Mouse Tmem117 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Tmem117 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Tmem117 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Tmem117 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Tmem117 gene (NCBI Reference Sequence: NM_178789 ; Ensembl: ENSMUSG00000063296 ) is located on Mouse chromosome 15. 8 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 8 (Transcript: ENSMUST00000080141). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Tmem117 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP24-72C12 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 4 starts from about 26.65% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 164386 bp, and the size of intron 4 for 3'-loxP site insertion: 52315 bp. The size of effective cKO region: ~600 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 8 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Tmem117 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7100bp) | A(28.39% 2016) | C(20.63% 1465) | T(29.69% 2108) | G(21.28% 1511) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 7 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN -------------------------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 94876132 94879131 3000 browser details YourSeq 309 2048 2666 3000 84.5% chr11 - 79479490 79480084 595 browser details YourSeq 277 2048 2533 3000 86.4% chr9 - 61450646 61451132 487 browser details YourSeq 261 2048 2536 3000 82.4% chr11 - 54680146 54680647 502 browser details YourSeq 248 2059 2534 3000 87.9% chr11 + 29817567 29818047 481 browser details YourSeq 239 2054 2649 3000 82.6% chr7 - 68450758 68451342 585 browser details YourSeq 236 2059 2489 3000 87.2% chr17 + 52002911 52003342 432 browser details YourSeq 204 2048 2653 3000 83.5% chrX - 9227736 9228325 590 browser details YourSeq 195 2092 2487 3000 75.4% chr4 + 84709140 84709540 401 browser details YourSeq 194 2048 2405 3000 82.2% chr13 - 101131940 101132316 377 browser details YourSeq 194 2053 2506 3000 87.4% chr8 + 78926352 78926815 464 browser details YourSeq 186 2133 2534 3000 87.5% chr12 - 116518857 116519261 405 browser details YourSeq 182 2048 2452 3000 87.2% chr4 - 88293647 88294053 407 browser details YourSeq 179 2058 2533 3000 86.0% chr10 - 85288796 85289270 475 browser details YourSeq 176 2324 2592 3000 88.2% chr3 + 28542571 28542847 277 browser details YourSeq 174 1116 1513 3000 87.8% chr9 + 14259749 14260220 472 browser details YourSeq 171 2048 2448 3000 88.0% chr10 + 67839336 67839738 403 browser details YourSeq 168 2058 2458 3000 85.3% chr7 + 108584245 108584663 419 browser details YourSeq 166 2048 2592 3000 83.7% chr8 - 69304908 69305436 529 browser details YourSeq 153 2059 2451 3000 85.2% chr9 - 33743760 33744168 409 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr15 + 94879732 94882731 3000 browser details YourSeq 33 1315 1358 3000 97.3% chr14 - 5124420 5124463 44 browser details YourSeq 33 1315 1358 3000 97.3% chr14 + 7051954 7051997 44 browser details YourSeq 24 1426 1450 3000 100.0% chr2 - 131318896 131318922 27 browser details YourSeq 23 1507 1530 3000 100.0% chr1 - 8778116 8778141 26 browser details YourSeq 22 393 417 3000 95.9% chr11 - 97361191 97361217 27 browser details YourSeq 21 1430 1453 3000 95.9% chr1 - 113850252 113850276 25 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 7 https://www.alphaknockout.com Gene and protein information: Tmem117 transmembrane protein 117 [ Mus musculus (house mouse) ] Gene ID: 320709, updated on 12-Aug-2019 Gene summary