Interpro in 2011: New Developments in the Family and Domain Prediction Database Sarah Hunter, Philip Jones, Alex Mitchell, Rolf Apweiler, Teresa K

Total Page:16

File Type:pdf, Size:1020Kb

Interpro in 2011: New Developments in the Family and Domain Prediction Database Sarah Hunter, Philip Jones, Alex Mitchell, Rolf Apweiler, Teresa K InterPro in 2011: new developments in the family and domain prediction database Sarah Hunter, Philip Jones, Alex Mitchell, Rolf Apweiler, Teresa K. Attwood, Alex Bateman, Thomas Bernard, David Binns, Peer Bork, Sarah Burge, et al. To cite this version: Sarah Hunter, Philip Jones, Alex Mitchell, Rolf Apweiler, Teresa K. Attwood, et al.. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Research, Oxford University Press, 2012, 40 (D1), pp.D306-D312. 10.1093/nar/gkr948. hal-02652188 HAL Id: hal-02652188 https://hal.inrae.fr/hal-02652188 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. D306–D312 Nucleic Acids Research, 2012, Vol. 40, Database issue Published online 16 November 2011 doi:10.1093/nar/gkr948 InterPro in 2011: new developments in the family and domain prediction database Sarah Hunter1,*, Philip Jones1,*, Alex Mitchell1,*, Rolf Apweiler1, Teresa K. Attwood2, Alex Bateman3, Thomas Bernard4, David Binns1, Peer Bork5, Sarah Burge1, Edouard de Castro6, Penny Coggill3, Matthew Corbett1, Ujjwal Das1, Louise Daugherty1, Lauranne Duquenne4, Robert D. Finn3, Matthew Fraser1, Julian Gough7, Daniel Haft8, 6 4 9 5 1 Nicolas Hulo , Daniel Kahn , Elizabeth Kelly , Ivica Letunic , David Lonsdale , Downloaded from Rodrigo Lopez1, Martin Madera7, John Maslen1, Craig McAnulla1, Jennifer McDowall1, Conor McMenamin1, Huaiyu Mi10, Prudence Mutowo-Muellenet1, Nicola Mulder9, Darren Natale11, Christine Orengo12, Sebastien Pesseat1, Marco Punta3, Antony F. Quinn1, Catherine Rivoire6, Amaia Sangrador-Vegas1, Jeremy D. Selengut8, http://nar.oxfordjournals.org/ Christian J. A. Sigrist6, Maxim Scheremetjew1, John Tate3, Manjulapramila Thimmajanarthanan1, Paul D. Thomas10, Cathy H. Wu12, Corin Yeats12 and Siew-Yit Yong1 1EMBL Outstation European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, Cambridge, 2Faculty of Life Science and School of Computer Science, The University of Manchester, M13 9PL, Manchester, 3The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, at INRA Institut National de la Recherche Agronomique on August 9, 2016 Hinxton, Cambridge, CB10 1SA UK, 4Poˆ le Rhoˆ ne-Alpin de Bio-Informatique (PRABI) and Laboratoire de Biome´ trie et Biologie Evolutive; CNRS; INRA; Universite´ de Lyon; Universite´ Lyon 1, 69622 Villeurbanne, France, 5European Molecular Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany, 6Swiss Institute of Bioinformatics (SIB), CMU - Rue Michel-Servet 11211, Geneva 4, Switzerland, 7Department of Computer Science, University of Bristol, Woodland Road, Bristol, BS8 1UB, UK, 8J. Craig Venter Institute (JCVI), 9704 Medical Center Drive, Rockville, MD 20850, USA,9Computational Biology Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town Health Sciences Campus, Anzio Road, Observatory 7925, South Africa, 10University of Southern California, Los Angeles, CA 90089, USA, 11Protein Information Resource (PIR), Georgetown University Medical Center, 3300 Whitehaven Street, NW, Suite 1200 Washington, D.C. 20007, USA and12Structural and Molecular Biology Department, University College London, University of London, WC1E 6BT UK Received October 4, 2011; Revised October 10, 2011; Accepted October 12, 2011 ABSTRACT protein sequences can be searched to determine their potential function. InterPro has utility in the InterPro (http://www.ebi.ac.uk/interpro/) is a database large-scale analysis of whole genomes and meta- that integrates diverse information about protein families, domains and functional sites, and makes genomes, as well as in characterizing individual it freely available to the public via Web-based inter- protein sequences. Herein we give an overview of faces and services. Central to the database are diag- new developments in the database and its asso- nostic models, known as signatures, against which ciated software since 2009, including updates to *To whom correspondence should be addressed. Tel: +44 (0) 1223 494 481; Fax: +44 (0) 1223 494 468; Email: [email protected] Correspondence may also be addressed to Alex Mitchell. Email: [email protected] Correspondence may also be addressed to Philip Jones. Tel: +44 (0) 1223 492610; Fax: +44 (0) 1223 494484; Email:[email protected] The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors. ß The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Nucleic Acids Research, 2012, Vol. 