The Arachnida

Total Page:16

File Type:pdf, Size:1020Kb

The Arachnida THE ARACHNIDA THE arachnids are more easily recognized than defined. They have so many features in common with Limulus that some zoologists have classed Limulus in the Arachnida. The essential differences between the Xiphosurida and the Arachnida are in the feeding organs and the organs of respiration. The arachnids feed on liquids extracted from their prey, which are ingested by a pharyngeal sucking pump; the xiphosurids feed on solid food, which is ground up in a pro­ ventricular grist mill. The arachnids are terrestrial and breathe by means of lungs or tracheae; the xiphosurids, being aquatic, have abdominal gills, and theoretical attempts to derive the arachnid lungs from gills are not convincing. The most primitive of modern arachnids, the Palpigradi, are more generalized than Limulus. The Xiphosurida and the Arachnida, therefore, are two branches of the subphylum Chelicerata, but their common ancestors are not known. While there are paleontological reasons for believing that the xiphosurids and the trilobites had a com­ mon progenitor, the actual origin of the arachnids is obscure. How­ ever, as was noted in the last chapter, the pycnogonids have some surprisingly arachnoid characters. The scorpions have a superficial resemblance to the Eurypterida, but the scorpion, as compared with the Palpigradi, is not a primitive arachnid. However, it is not an ob­ ject of the present text to discuss theoretical arthropod phylogeny. The student may learn the essentials of arachnid anatomy from a study of the scorpion, the spiders, and a tick, which are the principal subjects of this chapter. 59 ARTHROPOD AN A TOMY THE SCORPION The scorpion in appearance (fig. 17 A) is a highly distinctive arachnid that could not possibly be mistaken for any other member of the class; the combination of large, chelate pedipalps with a sting at the end of a segmented tail alone proclaims the animal to be a true scorpion. The so-called whip scorpion (fig. 23 E) and the pseudoscorpion have no sting. About 600 species of scorpions are known, most of them two to four inches in length, but there is one only half an inch long, while the huge African Pandinus attains a length of seven inches. Scorpions are widely distributed throughout the tropical parts of the earth and in most of the warmer regions of the temperate zones; 22 species occur in the United States. For a general account of the habits and modes of life of scorpions the reader is referred to the article "Scorpion" by Petrunkevitch in the Encyclopaedia Britannica ( 1947). General Structure of a Scorpion A scorpion at first glance (fig. 17 A) appears to have an elongate oval body, supported on four pairs of legs, and a thick, jOinted tail bearing the sting at its extremity. The body, however, is divided into an unsegmented anterior part, which alone bears the appendages, and a larger segmented posterior part; the tail is a slender extension of the body, consisting of five segments, with the anus in the last segment. Morphologically considered, then, the trunk of the scorpion includes a prosoma, covered by an unsegmented plate, or carapace, and a segmented opisthosoma, or abdomen, which is differentiated into an anterior mesosoma, or preabdomen, and a posterior metasoma, or postabdomen, which is the tail. The prosoma bears the usual arachnid appendages, which are the chelicerae (A, B, ChI), the pedipalps (Pdp), and four pairs of legs (lL-4L); it therefore in­ cludes six primary postoral somites, and is thus comparable with the prosoma of Limulu8, except that it lacks the chilaria and the cor­ responding seventh segment. The seventh body segment of the scor­ pion, in fact, is known to be suppressed during embryonic develop­ ment, so that the firstse gment of the opisthosoma in the adult is the eighth. The mesosoma contains seven segments, which are segments VIII-XIV, and the tail has five segments (XV-XIX ), not including the terminal sting. The adult scorpion, therefore, has 18 postoral 60 THE ARACHNIDA (I) C�lI I B Fig. 17. Arachnida-Scorpionida. A, Chactas vanbenedeni Gervais, Chactidae (2 lateral eyes on each side), Colombia. B, Pandinus sp., Scorpionidae, Congo, ventral surface. C, same, dorsal (3 lateral eyes on each side ). D, Palaeophonus hunteri Pocock, Scottish Silurian scorpion, 35.5 mm. long (from Pocock, 1901 ). E, Pandinus sp., genital region of segment VIII, and pectines of segment IX, ventral. For explanation of lettering see pages 126-127. 