BCRA Transactions 7 (2) 1980

Total Page:16

File Type:pdf, Size:1020Kb

Load more

BeRA TRANSACTIONS BRITISH CAVE RESEARCH ASSOC I AT I ON Volume 7 Number 2 June 1980 The Minarets, Lancaster Hole Sirijordgrotten Cave - dwelling Moths Three Counties SvstArn ISSN 0305-859X TRANSACTIONS OF THE BRITISH CAVE RESEARCH ASSOCIATION Volume 7 Number 2 June 1980 CONTENTS Sirijordgrotten and other caves in Eiteraadal , Vefsn , Norway T.J. Faulkner 53 Caves of Velfjord , South Nordland , with particular reference to Sirijordgrotten Shirley & David St. Pierre 70 Cave- dwelling Tineid moths; a taxonomic review of the world species (Lepidoptera : Tineidae) Gaden S. Robinson 83 The Three counties system A.C. Waltham & D. B . Brook 121 Cover picture: The Minarets by A.C. Waltham. Published by , and only obtainable from: The British Cave Research Association Brian Ellis, 30 Main Road , Westonzoyland, Bridgwater, Somerset TA7 DEB . cOpyright@) One copy issued free to members All rights of reproduction reserved . Trans. British Cave Research Assoc., Vol. 7, No . 2, pp.53-69. June 1980 SIRIJORDGROTTEN, AND OTHER CAVES IN EITERAADAL , VEFSN , NORWAY . T. L. Faulkner Summary Eiteraadal wa s first examined for caves in 1978 and 1979. when two significa nt and active systems were found and explored. The caves have been formed in similar bands of limestones and divert their streams up valley. Cave development at several levels can be recognised indicating the maturity of underground drainage in Eiteraadal. Sirijordgrotten, 1380m long with a vertical range of 9Om , has now been explored for nearly half the distance between resurgence and sink. progress upstream being halted by S\.l1llps. Other shorter caves in the area are also described . Eiteraadal is a remote valley in northern Norway approached by a gravel road running south from Mosj¢en. which is 30 km from the caving are a . The area was not visited by cavers before 1978 and no references a r e known to it, but the NGO 1:100,000 Velfjord map, Gradteig 118, indicates three potential systems by showing presumed un derground drainage as pecked lines. Previous caving visits to adjacent areas have been by SWETC Caving Club to Laksfors in 1974, finding M¢llebekkgrotten (Faulkner and St. Pierre 1977 p.2l), and the Kendal Caving Club exploration of ~fjellgrotten in 1967 (Heap 1968, p . ll) . Two short expeditions have now visited Eiteraadal, and this report is of the explorations completed to date. In 1978 a combined SWETC CC/wessex CC expedition visited Norway. the main aim being to explore a potential new caving area at Reppen on Tosenfjord, Bindal. The small caves found here, and in some other areas, will be reported elsewhere (St. Pierre 1980). After leaving Tosenfjord, two vehicles drove via Mosj¢en into Eiteraadal. The members of this part of the 1978 Expedition were Trevor Faulkner, Alison Hooper, Peter Moody and Richard ~lebsell, joined by Edgar and Arnfinn Johnsen of Beiarn. Krokgrotten and Eiteraadalgrotten were discovered and surveyed, and then on the last day , Sirijordgrotten was entered and fran­ tically explored for about 60Qm to the top of a pitch. The 1978 trip was handicapped by a broken gearbox i n the car carrying the four English cavers (which occurred early on the drive north). Thus the explorati on of Sirijordgrotten could not be completed and an early return had to be made to enable the vehicle, using top gear only, to get back on time over the mountains to Bergen and the ferry. In 1979 a combined SWETC CC/Eccles CC party returned to Eiteraadal for six days t o complete the exploration of Sirijordgrotten and investigate other sites. The 1979 party consisted of Trevor Faulkner, Alan Marshall, Andrew Popland and David and Shirley St. Pierre and family. On leaving Eiteraadal, this group drove north to Rana and enjoyed sporting trips in some of the known systems before returning home. The caves visited were Fiskeqrotten, Jordbrugrotten, Larshullet and Gr¢nligrotten . Both expeditions were completely f inanced by participants. The major expense was the Ne""castle - Bergen or Harwich/Newcastle - Gothenburg ferry, with a single passenger fare of nearly E50. (In 1979 we r eturned on the ill-fated ' Winston Churchill', which ran aground five weeks later). Petrol in Norway was priced at about the 1979 UK equivalent. Practically all food was taken with us, to save the time and expense of shopping in Norway. For both years, typical costs per person came to about ElSO , not counting food bought in England . Visiting northern Norway in July provides 24 hours of daylight and a high daily average temperature. In contrast to the rest of Europe, hot weather was experienced in both years , particularly s o in 1978 when tempera­ tures of 2SoC were noted and all streams and rivers were low. The Sirijordgrotten stream barely flowed in 1978, in 1979 it was more normal, with heavy flows after some periods of prolonged r ain . Most surface walks were conducted in still hot conditions with midges , mosquitoes and c1e99s often a considerable irritant, especially below the tree line . AREA DESCRIPTION Access to Eiteraadal can be gained via Laksfors by taking the gravel road frQm Grane on t he E6. This joins the road from Mosj¢en near the point where the Eiteraaga joins the Vefsn . From here the road alarmingly 53 t To Mosjll'en or Grane EITERAADAL " "\ ~"'"'. , \rr:;o,;. AREA MAP Fig.1 II II n ,I l' I I II II A. II \1 Scale " " " " a 250 1000 m " " " ",I " ., N & MN " I, " " " .;-"'.:::, ,. '''.', •, I' " " Fig.3 ~ \ 1 d "II '-.,J •• " : '1", " • 7"..