Official Symbol Tmem117 provided by MGI Official Full Name transmembrane protein 117 provided by MGI Primary source MGI:MGI:2444580 See related Ensembl:ENSMUSG00000063296 Gene type protein coding RefSeq status PROVISIONAL Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as B930062P21Rik Expression Biased expression in large intestine adult (RPKM 7.6), cerebellum adult (RPKM 2.2) and 14 other tissues See more Orthologs human all Genomic context Location: 15; 15 E3 See Tmem117 in Genome Data Viewer Exon count: 8 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 15 NC_000081.6 (94629185..95096097) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 15 NC_000081.5 (94459616..94926528) Chromosome 15 - NC_000081.6 Page 5 of 7 https://www.alphaknockout.com Transcript information: This gene has 2 transcripts Gene: Tmem117 ENSMUSG00000063296 Description transmembrane protein 117 [Source:MGI Symbol;Acc:MGI:2444580] Gene Synonyms B930062P21Rik Location Chromosome 15: 94,629,232-95,096,098 forward strand. GRCm38:CM001008.2 About this gene This gene has 2 transcripts (splice variants), 197 orthologues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Tmem117-201 ENSMUST00000080141.5 2717 514aa ENSMUSP00000079038.4 Protein coding CCDS27774 Q8BH18 TSL:1 GENCODE basic APPRIS P1 Tmem117-202 ENSMUST00000229677.1 2662 No protein - Retained intron - - - 486.87 kb Forward strand 94.7Mb 94.8Mb 94.9Mb 95.0Mb 95.1Mb Genes (Comprehensive set... Tmem117-202 >retained intron Tmem117-201 >protein coding Contigs AC147160.2 > AC158918.7 > < AC118683.10 AC102905.9 > Genes < Gm25546-201snoRNA < Gm23129-201snoRNA (Comprehensive set... < 1700129L04Rik-202lncRNA < 1700129L04Rik-201lncRNA < Nell2-203protein coding Regulatory Build 94.7Mb 94.8Mb 94.9Mb 95.0Mb 95.1Mb Reverse strand 486.87 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 6 of 7 https://www.alphaknockout.com Transcript: ENSMUST00000080141 466.85 kb Forward strand Tmem117-201 >protein coding ENSMUSP00000079... Transmembrane heli... MobiDB lite Low complexity (Seg) Pfam TMEM117 protein PANTHER TMEM117 protein All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 60 120 180 240 300 360 420 514 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 7 of 7.
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,309,565 B2 Kelly Li, San
    US0093 09565B2 (12) United States Patent (10) Patent No.: US 9,309,565 B2 BrOOmer et al. (45) Date of Patent: Apr. 12, 2016 (54) KARYOTYPING ASSAY 4,889,818. A 12/1989 Gelfand et al. 4,965,188 A 10, 1990 Mullis et al. (75) Inventors: Adam Broomer, Carlsbad, CA (US); 5.835 A RE E. tal Kelly Li, San Jose, CA (US), Andreas 3.66: A 56, RI. R. Tobler, Fremont, CA (US); Caifu 5.436,134. A 7/1995 Haugland et al. Chen, Palo Alto, CA (US); David N. 5,487.972 A 1/1996 Gelfand et al. Keys, Jr., Oakland, CA (US) 5,538,848. A 7/1996 Livak et al. s s 5,618,711 A 4/1997 Gelfand et al. (73) Assignee: Life Technologies Corporation, 5,677,1525,658,751 A 10/19978, 1997 Yues et. al. al. Carlsbad, CA (US) 5,723,591 A 3/1998 Livak et al. 5,773.258 A 6/1998 Birch et al. (*) Notice: Subject to any disclaimer, the term of this 5,789,224 A 8, 1998 Gelfand et al. patent is extended or adjusted under 35 38. A 3. 3. E. al U.S.C. 154(b) by 998 days. 5,854,033.sy w A 12/1998 LizardiCaO (ca. 5,876,930 A 3, 1999 Livak et al. (21) Appl. No.: 13/107,786 5,994,056. A 1 1/1999 Higuchi (22) Filed: May 13, 2011 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2011 FO281755A1 Nov. 17, 2011 EP OOTO685 A2 1, 1983 WO WO-2006/081222 8, 2006 Related U.S.
