Expedited Assessment of the U.S. Northeast Northern Shortfin Squid Small Mesh Bottom Trawl Fishery MSC Fishery Assessment Repor

Total Page:16

File Type:pdf, Size:1020Kb

Expedited Assessment of the U.S. Northeast Northern Shortfin Squid Small Mesh Bottom Trawl Fishery MSC Fishery Assessment Repor SCS Global Services Report Expedited Assessment of the U.S. Northeast Northern Shortfin Squid Small Mesh Bottom Trawl Fishery For the expansion of scope of the U .S. Northeastern Longfin Inshore Squid Small Mesh Bottom Trawl Fishery MSC Fishery Assessment Report Final Report Client Contact Authors Jeff Kaelin Mr. Gonzalo Macho Lund’s Fisheries Inc. Mrs. Jennifer Humberstone 997 Ocean Drive, Cape May, NJ, U.S. Katie Almeida The Town Dock 45 State St, Narragansett, RI, U.S. April 9 2019 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA +1.510.452.8000 main | +1.510.452.8001 fax www.SCSglobalServices.com SCS Global Services Report Table of Contents Glossary ......................................................................................................................................... 5 1. Executive Summary .................................................................................................................... 7 Assessment Overview ........................................................................................................................... 7 Summary of Findings ............................................................................................................................. 9 2. Authorship and Peer Reviewers ................................................................................................11 2.1 Audit Team ........................................................................................................................................ 11 2.2 Peer Reviewers .................................................................................................................................. 12 3. Description of the Fishery .........................................................................................................14 3.1 Unit(s) of Assessment (UoA) and Scope of Certification Sought ...................................................... 14 3.1.1 UoA and Final Unit of Certification (UoC) .................................................................................. 14 3.1.2 Total Allowable Catch (TAC) and Catch Data ............................................................................. 16 3.1.3 Scope of Assessment in Relation to Enhanced Fisheries ........................................................... 17 3.1.4 Scope of Assessment in Relation to Introduced Species Based Fisheries (ISBF) ....................... 17 3.2 Overview of the Fishery .................................................................................................................... 17 3.2.1 Location and History of the Fishery ........................................................................................... 17 3.2.2 Organization and User Rights .................................................................................................... 20 3.2.3 Description of Fishing Practices: Gear ....................................................................................... 23 3.2.4 Areas and Seasons ..................................................................................................................... 24 3.2.5 History of catches....................................................................................................................... 26 3.3 Principle One: Target Species Background ....................................................................................... 29 3.3.1 Northern shortfin squid ............................................................................................................ 29 3.3.2 Biology ........................................................................................................................................ 29 3.3.3 Stock Assessment ...................................................................................................................... 39 3.3.4 Harvest Strategy ......................................................................................................................... 42 Key Low Trophic Level Considerations ....................................................................................... 54 3.4 Principle Two: Ecosystem Background ............................................................................................. 54 3.4.1 Fishery Information and Monitoring .......................................................................................... 54 3.4.2 Primary Species .......................................................................................................................... 55 3.4.3 Secondary Species ...................................................................................................................... 55 3.4.4 Endangered, Threatened and Protected (ETP) Species ............................................................. 55 3.4.5 Habitat Impacts .......................................................................................................................... 56 3.4.6 Ecosystem Impacts ..................................................................................................................... 56 3.5 Principle Three: Management System Background .......................................................................... 65 3.5.1 Area of Operation and Jurisdictional Scope Considerations ...................................................... 65 Version 3-0 (July 2017) | © SCS Global Services | Full Assessment Report MSC V2.0 SCS Global Services Report 3.5.2 Over-arching Governance .......................................................................................................... 67 3.5.3 Fishery Specific Management Considerations for Northern Shortfin Squid .............................. 72 4. Evaluation Procedure ................................................................................................................73 4.1 Harmonized Fishery Assessment ...................................................................................................... 73 4.2 Previous Assessments ....................................................................................................................... 73 4.3 Assessment Methodologies .............................................................................................................. 