\r,;,.--Y"t ",I • ", . , ,, , '. , ~ S R , , , w ," R , " ............ ", ", , ~ I. ' FigA-j " den 0 " I. ' +'17;, , S Sink R Rising W Waterfall K Kroken ",Camp % Ha rsh :t~l Dirt Road or Forese Track :'Footpath :,! Dry Valley '-~, Hill I " , - Limestone. Refer to text for numbere-d features. ;//! • Geology after Myrland,1971 . 54 Plate 1 Elteraada!grotten l imest one bench ar ea , looking Plate 2 '" south. N. Hillock in l e f t background . Valley Eiter aadal Grotten Resurgence Cave entrance. '" feed i na Slrijordqrotten s ink bel ow ridae Plate 3 Plate 4 Entrance to Krokgrotten . The 2m Waterfall into Junction Chamber in Sirijordgrotten. Note the clean nature of the lower streamway. clings to the steep valley side before following the broader continuation south past isolated farms , ending conveniently close to the caves . The Eiteraaqa is a larqe mountain river which starts near an abandoned farm at Sirijorden 200m above sea level. It is fed by the l arge tribu­ taries Velfjordska~elven and Seterbekken which drain Kvitfjeldet (1247m) and other mountains to the south. The river runs almost due north, taking further drainage from the slopes of Sirijordsakslen and Holmfjeldet to the west and Eiteraafjell to the east. The road runs further south up the valley than shown on map 118. It terminates on the west bank oppo­ Site H~istakbekken and als~ forks and crosses the river before this , the other fork ending on the east bank opposite the hill Kroken. A road bridge has also been constructed across the Eiteraaga at Kroken , used by lorries rpmovin9 timber from the aide of Rroken itoclf. This end of the valley is uninhabited, the only visitors we saw being local Norwegians walking or berry picking. The valley sides of Eiteraadal are composed of mica gneiss but the lower slopes and the valley bottom are dominated geologically by a 2 km wide structure of N-S bands of narbled limestone, granite , gneiss and schists running from near Sirijorden for about 15 km to the north. The limestone bands are thus in a good position to capture the streams flowing down the va lley sides towards the Eiteraaga. The largest limestone outcrop is about 250m wide and consists of colourful layers of vertically banded marble inter layered with non- calcerous impurities . It lies mainly west of the river and contains the caves of Sirijordgrotten and Krokgrotten. The other limestone outcrops a re about 50m wide at the surface and are cavernous to varying extents (Fig.ll. The whole area is heavily forested with silver birch up to about 400m a .s.l., except that in the bench area north and south of Eiteraadalgrotten the trees have been stripped, presumably by the timber company. This strip­ ped bench area is interesting as it coincides with the local limestone out­ crop where a long depression has formed along the valley side , bounded by a wall of gneiss to the east (Plates 1 and 2). EXPLORATION Arriving in Eiteraadal on 31 July , the 1978 party established camp opposite Kroken, among the trees between the end of the road and the river. That evening the small Hulbekken system was looked at and Ice Hole discovered. Further along a path on the Eiteraaga bank, river level alcoves in the limestone were noticed from a distance. Next morning, an early walk upstream in a wetsuit prove~ that the alcoves were only recesses in the limestone However, the extraordinary slot entrance to Krokgrotten (Plate 3 ) wa s found instead and incompletely explored. Most of the day was spent walking along the western side of the valley, picking up features apparent from the NCO map. After finding two sinks Without e ntrances above Sirijorden, Eiteraadalgrotten and its Resurgence Cave were discovered and explored. That evening, whilst dinner was being cooked, three of the party completed the exploration of Krokgrotten. Eiteraadalgrotten and its surface area was surveyed and further pushed on 2 August . Later, Edgar and Arnfinn Johnsen fortunately noticed a cold draught emerging from a boulder slope above a resurgence ncar Sirijorden. Because of the gear box trouble, Eiteraadal had to be left on 3 August to leave time to catch the ferry on 7 August.
Recommended publications
  • Report-VIC-Croajingolong National Park-Appendix A