40, Database issue D307 database content, curation processes and Web and 2009; the latest release (version 34.0) contains 31 685 programmatic interfaces. member database signatures integrated into 22 245 InterPro entries, and provides matches to 80% of the sequences in UniProtKB (Table 1). INTRODUCTION The InterPro database integrates predictive models, or sig- Changes to terminology and data structure natures, from multiple, diverse source repositories: Pfam (1), PRINTS (2), PROSITE (3), SMART (4), ProDom (5), InterPro entries are classified according to the type of sig- PIRSF (6), SUPERFAMILY (7), PANTHER (8), CATH- nature they group together. In order to make it clear to Gene3D (9), TIGRFAMs (10) and HAMAP (11). Each end users what can be inferred from a match to a particu- source has its own distinct biological focus and/or meth- lar entry in the database, the different entry types have odology of signature production. The aim of InterPro is to been reviewed and terminology has been standardized. Downloaded from combine their individual strengths to provide a single Entry types now comprise families, domains, repeats, resource through which scientists can access comprehen- post-translational modifications, active sites, binding sites sive information about protein families, domains and and conserved sites, with formal definitions for each type functional sites. clearly stated on the InterPro Web site. Member database signatures are integrated into The relationships between different entry types have http://nar.oxfordjournals.org/ InterPro manually. Curators combine signatures repre- also been revised. Family and domain entries continue to senting the same protein family, domain or site into single be organized into hierarchies, with top-level entries de- database entries, and, where possible, trace biological re- scribing broad families or domains that share higher lationships between the constituent signatures. They check level structure and/or function, and entries further down the biological accuracy of the individual signatures and the hierarchy describing more specific functional sub- add pertinent information, including consistent names, de- families or structural/functional subclasses of domains. scriptive abstracts (with links to original publications) and However, family and domain entries are no longer per- Gene Ontology (GO) (12) terms. Semi-automatic proced- mitted to occur within the same hierarchy, and are now ures create and maintain links to an array of other data- classified into distinct hierarchies that relate domain archi- at INRA Institut National de la Recherche Agronomique on August 9, 2016 bases, including the protease resource MEROPS (13), the tectures to protein families. These data structures are pre- protein interaction database IntAct (14), the ENZYME sented on the Web interface in an intuitive tree view, as database (15) and the 3D structure database PDB (16). well as being available on the FTP site in a flat-file (ftp:// InterPro signature matches to the UniProt ftp.ebi.ac.uk/pub/databases/interpro/ParentChildTreeFile Knowledgebase (UniProtKB) (17) and the UniParc .txt). protein sequence archive are calculated using the InterProScan software package (18). This information is made available to the public in XML files as well as Integration of the HAMAP database through Web interfaces, where users can search with either A new member database, HAMAP (High-quality a protein sequence or a protein identifier. These data are Automated and Manual Annotation of microbial also used to aid UniProtKB curators in their annotation Proteomes), was added in 2009, InterPro release 22.0. of Swiss-Prot proteins and are utilized by the automatic The HAMAP database contains over 1600 signatures, spe- system that adds annotation to UniProtKB/TrEMBL. cifically describing archaeal, bacterial and plastid-encoded InterProScan can also be used to perform automated protein families. It is based upon weighted-matrix signa- analysis of protein sequences. The software is available tures, of the type used in the PROSITE profiles database. (i) as a browser-based tool for analysing single protein The integration of HAMAP into InterPro has helped sequences (http://www.ebi.ac.uk/Tools/pfa/iprscan/);
Recommended publications
  • Enhanced Representation of Natural Product Metabolism in Uniprotkb