73 4.4 Evaluation Processes and Techniques .............................................................................................. 73 4.4.1 Site Visits .................................................................................................................................... 73 4.4.2 Consultations ............................................................................................................................. 75 4.4.3 Evaluation Techniques ............................................................................................................... 76 5. Traceability ...............................................................................................................................81 5.1 Eligibility Date ................................................................................................................................... 81 5.2 Traceability within the Fishery .......................................................................................................... 81 5.3 Eligibility to Enter Further Chains of Custody ................................................................................... 85 5.4 Eligibility of Inseparable or Practicably Inseparable (IPI) stock(s) to Enter Further Chains of Custody ................................................................................................................................................................ 86 6. Evaluation Results .....................................................................................................................87 6.1 Principle Level Scores ........................................................................................................................ 87 6.3 Summary of PI Level Scores .............................................................................................................. 88 6.4 Summary of Conditions ..................................................................................................................... 89 6.5 Recommendations ............................................................................................................................ 90 6.6 Determination, Formal Conclusion and Agreement ......................................................................... 90 References ....................................................................................................................................91 Appendices ...................................................................................................................................96 Appendix 1.1 Scoring and Rationales ..................................................................................................... 96 Performance Indicator Scores and Rationale ......................................................................................... 96 Principle 1 ........................................................................................................................................... 96 Principle 2 ......................................................................................................................................... 119 Principle 3 ........................................................................................................................................
Recommended publications
  • Time of Day Affects Squid Catch in the U.S. Illex Illecebrosus Squid Fishery ∗ Eleanor A
    Regional Studies in Marine Science 44 (2021) 101666 Contents lists available at ScienceDirect Regional Studies in Marine Science journal homepage: www.elsevier.com/locate/rsma Time of day affects squid catch in the U.S. Illex illecebrosus squid fishery ∗ Eleanor A. Bochenek a, , Eric N. Powell b a Haskin Shellfish Research Laboratory, Rutgers University, 6959 Miller Ave., Port Norris, NJ 08349, United States of America b Gulf Coast Research Laboratory, University of Southern Mississippi, 703 East Beach Dr, Ocean Springs, MS 39564, United States of America article info a b s t r a c t Article history: A mid-water otter trawl fishery targeting Illex illecebrosus operates in the northwestern Atlantic Ocean. Received 16 June 2020 The majority of I. illecebrosus are captured during mid-June to early September. Diel migratory behavior Received in revised form 28 January 2021 limits the fishery to daylight hours, but does the time-of-day affect catch? Illex illecebrosus were Accepted 8 February 2021 collected from each tow from a subset of the trawler fleet fishing on the outer continental shelf of Available online 10 February 2021 the Mid-Atlantic Bight over the fishing season to determine the influence of time-of-day on catch. The Keywords: male-to-female ratio was not influenced by time-of-day of capture. The size–frequency distribution of Illex illecebrosus I. illecebrosus varied between tows within the same day of capture. Time-of-day of capture influenced Short-fin squid average weight and, to a lesser degree, mantle length. Shorter and lighter squid were caught in the Time of day middle of the day.
    [Show full text]
  • LABORATORY REARING of RHYNCHOTEUTHIONS of the OMMASTREPHID SQUID ILLEX ILLECEBROSUS (MOLLUSCA : CEPHALOPODA) N Balch, R O’Dor, P Helm
    LABORATORY REARING OF RHYNCHOTEUTHIONS OF THE OMMASTREPHID SQUID ILLEX ILLECEBROSUS (MOLLUSCA : CEPHALOPODA) N Balch, R O’Dor, P Helm To cite this version: N Balch, R O’Dor, P Helm. LABORATORY REARING OF RHYNCHOTEUTHIONS OF THE OM- MASTREPHID SQUID ILLEX ILLECEBROSUS (MOLLUSCA : CEPHALOPODA). Vie et Milieu / Life & Environment, Observatoire Océanologique - Laboratoire Arago, 1985, pp.243-246. hal- 03022163 HAL Id: hal-03022163 https://hal.sorbonne-universite.fr/hal-03022163 Submitted on 24 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 1985, 35 (3/4) : 243-246 LABORATORY REARING OF RHYNCHOTEUTHIONS OF THE OMMASTREPHID SQUID ILLEX ILLECEBROSUS (MOLLUSCA : CEPHALOPODA) N. BALCH(1), R.K. O'DOR <2) and P. HELM(2) (1) Aquatron Laboratory, Institute of Oceanography (2) Biology Department, Dalhousie University, Halifax, Nova Scotia, Canada, B3H 4J1 OCEANIC SQUID ABSTRACT. — A methodology is presented for obtaining egg masses from captive LABORATORY REARING populations of the ommastrephid squid Illex illecebrosus and for incubating them LARVAE intact under controlled conditions. Survival of rhynchoteuthion larvae for 9 days after CEPHALOPODA hatching is the best reported to date, though it has not yet been possible to induce feeding.