    Report-VIC-Croajingolong National Park-Appendix A

    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
  • Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case

    Incipient Non-Adaptive Radiation by Founder Effect? Oliarus Polyphemus Fennah, 1973 – a Subterranean Model Case

    Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Andreas Wessel geb. 30.11.1973 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. Christoph Markschies Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. Lutz-Helmut Schön Gutachter/innen: 1. Prof. Dr. Hannelore Hoch 2. Prof. Dr. Dr. h.c. mult. Günter Tembrock 3. Prof. Dr. Kenneth Y. Kaneshiro Tag der mündlichen Prüfung: 20. Februar 2009 Incipient non-adaptive radiation by founder effect? Oliarus polyphemus Fennah, 1973 – a subterranean model case. (Hemiptera: Fulgoromorpha: Cixiidae) Doctoral Thesis by Andreas Wessel Humboldt University Berlin 2008 Dedicated to Francis G. Howarth, godfather of Hawai'ian cave ecosystems, and to the late Hampton L. Carson, who inspired modern population thinking. Ua mau ke ea o ka aina i ka pono. Zusammenfassung Die vorliegende Arbeit hat sich zum Ziel gesetzt, den Populationskomplex der hawai’ischen Höhlenzikade Oliarus polyphemus als Modellsystem für das Stu- dium schneller Artenbildungsprozesse zu erschließen. Dazu wurde ein theoretischer Rahmen aus Konzepten und daraus abgeleiteten Hypothesen zur Interpretation be- kannter Fakten und Erhebung neuer Daten entwickelt. Im Laufe der Studie wurde zur Erfassung geografischer Muster ein GIS (Geographical Information System) erstellt, das durch Einbeziehung der historischen Geologie eine präzise zeitliche Einordnung von Prozessen der Habitatsukzession erlaubt. Die Muster der biologi- schen Differenzierung der Populationen wurden durch morphometrische, etho- metrische (bioakustische) und molekulargenetische Methoden erfasst.
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report

    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report

    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
  • Opogona Sacchari

    Opogona Sacchari

    EuropeanBlackwell Publishing Ltd and Mediterranean Plant Protection Organization PM 7/71 (1) Organisation Européenne et Méditerranéenne pour la Protection des Plantes Diagnostics1 Diagnostic Opogona sacchari Specific scope Specific approval and amendment This standard describes a diagnostic protocol for Opogona Approved in 2005-09. sacchari. Introduction Detection Opogona sacchari originates in the humid tropical and O. sacchari larvae are highly versatile pests, exploiting a wide subtropical regions of Africa, where it is not a significant pest. range of live and dead plant material. The symptoms displayed It first attracted attention as a serious pest on bananas in Spain largely depend on the type of host the larvae are infesting. In (Islas Canarias) in the 1920s. In the 1970s, it was introduced European glasshouses, they can infest various tropical or into Brazil and Central America, and also started to appear in subtropical ornamentals, including mainly Cactaceae, Dracaena, the EPPO region. O. sacchari has a wide host range, and is Strelizia and Yucca (Billen, 1987), but also occasionally Alpinia, found mainly in the tropics on banana, pineapple, bamboos, Begonia, Bougainvillea, Bromeliaceae, Chamaedorea and other maize and sugarcane in the field, and on various stored Arecaceae, Cordyline, Dieffenbachia, Euphorbia pulcherrima, tubers. More recently, O. sacchari has been introduced into the Ficus, Heliconia, Hippeastrum, Maranta, Philodendron, USA (Florida) (Heppner et al., 1987) and China (Kun & Fang, Saintpaulia, Sansevieria and Sinningia speciosa. Vegetable 1997). crops are also attacked: capsicum and aubergine (Billen, 1987). In import inspections, it is mainly Dracaena and Yucca which have been found to be infested (EPPO, 1997). In banana, Identity normally the fruiting head is infested, but in ornamental plants Name: Opogona sacchari (Bojer).
  • Microlepidoptera.Hu Redigit: Fazekas Imre

