printed support electrical conductivity. In contrast to deterministically patterned with soft lithography[11] (Figure 1D), LM LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites droplets[12,13] (Figure 1E,F), microscale are statistically homogenous and exhibit effective bulk properties. Eutectic droplets embedded in a polysiloxane[14] Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their (Figure 1G), and LM nanospheres synthe- sized with ultrasonication (Figure 1H).[15] high conductivity, low viscosity, negligible nontoxicity, and ability to wet to Composites composed of droplets sus- nonmetallic materials. Because they are liquid-phase, these alloys can alter pended in a continuous elastic phase the electrical and thermal properties of the composite while preserving the can be tailored to exhibit a unique and mechanics of the surrounding medium.
    [Show full text]
  • Chapter 8: Ionic Compounds
    210-239_Ch08-866418 5/8/06 5:22 PM Page 210 CHAPTER 8 Ionic Compounds Chemistry 1.d, 1.g, 1.i, 2.a, 2.c, 2.e, 7.b I&E 1.b, 1.c, 1.d, 1.l What You’ll Learn ▲ You will define a chemical bond. ▲ You will describe how ions form. ▲ You will identify ionic bonding and the character- istics of ionic compounds. ▲ You will name and write formulas for ionic compounds. ▲ You will relate metallic bonds to the characteristics of metals. Why It’s Important The world around you is com- posed mainly of compounds. The properties of each com- pound are based on how the compound is bonded. The salts dissolved in Earth’s oceans and the compounds that make up most of Earth’s crust are held together by ionic bonds. Visit the Chemistry Web site at chemistrymc.com to find links about ionic compounds. The rock surface, the climbers’ equipment, the atmosphere, and even the climbers are composed almost entirely of compounds and mixtures of compounds. 210 Chapter 8 210-239_Ch08-866418 5/8/06 5:22 PM Page 211 DISCOVERY LAB An Unusual Alloy ost metals that you encounter are solids. Can a metal melt at a Mtemperature below the boiling point of water? You will use a metal alloy called Onion’s Fusible Alloy to answer this question. Safety Precautions Use caution around the heat source and the heated beaker and its contents. Procedure 1. Carefully place a small piece of Onion’s Fusible Alloy into a 250-mL beaker.
    [Show full text]
  • Historical Introduction on Fusible Alloys
    Jacques Jumeau English version History of technologies linked to heating. Chapter 3 Historical introduction on fusible alloys Copyright: Jacques Jumeau 1st edition 2018/08/22 Copy is allowed, provided you cite the origin: Ultimheat Museum 1 Update 2019/02/15 History of threaded pipe connections The history of low temperature fusible alloys is a succession of stages, spread over two millennia, according to the successive discoveries of metals Roman waterpipe, made of soldered lead strips (Museum of Arles et de la Provence antique ( extraite de https://commons.wikimedia.org/w/index.php?curid=10214375) and experiments. The 183°C limit: The binary alloys of lead and tin The earliest known piece made of lead and tin alloy seems to be an Egyptian vase found in Abydos, dated around 1400 BC. During the Roman Empire, lead was used for the construction of water pipes. Melting at 325°C, it was easily melted into strips. As it does not self-weld, it was a mixture of lead and tin that was used to weld the strips rolled together into hoses. Although they did not have temperature measuring devices, the Romans had noticed that by adding a certain percentage of tin (melting at 235°C) imported from Cornwall to the lead, the mixture melted at a temperature less than that of lead. In his Natural History, Pliny the Elder, in the course of the first century, gave the formula for welding the lead tubes: two parts of lead for a part of tin. (Melting range of the alloy 66.7-33.3: 185-250°C).
    [Show full text]
  • 1 Temperature and Rate Dependent Constitutive Behaviors of Low Melt Field's Metal Quang-Kha Nguyen, Fanghang Deng, Pu Zhang*
    Temperature and Rate Dependent Constitutive Behaviors of Low Melt Field's Metal Quang-Kha Nguyen, Fanghang Deng, Pu Zhang* Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902 Abstract Low melting point metals such as Field’s metal and gallium are increasingly used as transition phases in stiffness-tuning soft materials and devices. Nevertheless, there is a knowledge gap on the fundamental constitutive behaviors of metals with melting points below 100℃. This letter reports the stress-strain relationships of Field’s metal at various temperatures and strain rates. This metal has the lowest melting point among metals whose constitutive behaviors have been studied systematically. Experimental results indicate that Field’s metal exhibits a strain-softening behavior, in oppose to the strain-hardening behaviors of most engineering metals and alloys. A modified Johnson-Cook model is devised in this letter to describe the constitutive behaviors of Field’s metal. The proposed model will facilitate the design and analysis of functional materials and structures consisting of Field’s metal. Keywords: Liquid metal; Low melting point alloy; Field’s metal; Constitutive model 1. Introduction Low melting point metals (LMPM) [1] have been employed to fabricate functional materials and structures [2–11] with tunable stiffness, shape memory effect, self-healing behaviors, good thermal/electrical conductivity, etc. The most commonly used lead-free LMPMs include gallium (melting point Tm = 30℃) and Field’s metal (Tm = 62℃), which are also called liquid metals sometimes [1]. The most prominent feature of LMPMs is their solid- liquid phase transition at relatively low temperatures, e.g.
    [Show full text]