61 ARTHROPOD ANATOMY segments in all, which is the maximum number of segments possessed by any other arachnid, but if we count the suppressed seventh seg­ ment, it has 19 segments. Studies by different writers on the correlation of the nerve centers of the scorpion with the body segmentation have given somewhat different results. McClendon (1904 ) described 20 pairs of neuro­ meres, or primary segmental ganglia, of which the first pair forms the brain, and the other 19 the ventral nerve cord. According to Buxton (1917), however, there are only 18 neuromeres in the nerve cord, which is one less than the number of body segments. Both Buxton and Petrunkevitch (1949 ), therefore, suggest that the first tail segment is a secondary subdivision of the last mesosomatic seg­ ment. Klistner (1940 ), on the other hand, re-examining the subject in species of several genera, finds that there are 19 pairs of primary ganglia formed in the postoral nervoussystem, of which the cheliceral ganglia unite with the brain, and the ganglia of segment VII disap­ pear along with the segment itself; in other words, there is at first a pair of ganglia for each of the primary 19 postoral segments. In the adult, however, the fivepostcheliceral ganglia of the prosoma and the firstfour persisting opisthosomatic ganglia unite in a large nerve mass, or sub oesophageal ganglion, lying in the prosoma, while the ganglia of segments XII to XVII remain separate, though the first two are displaced forward, and the ganglia of segments XVIII and XIX unite to form a double last ganglion lying in segment XVIII. The carapace of the prosoma (fig. 17 A, C, Cp ) is widest behind, somewhat narrowed anteriorly. On it are situated three groups of small, simple eyes, there being a pair of median eyes, and two groups of more anterior lateral eyes, each with from two to five eyes accord­ ing to the species. No arachnid has compound eyes. The front margin of the carapace projects as a free fold over the bases of the chelicerae (fig. 21 D). From the inner end of the under lamella, or doublure, of the fold, the membranous anterior wall of the body goes down­ ward to the base of a large median lobe (Lm), which is the labrum. The labrum lies between the bases of the pedipalps (B), but the chelicerae arise entirely dorsal to the labrum. At the base of the labrum is an irregular sclerotization of the body wall (D, Epst) representing the epistome of other arachnids, which is usually a hori­ zontal plate forming a bridge between the upper surfaces of the pedipalp coxae and supporting the labrum. Though the adult arach- 62 THE ARACHNIDA nid has no distinct head, the labrum, the epistome, and the eye­ bearing region of the carapace are derived from the cephalic lobe of the embryo. The lateral margins of the carapace are not extended beyond the leg bases (B), and a cross section of the prosoma of the scorpion (fig. 22 A), therefore, has quite a different shape from that of Limulus (fig. 7 A). The edges of the carapace are separated from the bases of the legs by narrow pleural folds of the integument (figs. 19 E, 22 A, PI). The ventral surface of the prosoma is occupied al­ most entirely by the coxae of the legs (fig. 17 B), there being only a small median sternal plate between the posterior two pairs of coxae. The fully segmented meso soma, or preabdomen, is much broader than the prosoma. On the dorsum (fig. 17 A) each of its seven seg­ ments is covered by a distinct tergal plate. On the undersurface (B) there are likewise seven segmental divisions, but the sternal plates are not all so simple or uniform in size as the tergal plates. The venter of the first segment (VIII ) is wedged between the anterior ends of the last leg coxae, where it is greatly reduced in size and has no connection with the tergum of its segment. On it, however, is situated the genital opening, or gonotreme, in each sex (B, E, Gtr), which is covered by a small plate or pair of plates forming an operculum (Opl), and is bordered behind by a transverse post­ genital fold (E, pgf ) of the integument. The second opisthosomatic sternum (B, IXS ) is a small quadrate plate bearing a pair of comb­ like appendages known as the pectines (Pee), which will be described in connection with the other appendages. This sternum also is sep­ arated from its tergum, except for narrow pleural folds that run along the posterior margins of the hind coxae. The following five mesosomatic sterna are broad plates united laterally with the cor­ responding terga by infolded pleural membranes (fig. 22 B, Pl) that allow a considerable dorsoventral expansion of the abdomen. The tergal and sternal margins of the last preabdominal segment, however, come together posteriorly and are united at the posterior angles of the segment. On the lateral areas of sterna X to XIII are oblique slits (fig. 17 B, Sp ), which are the apertures, or spiracles, of the internal respiratory organs known as book lungs, to be de­ scribed later. The five segments of the metasoma, or tail, are simple rings, the tergal and sternal arcs being entirely confluent.