    [Show full text]
  • Helminth Infection in the Short-Finned Squid Illex Coindetii (Cephalopoda, Ommastrephidae) Off NW Spain
    DISEASES OF AQUATIC ORGANISMS Published September 14 Dis aquat Org Helminth infection in the short-finned squid Illex coindetii (Cephalopoda, Ommastrephidae) off NW Spain 'Laboratorio de Parasitologia, Facultad de Ciencias, Universidad de Vigo, Ap. 874 E-36200 Vigo, Spain 'Institute de Investigacions Marinas (CSIC),Eduardo Cabello 6, E-36208 Vigo, Spain ABSTRACT: A survey of parasites in 600 short-finned squid fllex coindetii (Verany. 1839) taken from 2 locations (north and south Galicia) off the northwestern Ibenan Peninsula revealed the presence of numerous somatoxenous helrninths. Three genera of Tetraphyllidean plerocercoids were represented (prevalences: Ph}~llobothriurn sp., 45.7%; Dinobothriunl sp., 0.8%; and Pelichnibothrium speciosum, 0.001 %); 1 Trypanorhynchidean metacestode was also present (Nybelinia vamagutll. 0.4 %). In addi- tion, larval nematodes of Anisakis simplex (L3) were recorded (10.6%). Abundance of infection was examined in relation to squid sex, standard length, maturity and locality. This analysis indicated that parasite infection was lower in the southern squids than in the northern squid group. Over the entire survey area, parasite infection showed a close positive correlation with host life-cycle, often with the greatest number of parasites among the largest and highest maturity individuals (>l8to 20 cm; matu- rlty stage V). KEY WORDS: Illex coindetii . Northwestern Iberian Peninsula Helminth parasites INTRODUCTION northeastern Atlantic waters. To this end, in the present paper some aspects of the host-parasite rela- Cephalopods represent 2.1 % of total worldwide tionship are examined. A possible local variability in catches of marine organisms (Guerra & Perez- degree of infection was also assessed in the light of the Gandaras 1983).In spite of the economic importance of clearly different hydrographical conditions between this fishery, relatively little is known about the host- northern and southern shelf areas off the Galician parasite relationships of teuthoid cephalopods (see coast (Fraga et al.
    [Show full text]
  • Spermatophore Transfer in Illex Coindetii (Cephalopoda: Ommastrephidae)
    Spermatophore transfer in Illex coindetii (Cephalopoda: Ommastrephidae) TREBALL DE FI DE GRAU GRAU DE CIÈNCIES DEL MAR EVA DÍAZ ZAPATA Institut de Ciències del Mar (CSIC) Universitat de Barcelona Tutors: Fernando Ángel Fernández-Álvarez i Roger Villanueva 05, 2019 RESUMEN CIENTÍFICO La transmisión de esperma desde el macho a la hembra es un proceso crítico durante la reproducción que asegura la posterior fecundación de oocitos. Durante el apareamiento, los machos de los cefalópodos incrustan en el tejido de la hembra paquetes de esperma denominados espermatóforos mediante un complejo proceso de evaginación conocido como reacción espermatofórica. Estos reservorios de esperma incrustados en el cuerpo de la hembra se denominan espermatangios. En este estudio se han analizado machos y hembras maduros de Illex coindetii recolectados desde diciembre del 2018 hasta abril del 2019 en la lonja de pescadores de Vilanova i la Geltrú (Mediterráneo NO). El objetivo de este estudio es entender cómo se produce la transmisión de los espermatóforos en esta especie carente de órganos especiales para el almacenamiento de esperma (receptáculos seminales). En los ejemplares estudiados se cuantificó el número de espermatóforos y espermatangios y mediante experimentos in vitro se indujo la reacción espermatofórica para describir el proceso de liberación del esperma. Los resultados han demostrado que los machos maduros disponen entre 143 y 1654 espermatóforos y las hembras copuladas presentan entre 35 y 668 espermatangios en su interior. La inversión reproductiva en cada cópula realizada por los machos oscila entre el 2 y el 40 % del número de espermatóforos disponibles en un momento dado. En experimentos realizados in vitro, la reacción espermatofórica se inicia espontáneamente tras entrar el espermatóforo en contacto con el agua de mar.