    Microlepidoptera.Hu Redigit: Fazekas Imre

    Microlepidoptera.hu Redigit: Fazekas Imre 5 2012 Microlepidoptera.hu A magyar Microlepidoptera kutatások hírei Hungarian Microlepidoptera News A journal focussed on Hungarian Microlepidopterology Kiadó—Publisher: Regiograf Intézet – Regiograf Institute Szerkesztő – Editor: Fazekas Imre, e‐mail: [email protected] Társszerkesztők – Co‐editors: Pastorális Gábor, e‐mail: [email protected]; Szeőke Kálmán, e‐mail: [email protected] HU ISSN 2062–6738 Microlepidoptera.hu 5: 1–146. http://www.microlepidoptera.hu 2012.12.20. Tartalom – Contents Elterjedés, biológia, Magyarország – Distribution, biology, Hungary Buschmann F.: Kiegészítő adatok Magyarország Zygaenidae faunájához – Additional data Zygaenidae fauna of Hungary (Lepidoptera: Zygaenidae) ............................... 3–7 Buschmann F.: Két új Tineidae faj Magyarországról – Two new Tineidae from Hungary (Lepidoptera: Tineidae) ......................................................... 9–12 Buschmann F.: Új adatok az Asalebria geminella (Eversmann, 1844) magyarországi előfordulásához – New data Asalebria geminella (Eversmann, 1844) the occurrence of Hungary (Lepidoptera: Pyralidae, Phycitinae) .................................................................................................. 13–18 Fazekas I.: Adatok Magyarország Pterophoridae faunájának ismeretéhez (12.) Capperia, Gillmeria és Stenoptila fajok új adatai – Data to knowledge of Hungary Pterophoridae Fauna, No. 12. New occurrence of Capperia, Gillmeria and Stenoptilia species (Lepidoptera: Pterophoridae) ……………………….
  • Bioinvasion and Global Environmental Governance: the Transnational Policy Network on Invasive Alien Species China's Actions O

    Bioinvasion and Global Environmental Governance: the Transnational Policy Network on Invasive Alien Species China's Actions O

    1 Bioinvasion and Global Environmental Governance: The Transnational Policy Network on Invasive Alien Species China’s Actions on IAS Description1 The People’s Republic of China is a communist state in East Asia, bordering the East China Sea, Korea Bay, Yellow Sea, and South China Sea, between North Korea and Vietnam. For centuries China stood as a leading civilization, outpacing the rest of the world in the arts and sciences, but in the 19th and early 20th centuries, the country was beset by civil unrest, major famines, military defeats, and foreign occupation. The claimed area of the ROC includes Mainland China and several off-shore islands (Taiwan, Outer Mongolia, Northern Burma, and Tuva, which is now Russian territory). The current President Ma Ying-jeou reinstated the ROC's claim to be the sole legitimate government of China and the claim that mainland China is part of ROC's territory. The extremely diverse climate; tropical in south to subarctic in north, varies over the diverse terrain, mostly mountains, high plateaus, deserts in west; plains, deltas, and hills in east. After 1978, Deng Xiaoping and other leaders focused on market-oriented economic development and by 2000 output had quadrupled. Economic development has been more rapid in coastal provinces than in the interior, and approximately 200 million rural laborers and their dependents have relocated to urban areas to find work. One demographic consequence of the "one child" policy is that China is now one of the most rapidly aging countries in the world. For much of the population (1.3 billion), living standards have improved dramatically and the room for personal choice has expanded, yet political controls remain tight.
  • Lepidoptera: Tineidae)