    [Show full text]
  • Análise Integrativa De Perfis Transcricionais De Pacientes Com
    UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2017 Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts Zabinyakov, Nikita Zabinyakov, N. (2017). Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/27775 http://hdl.handle.net/11023/3639 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Shear Stress Modulates Gene Expression in Normal Human Dermal Fibroblasts by Nikita Zabinyakov A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN BIOMEDICAL ENGINEERING CALGARY, ALBERTA JANUARY 2017 © Nikita Zabinyakov 2017 Abstract Applied mechanical forces, such as those resulting from fluid flow, trigger cells to change their functional behavior or phenotype. However, there is little known about how fluid flow affects fibroblasts. The hypothesis of this thesis is that dermal fibroblasts undergo significant changes of expression of differentiation genes after exposure to fluid flow (or shear stress). To test the hypothesis, human dermal fibroblasts were exposed to laminar steady fluid flow for 20 and 40 hours and RNA was collected for microarray analysis.
    [Show full text]
  • Effects of Proximal Tubule Shortening on Protein Excretion in a Lowe Syndrome Model
    BASIC RESEARCH www.jasn.org Effects of Proximal Tubule Shortening on Protein Excretion in a Lowe Syndrome Model Megan L. Gliozzi,1 Eugenel B. Espiritu,2 Katherine E. Shipman,1 Youssef Rbaibi,1 Kimberly R. Long,1 Nairita Roy,3 Andrew W. Duncan,3 Matthew J. Lazzara,4 Neil A. Hukriede,2,5 Catherine J. Baty,1 and Ora A. Weisz1 1Renal-Electrolyte Division, Department of Medicine, 2Department of Developmental Biology, and 3Department of Pathology, McGowan Institute for Regenerative Medicine, and Pittsburgh Liver Research Center, Pittsburgh, Pennsylvania; 4Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia; and 5Center for Critical Care Nephrology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania ABSTRACT Background Lowe syndrome (LS) is an X-linked recessive disorder caused by mutations in OCRL,which encodes the enzyme OCRL. Symptoms of LS include proximal tubule (PT) dysfunction typically character- ized by low molecular weight proteinuria, renal tubular acidosis (RTA), aminoaciduria, and hypercalciuria. How mutant OCRL causes these symptoms isn’tclear. Methods We examined the effect of deleting OCRL on endocytic traffic and cell division in newly created human PT CRISPR/Cas9 OCRL knockout cells, multiple PT cell lines treated with OCRL-targeting siRNA, and in orcl-mutant zebrafish. Results OCRL-depleted human cells proliferated more slowly and about 10% of them were multinucleated compared with fewer than 2% of matched control cells. Heterologous expression of wild-type, but not phosphatase-deficient, OCRL prevented the accumulation of multinucleated cells after acute knockdown of OCRL but could not rescue the phenotype in stably edited knockout cell lines. Mathematic modeling confirmed that reduced PT length can account for the urinary excretion profile in LS.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Content Based Search in Gene Expression Databases and a Meta-Analysis of Host Responses to Infection
    Content Based Search in Gene Expression Databases and a Meta-analysis of Host Responses to Infection A Thesis Submitted to the Faculty of Drexel University by Francis X. Bell in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2015 c Copyright 2015 Francis X. Bell. All Rights Reserved. ii Acknowledgments I would like to acknowledge and thank my advisor, Dr. Ahmet Sacan. Without his advice, support, and patience I would not have been able to accomplish all that I have. I would also like to thank my committee members and the Biomed Faculty that have guided me. I would like to give a special thanks for the members of the bioinformatics lab, in particular the members of the Sacan lab: Rehman Qureshi, Daisy Heng Yang, April Chunyu Zhao, and Yiqian Zhou. Thank you for creating a pleasant and friendly environment in the lab. I give the members of my family my sincerest gratitude for all that they have done for me. I cannot begin to repay my parents for their sacrifices. I am eternally grateful for everything they have done. The support of my sisters and their encouragement gave me the strength to persevere to the end. iii Table of Contents LIST OF TABLES.......................................................................... vii LIST OF FIGURES ........................................................................ xiv ABSTRACT ................................................................................ xvii 1. A BRIEF INTRODUCTION TO GENE EXPRESSION............................. 1 1.1 Central Dogma of Molecular Biology........................................... 1 1.1.1 Basic Transfers .......................................................... 1 1.1.2 Uncommon Transfers ................................................... 3 1.2 Gene Expression ................................................................. 4 1.2.1 Estimating Gene Expression ............................................ 4 1.2.2 DNA Microarrays ......................................................
