The Foundations of Categorical Model Theory, by Michael Makkai and Robert Paré
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience. -
Knowledge Representation in Bicategories of Relations
Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR). -
An Introduction to Category Theory and Categorical Logic
An Introduction to Category Theory and Categorical Logic Wolfgang Jeltsch Category theory An Introduction to Category Theory basics Products, coproducts, and and Categorical Logic exponentials Categorical logic Functors and Wolfgang Jeltsch natural transformations Monoidal TTU¨ K¨uberneetika Instituut categories and monoidal functors Monads and Teooriaseminar comonads April 19 and 26, 2012 References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and comonads Monads and comonads References References An Introduction to Category Theory and Categorical Logic Category theory basics Wolfgang Jeltsch Category theory Products, coproducts, and exponentials basics Products, coproducts, and Categorical logic exponentials Categorical logic Functors and Functors and natural transformations natural transformations Monoidal categories and Monoidal categories and monoidal functors monoidal functors Monads and Monads and comonads comonads References References An Introduction to From set theory to universal algebra Category Theory and Categorical Logic Wolfgang Jeltsch I classical set theory (for example, Zermelo{Fraenkel): I sets Category theory basics I functions from sets to sets Products, I composition -
Categorical Semantics of Constructive Set Theory
Categorical semantics of constructive set theory Beim Fachbereich Mathematik der Technischen Universit¨atDarmstadt eingereichte Habilitationsschrift von Benno van den Berg, PhD aus Emmen, die Niederlande 2 Contents 1 Introduction to the thesis 7 1.1 Logic and metamathematics . 7 1.2 Historical intermezzo . 8 1.3 Constructivity . 9 1.4 Constructive set theory . 11 1.5 Algebraic set theory . 15 1.6 Contents . 17 1.7 Warning concerning terminology . 18 1.8 Acknowledgements . 19 2 A unified approach to algebraic set theory 21 2.1 Introduction . 21 2.2 Constructive set theories . 24 2.3 Categories with small maps . 25 2.3.1 Axioms . 25 2.3.2 Consequences . 29 2.3.3 Strengthenings . 31 2.3.4 Relation to other settings . 32 2.4 Models of set theory . 33 2.5 Examples . 35 2.6 Predicative sheaf theory . 36 2.7 Predicative realizability . 37 3 Exact completion 41 3.1 Introduction . 41 3 4 CONTENTS 3.2 Categories with small maps . 45 3.2.1 Classes of small maps . 46 3.2.2 Classes of display maps . 51 3.3 Axioms for classes of small maps . 55 3.3.1 Representability . 55 3.3.2 Separation . 55 3.3.3 Power types . 55 3.3.4 Function types . 57 3.3.5 Inductive types . 58 3.3.6 Infinity . 60 3.3.7 Fullness . 61 3.4 Exactness and its applications . 63 3.5 Exact completion . 66 3.6 Stability properties of axioms for small maps . 73 3.6.1 Representability . 74 3.6.2 Separation . 74 3.6.3 Power types . -
Logic and Categories As Tools for Building Theories
Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications. -
Categorical Databases
Categorical databases David I. Spivak [email protected] Mathematics Department Massachusetts Institute of Technology Presented on 2014/02/28 at Oracle David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 1 / 1 Introduction Purpose of the talk Purpose of the talk There is an fundamental connection between databases and categories. Category theory can simplify how we think about and use databases. We can clearly see all the working parts and how they fit together. Powerful theorems can be brought to bear on classical DB problems. David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 2 / 1 Introduction The pros and cons of relational databases The pros and cons of relational databases Relational databases are reliable, scalable, and popular. They are provably reliable to the extent that they strictly adhere to the underlying mathematics. Make a distinction between the system you know and love, vs. the relational model, as a mathematical foundation for this system. David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 3 / 1 Introduction The pros and cons of relational databases You're not really using the relational model. Current implementations have departed from the strict relational formalism: Tables may not be relational (duplicates, e.g from a query). Nulls (and labeled nulls) are commonly used. The theory of relations (150 years old) is not adequate to mathematically describe modern DBMS. The relational model does not offer guidance for schema mappings and data migration. Databases have been intuitively moving toward what's best described with a more modern mathematical foundation. David I. -