    [Show full text]
  • Population Structure of the Squid Illex Illecebrosus
    NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S) Northwest Atlantic Fisheries . Organization Serial No. N613 NAFO SCR Doc. 82/IX/104 FOURTH ANNUAL MEETING - SEPTEMBER 1982 Population Strucl:ure of the Squid Illex illecebrosus by T. Amaratunga Department of Fisheries and Oceans, Fisheries Research Branch P. O. Box 550, Halifax, Nova Scotia, Canada B3J 2S7 Introduction There are four closely related species of Illex in the western Atlantic (Roper et al., 1969): Illex illecebrosus, I. oxygonius, I. coindettil and I. argentinus. I. argentinus has a discrete distribution ink southern South America and is of no consequence to discussions, in this paper. However, the other three species which may ha e overlapping distribution in the southern range of I. illecebrosus (Roper et al., 1969) is of consequence in I. illecebrvsus stock considerations. Among these three sp cies, I. illecebrosus has the northern- most distribution and is t e predominant commercial species. The known distribution of this species (Roper and Lu, 1979; Lu, 1973; Clark, 1966) extends from eastward of Labrador and Newfoundland in the north, to central Florida in the south (Fig. 1). Roper et al. (1969) noted that past records of the southern range of this species may very possibly have included misidentified specimens of the other two species, I. oxygonius and I. coindetti. Therefore, based on adult specimen data, the southernmost extent of I. illecebrosus they report is at 29°39.5N. I. oxygonius is described to range between 24°N and 39°N and the northernmost extentiof I. coindetti is A 27°37N. The morphological similarities of the advlt forms of these species (Roper et al., 1969 under the best of conditions, make species seperation very difficult.
    [Show full text]
  • Vertical Distribution of Pelagic Cephalopods *
    * Vertical Distribution of Pelagic Cephalopods CLYDE F. E. ROPER and RICHARD E. YOUNG SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These pub- lications are distributed by mailing lists to libraries, laboratories, and other interested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. S. DILLON RIPLEY Secretary Smithsonian Institution SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 209 Vertical Distribution of Pelagic Cephalopds Clyde F.
    [Show full text]
  • Marine Ecology Progress Series 514:105
    Vol. 514: 105–118, 2014 MARINE ECOLOGY PROGRESS SERIES Published November 6 doi: 10.3354/meps10972 Mar Ecol Prog Ser Role of hydro-climatic and demographic processes on the spatio-temporal distribution of cephalopods in the western Mediterranean Patricia Puerta1,*, Manuel Hidalgo1, María González2, Antonio Esteban3, Antoni Quetglas1 1Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, Apdo. 291, 07015 Palma de Mallorca, Spain 2Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Puerto Pesquero s/n, 29640 Fuengirola, Málaga, Spain 3Instituto Español de Oceanografía, Centro Oceanográfico de Murcia, Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain ABSTRACT: Fluctuations in marine populations occur both in terms of abundance and distribu- tional ranges, and this has major implications for marine ecology and fisheries management. How- ever, little is known about the variability in, and factors influencing, spatial dynamics in marine groups other than fish. Using time series data from trawl surveys conducted in the western Medi- terranean Sea from 1994 to 2012, we analysed the variability in population distribution (latitude, longitude and depth) of 2 cephalopod species with contrasting life histories, viz. the nektobenthic squid Illex coindetii and the benthic octopus Eledone cirrhosa. We investigated the influence of demographic information (population density and mean individual size) together with environ- mental variables (including chlorophyll a concentration, runoff, precipitation, temperature and climate) to identify the main drivers shaping the cephalopod distributions in 4 shelf regions with contrasting oceanographic and geographic conditions. Marked inter-annual fluctuations were found in the distribution of the 2 species. In general, squid and octopus populations were affected by the same variables, but the effect of each variable depended on the species and study region.