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • The Common Spiders of Antelope Island State Park
    THE COMMON SPIDERS OF ANTELOPE ISLAND STATE PARK by Stephanie M Cobbold Web-building Spiders ______________________________________________________________________________ Family Araneidae (orb web spiders) Build a circular spiral web on support lines that radiate out from the center The spider is often found waiting for prey in the center of its web Typical eye pattern: 4 median eyes clustered in a square shape Eye pattern Orb web SMC SMC Neoscona (back and front views) Banded Garden Spider (Argiope) 1 ______________________________________________________________________________ Family Theridiidae (cob web spiders) Abdomen usually ball or globe-shaped Have bristles on legs called combs. These combs are used to fling silk strands over captive prey. Web is loose, irregular and 3-dimensional commons.wikimedia.org Black Widow (Latrodectus hesperus) Theridion ________________________________________________________________________ Family Linyphiidae (sheet web spiders) Build flat, sheet-like or dome-shaped webs under which the spider hangs upside- down. Abdomen is usually longer than wide SMC Sheet web spider hanging under its web 2 ________________________________________________________________________ Family Dictynidae (mesh web spiders) Make small, irregular webs of hackled threads Often found near the tips of plants SMC ________________________________________________________________________ Family Agelenidae (funnel web spiders) Web is a silk mat with a funnel-shaped retreat at one end in which the spider waits in ambush
    [Show full text]
  • Risk of Exposure of a Selected Rural Population in South Poland to Allergenic Mites
    Experimental and Applied Acarology https://doi.org/10.1007/s10493-019-00355-7 Risk of exposure of a selected rural population in South Poland to allergenic mites. Part II: acarofauna of farm buildings Krzysztof Solarz1 · Celina Pająk2 Received: 5 September 2018 / Accepted: 27 February 2019 © The Author(s) 2019 Abstract Exposure to mite allergens, especially from storage and dust mites, has been recognized as a risk factor for sensitization and allergy symptoms that could develop into asthma. The aim of this study was to investigate the occurrence of mites in debris and litter from selected farm buildings of the Małopolskie province, South Poland, with particular refer- ence to allergenic and/or parasitic species as a potential risk factor of diseases among farm- ers. Sixty samples of various materials (organic dust, litter, debris and residues) from farm buildings (cowsheds, barns, chaff-cutter buildings, pigsties and poultry houses) were sub- jected to acarological examination. The samples were collected in Lachowice and Kurów (Suski district, Małopolskie). A total of 16,719 mites were isolated including specimens from the cohort Astigmatina (27 species) which comprised species considered as allergenic (e.g., Acarus siro complex, Tyrophagus putrescentiae, Lepidoglyphus destructor, Glycy- phagus domesticus, Chortoglyphus arcuatus and Gymnoglyphus longior). Species of the families Acaridae (A. siro, A. farris and A. immobilis), Glycyphagidae (G. domesticus, L. destructor and L. michaeli) and Chortoglyphidae (C. arcuatus) have been found as numeri- cally dominant among astigmatid mites. The majority of mites were found in cowsheds (approx. 32%) and in pigsties (25.9%). The remaining mites were found in barns (19.6%), chaff-cutter buildings (13.9%) and poultry houses (8.8%).
    [Show full text]
  • A New Species of the Genus Atypus Latreille, 1804 (Araneae: Atypidae) from Korea
    Zootaxa 3915 (1): 139–142 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3915.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:5D41EF9C-63A4-408B-92F0-50C903A0A1F1 A new species of the genus Atypus Latreille, 1804 (Araneae: Atypidae) from Korea SUE YEON LEE1, JOON-HO LEE2, JUNG SUN YOO3 & SEUNG TAE KIM1,4 1Research Institute for Agriculture and Life Sciences, Seoul National University, 151-921 Seoul, Republic of Korea 2Entomology program, Department of Agricultural Biotechnology, Seoul National University, 151-921 Seoul, Republic of Korea 3Department of Exhibition and Education, National Institute of Biological Resources, Incheon, 404-170, Korea 4Corresponding author. E-mail:[email protected] Worldwide, 30 species of the genus Atypus Latreille, 1804 have been recorded from the United States, Europe, Africa, south-east and far-east Asia (Platnick 2014). Atypid spiders are characterized by a male sternum with marginal ridges, a short, straight and spike-like embolus, a straight conductor and a distally widened vulva with bulbous or pyriform receptacula and with two lateral patches of pores on the genital atrium (Gertsch and Platnick 1980). Kraus and Baur (1974) utilized various taxonomic characters to distinguish between the European species, such as the segmentation of the posterior spinnerets, features of the patellar membrane, morphology of sigilla opposite coxae I and IV, and the male palpal conductor, palpal furrow and male metatarsal spines. The genus Atypus was reviewed by Schwendinger (1990) who redescribed 12 recorded species and discussed the granular texture on the male chelicerae and front legs, and the cymbial pit for distinguishing species.
