bioRxiv preprint doi: https://doi.org/10.1101/651240; this version posted July 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. eIF3 associates with 80S ribosomes to promote translation elongation, mitochondrial homeostasis, and muscle health Yingying Lin 1†, Fajin Li 2,3†, Linlu Huang 1, Haoran Duan 1, Jianhuo Fang 2, Li Sun1, Xudong Xing 2,3, Guiyou Tian 1, Yabin Cheng 1, Xuerui Yang 2*, Dieter A. Wolf 1* 1 School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research & Innovation Center for Cell Stress Signaling, Xiamen University, Xiamen, China 2 MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China 3 Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing 100084, China * Corresponding authors † Equal contributions Address for correspondence: Dieter A. Wolf, M.D. School of Pharmaceutical Sciences Xiamen University Xiamen, China +86 136 009 45744
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/651240; this version posted July 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. eIF3 is a multi-subunit complex with numerous functions in canonical translation initiation.