    [Show full text]
  • Downloaded from Ensembl
    UCSF UC San Francisco Electronic Theses and Dissertations Title Detecting genetic similarity between complex human traits by exploring their common molecular mechanism Permalink https://escholarship.org/uc/item/1k40s443 Author Gu, Jialiang Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members ii Acknowledgement This project would not have been possible without Prof. Dr. Hao Li, Dr. Jiashun Zheng and Dr. Chris Fuller at the University of California, San Francisco (UCSF) and Caribou Bioscience. The Li lab grew into a multi-facet research group consist of both experimentalists and computational biologists covering three research areas including cellular/molecular mechanism of ageing, genetic determinants of complex human traits and structure, function, evolution of gene regulatory network. Labs like these are the pillar of global success and reputation
    [Show full text]
  • Transcriptional Profile of Human Anti-Inflamatory Macrophages Under Homeostatic, Activating and Pathological Conditions
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS Departamento de Bioquímica y Biología Molecular I TESIS DOCTORAL Transcriptional profile of human anti-inflamatory macrophages under homeostatic, activating and pathological conditions Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Víctor Delgado Cuevas Directores María Marta Escribese Alonso Ángel Luís Corbí López Madrid, 2017 © Víctor Delgado Cuevas, 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Víctor Delgado Cuevas Tesis Doctoral Madrid 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Este trabajo ha sido realizado por Víctor Delgado Cuevas para optar al grado de Doctor en el Centro de Investigaciones Biológicas de Madrid (CSIC), bajo la dirección de la Dra. María Marta Escribese Alonso y el Dr. Ángel Luís Corbí López Fdo. Dra. María Marta Escribese
    [Show full text]
  • Sheet1 Page 1 Gene Symbol Gene Description Entrez Gene ID
    Sheet1 RefSeq ID ProbeSets Gene Symbol Gene Description Entrez Gene ID Sequence annotation Seed matches location(s) Ago-2 binding specific enrichment (replicate 1) Ago-2 binding specific enrichment (replicate 2) OE lysate log2 fold change (replicate 1) OE lysate log2 fold change (replicate 2) Probability Pulled down in Karginov? NM_005646 202813_at TARBP1 Homo sapiens TAR (HIV-1) RNA binding protein 1 (TARBP1), mRNA. 6894 TR(1..5130)CDS(1..4866) 4868..4874,5006..5013 3.73 2.53 -1.54 -0.44 1 Yes NM_001665 203175_at RHOG Homo sapiens ras homolog gene family, member G (rho G) (RHOG), mRNA. 391 TR(1..1332)CDS(159..734) 810..817,782..788,790..796,873..879 3.56 2.78 -1.62 -1 1 Yes NM_002742 205880_at PRKD1 Homo sapiens protein kinase D1 (PRKD1), mRNA. 5587 TR(1..3679)CDS(182..2920) 3538..3544,3202..3208 4.15 1.83 -2.55 -0.42 1 Yes NM_003068 213139_at SNAI2 Homo sapiens snail homolog 2 (Drosophila) (SNAI2), mRNA. 6591 TR(1..2101)CDS(165..971) 1410..1417,1814..1820,1610..1616 3.5 2.79 -1.38 -0.31 1 Yes NM_006270 212647_at RRAS Homo sapiens related RAS viral (r-ras) oncogene homolog (RRAS), mRNA. 6237 TR(1..1013)CDS(46..702) 871..877 3.82 2.27 -1.54 -0.55 1 Yes NM_025188 219923_at,242056_at TRIM45 Homo sapiens tripartite motif-containing 45 (TRIM45), mRNA. 80263 TR(1..3584)CDS(589..2331) 3408..3414,2437..2444,3425..3431,2781..2787 3.87 1.89 -0.62 -0.09 1 Yes NM_024684 221600_s_at,221599_at C11orf67 Homo sapiens chromosome 11 open reading frame 67 (C11orf67), mRNA.