    [Show full text]
  • Text Monitor
    5th Symposium Conference Volume for Research in Protected Areas pages 389 - 398 10 to 12 June 2013, Mittersill Natural Hazards – Hazards for Nature? Avalanches as a promotor of biodiversity. A case study on the invertebrate fauna in the Gesäuse National Park (Styria, Austria) Christian Komposch, Thomas Frieß & Daniel Kreiner Abstract Avalanches are feared by humans and considered “catastrophic” due to their unpredictable and destructive force. But this anthropocentric perspective fails to capture the potential ecological value of these natural disturbances. The Gesäuse National Park is a model-region for investigations of such highly dynamic events because of its distinct relief and extreme weather conditions. This project aims to record and analyse the animal assemblages in these highly dynamic habitats as well as document succession and population structure. 1) Dynamic processes lead to one of the very few permanent and natural vegetationless habitat types in Central Europe outside the alpine zone – i. e. screes and other rocky habitats at various successional stages. In addition to the tight mosaic distribution of a variety of habitats over larger areas, avalanche tracks also offer valuable structures like dead wood and rocks. Remarkable is the sympatric occurrence of the three harvestmen species Trogulus tricarinatus, T. nepaeformis und T. tingiformis, a species diversity peak of spiders, true-bugs and ants; and the newly recorded occurrence of Formica truncorum. 2) The presence of highly adapted species and coenoses reflect the extreme environmental conditions, specific vegetation cover and microclimate of these habitats. Several of the recorded taxa are rare, endangered and endemic. The very rare dwarf spider Trichoncus hackmani is a new record for Styria and the stenotopic and critically endangered wolf-spider Acantholycosa lignaria is dependent on lying dead wood.
    [Show full text]
  • Key to Common Indoor Spiders Found in Utah
    KEY TO COMMON INDOOR SPIDERS FOUND IN UTAH Alan H. Roe Insect Diagnostician Utah Plant Pest Diagnostic Lab November 2005 This key is intended as an identification aid for spider specimens commonly collected from indoor situations in Utah. It is not all-inclusive and will not correctly identify all spiders. However, the key does include groups that comprise about 90% of the specimens that are submitted from household situations in Utah, and about 80% of spiders submitted from all situations. This simplified key is designed for use by persons with a minimal knowledge of spider anatomy. Anatomical characteristics utilized by the key include eye arrangements, the number of claws on the tarsi, the presence or lack of claw tufts, the appearance of the spinnerets, and the arrangement of teeth (if any) on the rear margin of the cheliceral fang furrow. Actual photographs of spider anatomy are utilized to illustrate the various characteristics described in the key. A dissecting microscope (20X minimum power) is recommended to observe the necessary characteristics. One or two pairs of fine forceps and a dissecting pin are useful for manipulating specimens. A silicone-filled dissecting dish and insect pins may also be useful for holding specimens in the required viewing positions. Ethyl alcohol (70%) is recommended for preserving spider specimens. Specimens can be viewed submerged under alcohol or dry, but dry specimens are prone to breakage. Spiders included in this key are identified to the family, genus, or species level. A list of these spiders and their classification level is given in the table below. The actual key follows the table.