    H OH metabolites OH Article Diverse Taxonomies for Diverse Chemistries: Enhanced Representation of Natural Product Metabolism in UniProtKB Marc Feuermann 1,* , Emmanuel Boutet 1,* , Anne Morgat 1 , Kristian B. Axelsen 1, Parit Bansal 1, Jerven Bolleman 1 , Edouard de Castro 1, Elisabeth Coudert 1, Elisabeth Gasteiger 1,Sébastien Géhant 1, Damien Lieberherr 1, Thierry Lombardot 1,†, Teresa B. Neto 1, Ivo Pedruzzi 1, Sylvain Poux 1, Monica Pozzato 1, Nicole Redaschi 1 , Alan Bridge 1 and on behalf of the UniProt Consortium 1,2,3,4,‡ 1 Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Geneva 4, Switzerland; [email protected] (A.M.); [email protected] (K.B.A.); [email protected] (P.B.); [email protected] (J.B.); [email protected] (E.d.C.); [email protected] (E.C.); [email protected] (E.G.); [email protected] (S.G.); [email protected] (D.L.); [email protected] (T.L.); [email protected] (T.B.N.); [email protected] (I.P.); [email protected] (S.P.); [email protected] (M.P.); [email protected] (N.R.); [email protected] (A.B.); [email protected] (U.C.) 2 European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK 3 Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark, DE 19711, USA 4 Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NorthWest, Suite 1200, Washington, DC 20007, USA * Correspondence: [email protected] (M.F.); [email protected] (E.B.); Tel.: +41-22-379-58-75 (M.F.); +41-22-379-49-10 (E.B.) † Current address: Centre Informatique, Division Calcul et Soutien à la Recherche, University of Lausanne, CH-1015 Lausanne, Switzerland.
    [Show full text]
  • The EMBL-European Bioinformatics Institute the Hub for Bioinformatics in Europe
    The EMBL-European Bioinformatics Institute The hub for bioinformatics in Europe Blaise T.F. Alako, PhD [email protected] www.ebi.ac.uk What is EMBL-EBI? • Part of the European Molecular Biology Laboratory • International, non-profit research institute • Europe’s hub for biological data, services and research The European Molecular Biology Laboratory Heidelberg Hamburg Hinxton, Cambridge Basic research Structural biology Bioinformatics Administration Grenoble Monterotondo, Rome EMBO EMBL staff: 1500 people Structural biology Mouse biology >60 nationalities EMBL member states Austria, Belgium, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom Associate member state: Australia Who we are ~500 members of staff ~400 work in services & support >53 nationalities ~120 focus on basic research EMBL-EBI’s mission • Provide freely available data and bioinformatics services to all facets of the scientific community in ways that promote scientific progress • Contribute to the advancement of biology through basic investigator-driven research in bioinformatics • Provide advanced bioinformatics training to scientists at all levels, from PhD students to independent investigators • Help disseminate cutting-edge technologies to industry • Coordinate biological data provision throughout Europe Services Data and tools for molecular life science www.ebi.ac.uk/services Browse our services 9 What services do we provide? Labs around the
    [Show full text]
  • Tunca Doğan , Alex Bateman , Maria J. Martin Your Choice
    (—THIS SIDEBAR DOES NOT PRINT—) UniProt Domain Architecture Alignment: A New Approach for Protein Similarity QUICK START (cont.) DESIGN GUIDE Search using InterPro Domain Annotation How to change the template color theme This PowerPoint 2007 template produces a 44”x44” You can easily change the color theme of your poster by going to presentation poster. You can use it to create your research 1 1 1 the DESIGN menu, click on COLORS, and choose the color theme of poster and save valuable time placing titles, subtitles, text, Tunca Doğan , Alex Bateman , Maria J. Martin your choice. You can also create your own color theme. and graphics. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), We provide a series of online tutorials that will guide you Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK through the poster design process and answer your poster Correspondence: [email protected] production questions. To view our template tutorials, go online to PosterPresentations.com and click on HELP DESK. ABSTRACT METHODOLOGY RESULTS & DISCUSSION When you are ready to print your poster, go online to InterPro Domains, DAs and DA Alignment PosterPresentations.com Motivation: Similarity based methods have been widely used in order to Generation of the Domain Architectures: You can also manually change the color of your background by going to VIEW > SLIDE MASTER. After you finish working on the master be infer the properties of genes and gene products containing little or no 1) Collect the hits for each protein from InterPro. Domain annotation coverage Overlap domain hits problem in Need assistance? Call us at 1.510.649.3001 difference b/w domain databases: the InterPro database: sure to go to VIEW > NORMAL to continue working on your poster.