    Lepidoptera: Tineidae)

    The North American Moths of the Genera Phaeoses, Opogona, and Oinophila, with a Discussion of Their Supergeneric Affinities (Lepidoptera: Tineidae) DONALD R. DAVIS m wtu. SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 282 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world of science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
  • Opogona Sacchari

    Opogona Sacchari

    EPPO quarantine pest Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Opogona sacchari IDENTITY Name: Opogona sacchari (Bojer) Synonyms: Alucita sacchari Bojer Tinea subcervinella Walker Opogona subcervinella (Walker) Taxonomic position: Insecta: Lepidoptera: Tineidae Common names: Banana moth (English) Teigne du bananier (French) Traça da banana (Portuguese) Bayer computer code: OPOGSC EPPO A2 list: No. 154 EU Annex designation: I/A2 HOSTS O. sacchari has a wide host range, and is found mainly in the tropics on bananas, pineapples, bamboo, maize and sugarcane, in the field and on various stored tubers. In glasshouses in European countries, it has been found infesting various tropical or subtropical ornamentals, including mainly Cactaceae, Dracaena, Strelitzia and Yucca, but also occasionally Alpinia, Begonia, Bougainvillea, Bromeliaceae, Chamaedorea and other palms, Cordyline, Dieffenbachia, Euphorbia pulcherrima, Ficus, Gloxinia, Heliconia, Hippeastrum, Maranta, Philodendron, Sansevieria and Saintpaulia, and also Capsicum and aubergines. In import inspections, it is mainly Dracaena and Yucca which have been found to be infested. GEOGRAPHICAL DISTRIBUTION O. sacchari originates in the humid tropical and subtropical regions of Africa, where it is not a significant pest. It first attracted attention as a serious pest on bananas in the Canary Islands in the 1920s. In the 1970s, it was introduced into Brazil and Central America, and also started to appear in the EPPO region (see below). EPPO region: Denmark (under glass), Italy (since the 1970s, fairly widely established in glasshouses in the south; Carrai & Loi, 1987; EPPO Reporting Service No. 487), Netherlands (under glass), Poland (under glass), Portugal (Azores, Madeira), Spain (Canary Islands), Switzerland.
  • Banana Moth on Palms, Hodel and Santos, 2020-12

    Banana Moth on Palms, Hodel and Santos, 2020-12

    PALMARBOR Hodel and Santos: Banana Moth on Palms 2020-12: 1–20 Banana Moth A Resurgent and Serious Pest of Palms in Southern California DONALD R. HODEL AND PAUL SANTOS The banana moth (Opogona sacchari) is a primary pest of many agricultural and landscape plants, including palms (Howard et al. 2001). Although native to tropical and subtropical areas of Africa, it is now a widespread and rather common pest and occurs in California, Florida, Hawaii, South and Central America, Europe, Madagascar, and many Pacific Islands. In Hawaii it is a significant pest of sugarcane, banana, pineapple, and palms, especially the much beloved native Pritchardia spp. (loulu) (Hodel 2012c, Nelson and Wright 2005). In southern California, the banana moth has mostly been documented or observed on only a few species of palms, primarily Ravenea rivularis (majesty palm) (Fig. 1), Trachycarpus fortunei (windmill palm), and sometimes Syagrus romanzoffiana (queen palm), the latter typically as young, containerized nursery plants (Hodel 2012 a, b). However, in the last several years, two additional species have come under increasing attack, including Archontophoenix cunninghamiana (king palm) and Howea forsteriana (kentia palm), two of our more elegant, stately, and common landscape palms (Fig. 2). Or, perhaps these species were always under attack but the symptoms were attributed to other causes. While the banana moth attacks mostly stressed, weakened, and/ or wounded palms, in some instances it attacks seemingly healthy, unstressed palms although the underlying stress might not always be obvious or the attacked palm has yet to show stress symptoms. One of the subtle factors that could be stressing palms and leaving them susceptible to banana moth is climate change and its attendant ramifications, including temperature extremes, reduced rainfall, salt accumulation in the root zone, and excessively high soil pH, among others.
  • Sex Attractant for the Banana Moth, Opogona Sacchari Bojer