    [Show full text]
  • Surface-Active Spiders (Araneae) in Ley and Field Margins
    Norw. J. Entomol. 51, 57–66. 2004 Surface-active spiders (Araneae) in ley and field margins Reidun Pommeresche Pommeresche, R. 2004. Surface-active spiders (Araneae) in ley and field margins. Norw. J. Entomol. 51, 57-66. Surface-active spiders were sampled from a ley and two adjacent field margins on a dairy farm in western Norway, using pitfall traps from April to June 2001. Altogether, 1153 specimens, represent- ing 33 species, were found. In total, 10 species were found in the ley, 16 species in the edge of the ley, 22 species in the field margin “ley/forest” and 16 species in the field margin “ley/stream”. Erigone atra, Bathyphantes gracilis, Savignia frontata and Collinsia inerrans were the most abun- dant species in the ley. C. inerrans was not found in the field margins. This species is previously recorded only a few times in Norway. Diplocephalus latifrons, Tapinocyba insecta, Dicymbium tibiale, Bathyphantes nigrinus and Diplostyla concolor were most abundant in the field margin “ley/ forest”. D. latifrons, D. tibiale and Pardosa amentata were most abundant in the field margin “ley/ stream”, followed by E. atra and B. gracilis. The present results were compared to results from ley and pasture on another farm in the region, recorded in 2000. A Detrended Correspondence Analyses (DCA) of the data sets showed that the spider fauna from the leys were more similar, independent of location, than the fauna in ley and field margins on the same locality. The interactions between cultivated fields and field margins according to spider species composition, dominance pattern and habitat preferences are discussed.
    [Show full text]
  • Atypus Affinis, Araneae) Im Ruthertal Zwischen Werden Und Kettwig (Essen
    Elektronische Aufsätze der Biologischen Station Westliches Ruhrgebiet 12 (2008): 1-9 Electronic Publications of the Biological Station of Western Ruhrgebiet 12 (2008): 1-9 Wo die wilden Kerle wohnen: Vogelspinnenverwandtschaft (Atypus affinis, Araneae) im Ruthertal zwischen Werden und Kettwig (Essen) Marcus Schmitt Universität Duisburg-Essen, Abteilung Allgemeine Zoologie, Universitätsstraße 5, 45141 Essen; E-Mail: [email protected] Einleitung Die Ordnung der Webspinnen (Araneae) mit ihren 40.000 bekannten Arten lässt sich in drei Unterordnungen aufteilen (PLATNICK 2007). Es gibt die besonders ursprüngli- chen Gliederspinnen (Unterordung Mesothelae), vertreten nur durch eine einzige Familie (Liphistiidae), die Vogelspinnenartigen (Mygalomorphae) mit 15 Familien und die „modernen“ Echten Webspinnen (Araneomorphae) mit über 90 Familien und den bei weitem meisten Arten (über 37.000). Die Mygalomorphae wurden ehedem auch als Orthognatha, die Araneomorphae als Labidognatha geführt. Diese Namen sind insofern bezeichnend, als sie sich auf das augenfälligste Unterscheidungsmerkmal beider Gruppen beziehen: Die Kiefer der Vogelspinnenartigen sind vor dem Prosoma (Vorderleib) horizontal angeordnet (Abb. 1) und arbeiten nebeneinander auf und ab, die der Echten Webspinnen stehen eher vertikal unter der Prosomafront und bewegen sich pinzettenartig aufeinander zu (vgl. FOELIX 1992). Die mygalomorphen Spinnen leben ganz hauptsächlich in den warmen Gebieten der Erde. Am bekanntesten sind die Theraphosidae, die „eigentlichen“ Vogelspinnen. Sie sind zumeist stark behaart und oft auffällig gefärbt. Unter ihnen befinden sich die größten Spinnen überhaupt, und sie werden nicht selten als Haustiere in Terrarien gehalten (SCHMIDT 1989). Viele Mygalomorphae sind aber weniger spektakuläre Er- scheinungen und führen als Bodenbesiedler, die Wohnröhren in das Erdreich gra- ben, ein sehr verstecktes Leben. Im mediterranen und südöstlichen Europa existie- ren in mehreren Familien immerhin um die 60 Arten (PLATNICK 2007, HELSDINGEN © Biologische Station Westliches Ruhrgebiet e.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Zootaxa, Araneae, Agelenidae, Agelena
    Zootaxa 1021: 45–63 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1021 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) On Agelena labyrinthica (Clerck, 1757) and some allied species, with descriptions of two new species of the genus Agelena from China (Araneae: Agelenidae) ZHI-SHENG ZHANG1,2*, MING-SHENG ZHU1** & DA-XIANG SONG1*** 1. College of Life Sciences, Hebei University, Baoding, Hebei 071002, P. R. China; 2. Baoding Teachers College, Baoding, Hebei 071051, P. R. China; *[email protected], **[email protected] (Corresponding author), ***[email protected] Abstract Seven allied species of the funnel-weaver spider genus Agelena Walckenaer, 1805, including the type species Agelena labyrinthica (Clerck, 1757), known to occur in Asia and Europe, are reviewed on the basis of the similarity of genital structures. Two new species are described: Agelena chayu sp. nov. and Agelena cuspidata sp. nov. The specific name A. silvatica Oliger, 1983 is revalidated. The female is newly described for A. injuria Fox, 1936. Two specific names are newly synony- mized: Agelena daoxianensis Peng, Gong et Kim, 1996 with A. silvatica Oliger, 1983, and A. sub- limbata Wang, 1991 with A. limbata Thorell, 1897. Some names are proposed for these species to represent some particular genital structures: conductor ventral apophysis, conductor median apo- physis, conductor distal apophysis and conductor dorsal apophysis for male palp and spermathecal head, spermathecal stalk, spermathecal base and spermathecal apophysis for female epigynum. Key words: genital structure, revalidation, synonym, review, taxonomy Introduction The funnel-weaver spider genus Agelena was erected by Walckenaer (1805) with the type species Araneus labyrinthicus Clerck, 1757.