    [Show full text]
  • Evolution and Function of Drososphila Melanogaster Cis-Regulatory Sequences
    Evolution and Function of Drososphila melanogaster cis-regulatory Sequences By Aaron Hardin A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michael Eisen, Chair Professor Doris Bachtrog Professor Gary Karpen Professor Lior Pachter Fall 2013 Evolution and Function of Drososphila melanogaster cis-regulatory Sequences This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License 2013 by Aaron Hardin 1 Abstract Evolution and Function of Drososphila melanogaster cis-regulatory Sequences by Aaron Hardin Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Michael Eisen, Chair In this work, I describe my doctoral work studying the regulation of transcription with both computational and experimental methods on the natural genetic variation in a population. This works integrates an investigation of the consequences of polymorphisms at three stages of gene regulation in the developing fly embryo: the diversity at cis-regulatory modules, the integration of transcription factor binding into changes in chromatin state and the effects of these inputs on the final phenotype of embryonic gene expression. i I dedicate this dissertation to Mela Hardin who has been here for me at all times, even when we were apart. ii Contents List of Figures iv List of Tables vi Acknowledgments vii 1 Introduction1 2 Within Species Diversity in cis-Regulatory Modules6 2.1 Introduction....................................6 2.2 Results.......................................8 2.2.1 Genome wide diversity in transcription factor binding sites......8 2.2.2 Genome wide purifying selection on cis-regulatory modules......9 2.3 Discussion.....................................9 2.4 Methods for finding polymorphisms......................
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • The HUPO Proteomics Standards Initiative Meeting: Towards Common Standards for Exchanging Proteomics Data Hinxton, Cambridge, UK, 19–20 October 2002
    Comparative and Functional Genomics Comp Funct Genom 2003; 4: 16–19. Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cfg.232 Feature Meeting Review: The HUPO Proteomics Standards Initiative meeting: towards common standards for exchanging proteomics data Hinxton, Cambridge, UK, 19–20 October 2002 Sandra Orchard, Paul Kersey, Henning Hermjakob* and Rolf Apweiler EMBL Outstation–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK *Correspondence to: Abstract Henning Hermjakob, EMBL Outstation–European The Proteomics Standards Initiative (PSI) aims to define community standards Bioinformatics Institute, for data representation in proteomics and to facilitate data comparison, exchange Wellcome Trust Genome and verification. Initially the fields of protein–protein interactions (PPI) and mass Campus, Hinxton, Cambridge, spectroscopy have been targeted and the inaugural meeting of the PSI addressed the UK. questions of data storage and exchange in both of these areas. The PPI group rapidly E-mail: reached consensus as to the minimum requirements for a data exchange model; an [email protected] XML draft is now being produced. The mass spectroscopy group have achieved major advances in the definition of a required data model and working groups are currently taking these discussions further. A further meeting is planned in January 2003 to Received: 14 November 2002 advance both these projects. Copyright 2003 John Wiley & Sons, Ltd. Accepted: 14 November 2002 Keywords: proteomics; spectroscopy; protein–protein interactions Introduction process, before splitting into two working parties to address the issues facing their respective fields. The Proteomics Standards Initiative was estab- lished following a meeting in April 2002, jointly organized by HUPO and NAS, at which the urgent Protein–protein interactions (PPI) group need for standardization of proteomics data was recognized.
    [Show full text]
  • The European Bioinformatics Institute in 2020: Building a Global Infrastructure of Interconnected Data Resources for the Life Sciences Charles E
    Published online 8 November 2019 Nucleic Acids Research, 2020, Vol. 48, Database issue D17–D23 doi: 10.1093/nar/gkz1033 The European Bioinformatics Institute in 2020: building a global infrastructure of interconnected data resources for the life sciences Charles E. Cook *, Oana Stroe, Guy Cochrane ,EwanBirney and Rolf Apweiler European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK Received September 21, 2019; Revised October 18, 2019; Editorial Decision October 21, 2019; Accepted November 06, 2019 ABSTRACT ature. EMBL-EBI’s data resources collate, integrate, curate and make freely available to the public the world’s scientific Data resources at the European Bioinformatics In- data. stitute (EMBL-EBI, https://www.ebi.ac.uk/)archive, Our resources (www.ebi.ac.uk/services) include archival organize and provide added-value analysis of re- or deposition databases that store primary experimental search data produced around the world. This year’s data submitted by researchers, as well as knowledgebases update for EMBL-EBI focuses on data exchanges that integrate and add value to experimental data, with among resources, both within the institute and with many having both functions (1,2). All EMBL-EBI data re- a wider global infrastructure. Within EMBL-EBI, data sources, are open access and freely available to any user resources exchange data through a rich network of worldwide at any time, and EMBL-EBI strongly supports data flows mediated by automated systems. This net- the concept of FAIR data (findable, accessible, interopera- work ensures that users are served with as much ble, and resuable) (3).