    [Show full text]
  • BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization
    Published OnlineFirst August 12, 2014; DOI: 10.1158/0008-5472.CAN-14-0061 Cancer Molecular and Cellular Pathobiology Research BRG1/SMARCA4 Inactivation Promotes Non–Small Cell Lung Cancer Aggressiveness by Altering Chromatin Organization Tess Orvis1, Austin Hepperla1,2, Vonn Walter1, Shujie Song1,3, Jeremy Simon1,4, Joel Parker1,5, Matthew D. Wilkerson1,5, Nisarg Desai1, Michael B. Major1,6, D. Neil Hayes1,7, Ian J. Davis1,5,8, and Bernard Weissman1,9 Abstract SWI/SNF chromatin remodeling complexes regulate critical cellular processes, including cell-cycle control, programmed cell death, differentiation, genomic instability, and DNA repair. Inactivation of this class of chromatin remodeling complex has been associated with a variety of malignancies, including lung, ovarian, renal, liver, and pediatric cancers. In particular, approximately 10% of primary human lung non–small cell lung cancers (NSCLC) display attenuations in the BRG1 ATPase, a core factor in SWI/SNF complexes. To evaluate the role of BRG1 attenuation in NSCLC development, we examined the effect of BRG1 silencing in primary and established human NSCLC cells. BRG1 loss altered cellular morphology and increased tumorigenic potential. Gene expression analyses showed reduced expression of genes known to be associated with progression of human NSCLC. We demonstrated that BRG1 losses in NSCLC cells were associated with variations in chromatin structure, including differences in nucleosome positioning and occupancy surrounding transcriptional start sites of disease-relevant genes. Our results offer direct evidence that BRG1 attenuation contributes to NSCLC aggressiveness by altering nucleosome positioning at a wide range of genes, including key cancer-associated genes. Cancer Res; 74(22); 6486–98. Ó2014 AACR.
    [Show full text]
  • Comparative Genomic Mapping Implicates LRRK2 for Intellectual
    Journal of Clinical Medicine Article Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31 Jonathan D. J. Labonne 1, Terri M. Driessen 2, Marvin E. Harris 1, Il-Keun Kong 3 , Soumia Brakta 1, John Theisen 1, Modibo Sangare 4 , Lawrence C. Layman 1,5, Cheol-Hee Kim 6, Janghoo Lim 2,7 and Hyung-Goo Kim 1,8,* 1 Section of Reproductive Endocrinology, Infertility & Genetics, Department of Obstetrics & Gynecology, Augusta University, Augusta, GA 30912, USA; [email protected] (J.D.J.L.); [email protected] (M.E.H.); [email protected] (S.B.); [email protected] (J.T.); [email protected] (L.C.L.) 2 Department of Genetics, Yale University, New Haven, CT 06510, USA; [email protected] (T.M.D.); [email protected] (J.L.) 3 Department of Animal Science, Division of Applied Life Science (BK21plus), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; [email protected] 4 Faculty of Medicine and Odontostomatology (FMOS), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali; [email protected] 5 Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912, USA 6 Department of Biology, Chungnam National University, Daejeon 34134, Korea; [email protected] 7 Department of Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale Stem Cell Center, Yale University, New Haven, CT 06510, USA 8 Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar * Correspondence: [email protected] Received: 30 October 2019; Accepted: 6 December 2019; Published: 19 January 2020 Abstract: We report a genomic and phenotypic delineation for two chromosome regions with candidate genes for syndromic intellectual disability at 12q12 and Xp22.31, segregating independently in one family with four affected members.
    [Show full text]