    [Show full text]
  • (Banks) on Primocane-Fruiting Blackberries (Rubus L. Subgenus Rubus) in Arkansas Jessica Anne Lefors University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane-fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas Jessica Anne LeFors University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Entomology Commons, Fruit Science Commons, Horticulture Commons, and the Plant Pathology Commons Recommended Citation LeFors, Jessica Anne, "Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane- fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas" (2018). Theses and Dissertations. 2730. http://scholarworks.uark.edu/etd/2730 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Seasonal Phenology, Distribution and Treatments for Polyphagotarsonemus latus (Banks) on Primocane-fruiting Blackberries (Rubus L. subgenus Rubus) in Arkansas A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Jessica Anne LeFors Texas Tech University Bachelor of Science in Horticulture, 2015 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council. _______________________________ Donn T. Johnson, Ph.D Thesis Director _______________________________ _______________________________ Oscar Alzate, Ph.D Terry Kirkpatrick, Ph.D Committee Member Committee Member _______________________________ Allen Szalanski, Ph.D Committee Member Abstract Worldwide, blackberries (Rubus L. subgenus Rubus) are an economically important crop. In 2007, Polyphagotarsonemus latus (Banks) (broad mites), were first reported damaging primocane-fruiting blackberries in Fayetteville, Arkansas.
    [Show full text]
  • YSF 2020-PROGRAMME-1.Pdf
    YOUNG SYSTEMATISTS' FORUM Day 1 Monday 23rd November 2020, Zoom [all timings are GMT+0] 11.50 Opening remarks David Williams, President of the Systematics Association 12.00 Rodrigo Vargas Pêgas Species Concepts and the Anagenetic Process Importance on Evolutionary History 12.15 Katherine Odanaka Insights into the phylogeny and biogeography of the cleptoparasitic bee genus Nomada 12.30 Minette Havenga Association among global populations of the Eucalyptus foliar pathogen Teratosphaeria destructans 12.45 David A. Velasquez-Trujillo Phylogenetic relationships of the whiptail lizards of the genus Holcosus COPE 1862 (Squamata: Teiidae) based on morphological and molecular evidence 13.00 Break 10 minutes 13.10 Arsham Nejad Kourki The Ediacaran Dickinsonia is a stem-eumetazoan 13.25 Flávia F.Petean The role of the American continent on the diversification of the stingrays’ genus Hypanus Rafinesque, 1818 (Myliobatiformes: Dasyatidae) 13.40 Peter M.Schächinger Discovering species diversity in Antarctic marine slugs (Mollusca: Gastropoda) 13.55 Alison Irwin Eight new mitogenomes clarify the phylogenetic relationships of Stromboidea within the gastropod phylogenetic framework 14.10 Break 20 minutes 14.30 Érica Martinha Silva de The lineages of foliage-roosting fruit bat Uroderma spp. (Chiroptera: Souza Phyllostomidae 14.45 Melissa Betters Rethinking Informative Traits: Environmental Influence on Shell Morphology in Deep-Sea Gastropods 15.00 J. Renato Morales-Mérida- New lineages of Holcosus undulatus (Squamata: Teiidae) in Guatemala 15.15 Roberto
    [Show full text]