    [Show full text]
  • 2003 Mulder Nucl Acids Res {22
    The InterPro Database, 2003 brings increased coverage and new features Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, Alex Bateman, David Binns, Margaret Biswas, Paul Bradley, Peer Bork, et al. To cite this version: Nicola J Mulder, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Daniel Barrell, et al.. The InterPro Database, 2003 brings increased coverage and new features. Nucleic Acids Research, Oxford University Press, 2003, 31 (1), pp.315-318. 10.1093/nar/gkg046. hal-01214149 HAL Id: hal-01214149 https://hal.archives-ouvertes.fr/hal-01214149 Submitted on 9 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. # 2003 Oxford University Press Nucleic Acids Research, 2003, Vol. 31, No. 1 315–318 DOI: 10.1093/nar/gkg046 The InterPro Database, 2003 brings increased coverage and new features Nicola J. Mulder1,*, Rolf Apweiler1, Teresa K. Attwood3, Amos Bairoch4, Daniel Barrell1, Alex Bateman2, David Binns1, Margaret Biswas5, Paul Bradley1,3, Peer Bork6, Phillip Bucher7, Richard R. Copley8, Emmanuel Courcelle9, Ujjwal Das1, Richard Durbin2, Laurent Falquet7, Wolfgang Fleischmann1, Sam Griffiths-Jones2, Downloaded from Daniel Haft10, Nicola Harte1, Nicolas Hulo4, Daniel Kahn9, Alexander Kanapin1, Maria Krestyaninova1, Rodrigo Lopez1, Ivica Letunic6, David Lonsdale1, Ville Silventoinen1, Sandra E.
    [Show full text]
  • MPGM: Scalable and Accurate Multiple Network Alignment
    MPGM: Scalable and Accurate Multiple Network Alignment Ehsan Kazemi1 and Matthias Grossglauser2 1Yale Institute for Network Science, Yale University 2School of Computer and Communication Sciences, EPFL Abstract Protein-protein interaction (PPI) network alignment is a canonical operation to transfer biological knowledge among species. The alignment of PPI-networks has many applica- tions, such as the prediction of protein function, detection of conserved network motifs, and the reconstruction of species’ phylogenetic relationships. A good multiple-network align- ment (MNA), by considering the data related to several species, provides a deep understand- ing of biological networks and system-level cellular processes. With the massive amounts of available PPI data and the increasing number of known PPI networks, the problem of MNA is gaining more attention in the systems-biology studies. In this paper, we introduce a new scalable and accurate algorithm, called MPGM, for aligning multiple networks. The MPGM algorithm has two main steps: (i) SEEDGENERA- TION and (ii) MULTIPLEPERCOLATION. In the first step, to generate an initial set of seed tuples, the SEEDGENERATION algorithm uses only protein sequence similarities. In the second step, to align remaining unmatched nodes, the MULTIPLEPERCOLATION algorithm uses network structures and the seed tuples generated from the first step. We show that, with respect to different evaluation criteria, MPGM outperforms the other state-of-the-art algo- rithms. In addition, we guarantee the performance of MPGM under certain classes of net- work models. We introduce a sampling-based stochastic model for generating k correlated networks. We prove that for this model if a sufficient number of seed tuples are available, the MULTIPLEPERCOLATION algorithm correctly aligns almost all the nodes.