Sizes and Filtrations in Accessible Categories
SIZES AND FILTRATIONS IN ACCESSIBLE CATEGORIES MICHAEL LIEBERMAN, JIRˇ´I ROSICKY,´ AND SEBASTIEN VASEY Abstract. Accessible categories admit a purely category-theoretic replace- ment for cardinality: the internal size. Generalizing results and methods from [LRV19b], we examine set-theoretic problems related to internal sizes and prove several L¨owenheim-Skolem theorems for accessible categories. For example, assuming the singular cardinal hypothesis, we show that a large ac- cessible category has an object in all internal sizes of high-enough cofinality. We also prove that accessible categories with directed colimits have filtrations: any object of sufficiently high internal size is (the retract of) a colimit of a chain of strictly smaller objects. Contents 1. Introduction 1 2. Preliminaries 4 3. Directed systems and cofinal posets 9 4. Presentation theorem and axiomatizability 12 5. On successor presentability ranks 14 6. The existence spectrum of a µ-AEC 16 7. The existence spectrum of an accessible category 19 8. Filtrations 22 References 26 1. Introduction Recent years have seen a burst of research activity connecting accessible categories with abstract model theory. Abstract model theory, which has always had the aim of generalizing|in a uniform way|fragments of the rich classification theory of first order logic to encompass the broader nonelementary classes of structures that Date: June 5, 2019 AMS 2010 Subject Classification: Primary 18C35. Secondary: 03C45, 03C48, 03C52, 03C55, 03C75, 03E05. Key words and phrases. internal size, presentability rank, existence spectrum, accessibility spectrum, filtrations, singular cardinal hypothesis. The second author is supported by the Grant agency of the Czech republic under the grant 19-00902S. -
Arxiv:0708.2185V1 [Math.CT] 16 Aug 2007 Ro.Oragmn Sbsdo H Atta Oooyequivalen Homotopy That Fact the on Based Is Argument Our Proof
ON COMBINATORIAL MODEL CATEGORIES J. ROSICKY´ ∗ Abstract. Combinatorial model categories were introduced by J. H. Smith as model categories which are locally presentable and cofibrantly generated. He has not published his results yet but proofs of some of them were presented by T. Beke or D. Dugger. We are contributing to this endeavour by proving that weak equiv- alences in a combinatorial model category form an accessible cat- egory. We also present some new results about weak equivalences and cofibrations in combinatorial model categories. 1. Introduction Model categories were introduced by Quillen [24] as a foundation of homotopy theory. Their modern theory can found in [20] or [19]. Combinatorial model categories were introduced by J. H. Smith as model categories which are locally presentable and cofibrantly gener- ated. The latter means that both cofibrations and trivial cofibrations are cofibrantly generated by a set of morphisms. He has not published his results yet but some of them can be found in [7] or [14]. In partic- ular, [7] contains the proof of the theorem characterizing when a class W of weak equivalences makes a locally presentable category K to be a combinatorial model category with a given cofibrantly generated class C of cofibrations. The characterization combines closure properties of W together with a smallness condition saying that W satisfies the solution set condition at the generating set X of cofibrations. We will show that arXiv:0708.2185v1 [math.CT] 16 Aug 2007 these conditions are also necessary. This is based or another result of J. H. Smith saying that, in a combinatorial model category, W is always accessible and accessibly embedded in the category K→ of morphisms of K (he informed me about this result in 2002 without indicating a proof). -
Notes on Categorical Logic
Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour. -
Categorical Logic from a Categorical Point of View