    Sex Attractant for the Banana Moth, Opogona Sacchari Bojer

    Research Article Received: 2 July 2009 Revised: 27 November 2009 Accepted: 21 December 2009 Published online in Wiley Interscience: 9 February 2010 (www.interscience.wiley.com) DOI 10.1002/ps.1922 Sex attractant for the banana moth, Opogona sacchari Bojer (Lepidoptera: Tineidae): provisional identification and field evaluation Eric B Jang,a Matthew S Siderhurst,b∗ Robert G Hollingsworth,a David N Showalterb and Elisa J Troyerb Abstract BACKGROUND: The banana moth, Opogona sacchari Bojer, is a polyphagous agricultural pest in many tropical areas of the world. The identification of an attractant for male O. sacchari could offer new methods for detection, study and control. RESULTS: A compound extracted from female O. sacchari elicited responses from antennae of male moths. This compound was identified as a 2/3,(Z)13-octadecadienal by gas chromatography-mass spectrometry. An analog, 2/3,(Z)13-octadecadienol, was also detected in some extracts at roughly a 1 : 20 ratio (alcohol : aldehyde) but did not elicit responses from antennae of male moths. Electroantennograms of synthetic candidate dienals found the strongest responses from (Z, Z)-2,13-octadecadienal and (E, Z)-2,13-octadecadienal. In field trials, (E, Z)-2,13-octadecadienal attracted more male O. sacchari than (Z, Z)-2,13- octadecadienal. Attraction was not improved for either of these compounds when the corresponding stereoisomeric alcohol was added at ratios of 1 : 1, 1 : 10 or 1 : 100 (alcohol : aldehyde). Jackson sticky traps containing 250 µgluresof(E, Z)-2,13- octadecadienal caught as many males as did traps holding virgin females. CONCLUSION: (E, Z)-2,13-octadecadienal has been identified as an attractant for O.
  • Towards an Early Warning and Informationsystem for Invasive Alien Species (IAS) Threatening Biodiversity in Europe

    Towards an Early Warning and Informationsystem for Invasive Alien Species (IAS) Threatening Biodiversity in Europe

    EEA Technical report No 5/2010 Towards an early warning and information system for invasive alien species (IAS) threatening biodiversity in Europe ISSN 1725-2237 EEA Technical report No 5/2010 Towards an early warning and information system for invasive alien species (IAS) threatening biodiversity in Europe Cover design: EEA Layout: EEA/Pia Schmidt Legal notice The contents of this publication do not necessarily reflect the official opinions of the European Commission or other institutions of the European Union. Neither the European Environment Agency nor any person or company acting on behalf of the Agency is responsible for the use that may be made of the information contained in this report. Copyright notice © EEA, Copenhagen, 2010 Reproduction is authorised, provided the source is acknowledged, save where otherwise stated. Information about the European Union is available on the Internet. It can be accessed through the Europa server (www.europa.eu). Luxembourg: Office for Official Publications of the European Union, 2010 ISBN 978-92-9213-099-2 ISSN 1725-2237 DOI 10.2800/4167 European Environment Agency Kongens Nytorv 6 1050 Copenhagen K Denmark Tel.: +45 33 36 71 00 Fax: +45 33 36 71 99 Web: eea.europa.eu Enquiries: eea.europa.eu/enquiries Contents Contents Acknowledgements .................................................................................................... 4 Preface ....................................................................................................................... 5 1 Rationale for an early warning
  • Draft Environmental Assessment

    Draft Environmental Assessment

    DRAFT ENVIRONMENTAL ASSESSMENT Pu‗u Maka‗ala Natural Area Reserve Management Plan Puna & South Hilo Districts Island of Hawai‗i In accordance with Chapter 343, Hawai‗i Revised Statutes Proposed by: Hawaii Branch Natural Area Reserves System 19 E. Kawili St. Hilo, Hawai‗i 96720 January 2012 Table of Contents I. INTRODUCTION ....................................................................................................................3 II. SUMMARY OF PROPOSED ACTIONS ...............................................................................4 III. PROJECT PURPOSE AND NEED .........................................................................................6 IV. PROJECT LOCATION AND DESCRIPTION .......................................................................7 Location ...................................................................................................................................... 7 Project Description...................................................................................................................... 7 V. DESCRIPTION OF AFFECTED ENVIRONMENT ............................................................29 Ecosystems and Species ............................................................................................................ 29 Current Land Use ...................................................................................................................... 31 Significant and Sensitive Habitat .............................................................................................