    [Show full text]
  • Molecular Genetics & Genomics
    page 46 Lab Times 5-2010 Ranking Illustration: Christina Ullman Publication Analysis 1997-2008 Molecular Genetics & Genomics Under the premise of a “narrow” definition of the field, Germany and England co-dominated European molecular genetics/genomics. The most frequently citated sub-fields were bioinformatical genomics, epigenetics, RNA biology and DNA repair. irst of all, a little science history (you’ll soon see why). As and expression. That’s where so-called computational biology is well known, in the 1950s genetics went molecular – and and systems biology enter research into basic genetic problems. Fdid not just become molecular genetics but rather molec- Given that development, it is not easy to answer the question ular bio logy. In 1963, however, Sydney Brenner wrote in his fa- what “molecular genetics & genomics” today actually is – and, mous letter to Max Perutz: “[...] I have long felt that the future of in particular, what is it in the context of our publication analy- molecular biology lies in the extension of research to other fields sis of the field? It is obvious that, as for example science historian of biology, notably development and the nervous system.” He Robert Olby put it, a “wide” definition can be distinguished from appeared not to be alone with this view and, as a consequence, a “narrow” definition of the field. The wide definition includes along with Brenner many of the leading molecular biologists all fields, into which molecular biology has entered as an exper- from the classical period redirected their research agendas, utilis- imental and theoretical paradigm. The “narrow” definition, on ing the newly developed molecular techniques to investigate un- the other hand, still tries to maintain the status as an explicit bio- solved problems in other fields.
    [Show full text]
  • Pfam: the Protein Families Database in 2021 Jaina Mistry 1,*, Sara Chuguransky 1, Lowri Williams 1, Matloob Qureshi 1, Gustavo A
    D412–D419 Nucleic Acids Research, 2021, Vol. 49, Database issue Published online 30 October 2020 doi: 10.1093/nar/gkaa913 Pfam: The protein families database in 2021 Jaina Mistry 1,*, Sara Chuguransky 1, Lowri Williams 1, Matloob Qureshi 1, Gustavo A. Salazar1, Erik L.L. Sonnhammer2, Silvio C.E. Tosatto 3, Lisanna Paladin 3, Shriya Raj 1, Lorna J. Richardson 1, Robert D. Finn 1 and Alex Bateman 1 1European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK, 2Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden and 3Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy Received September 11, 2020; Revised October 01, 2020; Editorial Decision October 02, 2020; Accepted October 06, 2020 ABSTRACT per-family gathering thresholds. Pfam entries are manually annotated with functional information from the literature The Pfam database is a widely used resource for clas- where available. sifying protein sequences into families and domains. Since Pfam release 29.0, pfamseq is based on UniPro- Since Pfam was last described in this journal, over tKB reference proteomes, whilst prior to that, it was based 350 new families have been added in Pfam 33.1 and on the whole of UniProtKB (3,4). Although the underly- numerous improvements have been made to existing ing sequence database is based on reference proteomes, all entries. To facilitate research on COVID-19, we have of the profile HMMs are also searched against UniProtKB revised the Pfam entries that cover the SARS-CoV-2 and the resulting matches are made available on the Pfam proteome, and built new entries for regions that were website and in a flatfile format.
    [Show full text]
  • Rapid Identification of Novel Protein Families Using Similarity Searches [Version 1; Peer Review: 2 Approved]
    F1000Research 2018, 7:1975 Last updated: 26 JUL 2021 METHOD ARTICLE Rapid identification of novel protein families using similarity searches [version 1; peer review: 2 approved] Matt Jeffryes, Alex Bateman European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, CB10 1SD, UK v1 First published: 24 Dec 2018, 7:1975 Open Peer Review https://doi.org/10.12688/f1000research.17315.1 Latest published: 24 Dec 2018, 7:1975 https://doi.org/10.12688/f1000research.17315.1 Reviewer Status Invited Reviewers Abstract Protein family databases are an important tool for biologists trying to 1 2 dissect the function of proteins. Comparing potential new families to the thousands of existing entries is an important task when operating version 1 a protein family database. This comparison helps to understand 24 Dec 2018 report report whether a collection of protein regions forms a novel family or has overlaps with existing families of proteins. In this paper, we describe a 1. Daniel J. Rigden , University of Liverpool, method for performing this analysis with an adjustable level of accuracy, depending on the desired speed, enabling interactive Liverpool, UK comparisons. This method is based upon the MinHash algorithm, 2. Desmond G Higgins, Conway Institute, which we have further extended to calculate the Jaccard containment rather than the Jaccard index of the original MinHash technique. University College Dublin, Dublin, Ireland Testing this method with the Pfam protein family database, we are able to compare potential new families to the over 17,000 existing Any reports and responses or comments on the families in Pfam in less than a second, with little loss in accuracy.
    [Show full text]