Categorical logic from a categorical point of view Michael Shulman DRAFT for AARMS Summer School 2016 Version of July 28, 2016 2 ii Contents Prefacei 0 Introduction3 0.1 Appetizer: inverses in group objects................3 0.2 On syntax and free objects.....................8 0.3 On type theory and category theory................ 12 0.4 Expectations of the reader...................... 16 1 Unary type theories 19 1.1 Posets................................. 19 1.2 Categories............................... 23 1.2.1 Primitive cuts......................... 24 1.2.2 Cut admissibility....................... 29 1.3 Meet-semilattices........................... 39 1.3.1 Sequent calculus for meet-semilattices........... 40 1.3.2 Natural deduction for meet-semilattices.......... 44 1.4 Categories with products...................... 47 1.5 Categories with coproducts..................... 56 1.6 Universal properties and modularity................ 61 1.7 Presentations and theories...................... 63 1.7.1 Group presentations..................... 64 1.7.2 Category presentations.................... 66 1.7.3 ×-presentations........................ 68 1.7.4 Theories............................ 75 2 Simple type theories 85 2.1 Towards multicategories....................... 85 2.2 Introduction to multicategories................... 89 2.3 Multiposets and monoidal posets.................. 93 2.3.1 Multiposets.......................... 93 2.3.2 Sequent calculus for monoidal posets............ 95 2.3.3 Natural deduction for monoidal posets........... 99 2.4 -
Mathematics and the Brain: a Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness
entropy Review Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness 1,2,3, , 4,5,6,7, 8, Georg Northoff * y, Naotsugu Tsuchiya y and Hayato Saigo y 1 Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310058, China 2 Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4 Canada 3 Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310036, China 4 School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia; [email protected] 5 Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia 6 Advanced Telecommunication Research, Soraku-gun, Kyoto 619-0288, Japan 7 Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan 8 Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan; [email protected] * Correspondence: georg.northoff@theroyal.ca All authors contributed equally to the paper as it was a conjoint and equally distributed work between all y three authors. Received: 18 July 2019; Accepted: 9 October 2019; Published: 17 December 2019 Abstract: Consciousness is a central issue in neuroscience, however, we still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates. In this review, we provide a novel mathematical framework of category theory (CT), in which we can define and study the sameness between different domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the relationships between various domains of phenomena. -
Lecture Notes: Introduction to Categorical Logic
Lecture Notes: Introduction to Categorical Logic [DRAFT: January 16, 2017] Steven Awodey Andrej Bauer January 16, 2017 Contents 1 Review of Category Theory 7 1.1 Categories . 7 1.1.1 The empty category 0 .................... 8 1.1.2 The unit category 1 ..................... 8 1.1.3 Other finite categories . 8 1.1.4 Groups as categories . 8 1.1.5 Posets as categories . 9 1.1.6 Sets as categories . 9 1.1.7 Structures as categories . 9 1.1.8 Further Definitions . 10 1.2 Functors . 11 1.2.1 Functors between sets, monoids and posets . 12 1.2.2 Forgetful functors . 12 1.3 Constructions of Categories and Functors . 12 1.3.1 Product of categories . 12 1.3.2 Slice categories . 13 1.3.3 Opposite categories . 14 1.3.4 Representable functors . 14 1.3.5 Group actions . 16 1.4 Natural Transformations and Functor Categories . 16 1.4.1 Directed graphs as a functor category . 18 1.4.2 The Yoneda Embedding . 19 1.4.3 Equivalence of Categories . 21 1.5 Adjoint Functors . 23 1.5.1 Adjoint maps between preorders . 24 1.5.2 Adjoint Functors . 26 1.5.3 The Unit of an Adjunction . 28 1.5.4 The Counit of an Adjunction . 30 1.6 Limits and Colimits . 31 1.6.1 Binary products . 31 1.6.2 Terminal object . 32 1.6.3 Equalizers . 32 1.6.4 Pullbacks . 33 1.6.5 Limits . 35 [DRAFT: January 16, 2017] 4 1.6.6 Colimits . 39 1.6.7 Binary Coproducts .