    [Show full text]
  • Estimation of Biomass, Production and Fishery Potential of Ommastrephid Squids in the World Ocean and Problems of Their Fishery Forecasting
    ICES CM 2004 / CC: 06 ESTIMATION OF BIOMASS, PRODUCTION AND FISHERY POTENTIAL OF OMMASTREPHID SQUIDS IN THE WORLD OCEAN AND PROBLEMS OF THEIR FISHERY FORECASTING Ch. M. Nigmatullin Atlantic Research Institute of Marine Fisheries and Oceanography (AtlantNIRO), Dm. Donskoj Str. 5, Kaliningrad, 236000 Russia [tel. +0112-225885, fax + 0112-219997, e-mail: [email protected]] ABSTRACT 21 species of the nektonic squids family Ommastrephidae inhabits almost the entire waters of the World Ocean. It is the most commercial important group among cephalopods. Straight and expert evaluations of biomass were carried out for each species. In all ommastrephids the total instantaneous biomass is ~55 million t on average and total yearly production is ~ 400 million t (production/biomass coefficient - P/B = 5 in inshore species and 8 - in oceanic ones). Now there are 12-fished species, mainly 8 inshore ones. In 1984-2001 the yearly world catch of ommastrephids was about 1.5-2.2 million t (=50-65% of total cephalopod catch). The feasible ommastrephids fishery potential is ~ 6-9 million t including 4-7 million t of oceanic species. Thus ommastrephids are one of the most important resources for increasing high-quality food protein catch in the World Ocean. At the same time there are serious economical and technical difficulties to develop oceanic resources fishery, especially for Ommastrephes and Sthenoteuthis. A general obstacle in the real fishery operations and fishery forecasting for ommastrephids is their r-strategist ecological traits, related to monocyclia, short one-year life cycle, pelagic egg masses, paralarvae and fry, and accordingly high mortality rate during two last ontogenetic stages.
    [Show full text]
  • The Long-Finned Pilot Whale
    Status of Marine Mammals in the North Atlantic THE LONG-FINNED PILOT WHALE (Pilot whale drive in the Faroes. Photo: D. Bloch) This series of reports is intended to provide information on North Atlantic marine mammals suitable for the general reader. Reports are produced on species that have been considered by the NAMMCO Scientific Committee, and therefore reflect the views of the Council and Scientific Committee of NAMMCO. North Atlantic Marine Mammal Commission Polar Environmental Centre N-9296 Tromsø, Norway Tel.: +47 77 75 01 80, Fax: +47 77 75 01 81 Email: [email protected], Web site: www.nammco.no LONG-FINNED PILOT WHALE (Globicephala melas) The long-finned pilot whale is a medium-sized toothed whale that is found in the North Atlantic and in mid-latitudes throughout the northern and southern hemisphere. Males are larger than females, reaching a length of 6.3 m and a weight of 2.5 tonnes, compared to 5.5 m and 1.5 tonnes for females (Bloch et al. 1993b). They are dark brown to black in colour, with a light anchor-shaped pattern on the belly, and on some a whitish stripe extending towards the tail along the back and sometimes also behind dorsal fin. The pilot whale is a very social species, and is invariably found in groups of 10’s to 100's of animals. Distribution and Stock Definition The pilot whale is an oceanic species and occurs far offshore as well as in coastal areas (Buckland et al. 1993, NAMMCO 1998a). They are very widely distributed in the North Atlantic, from about 35o - 65o N in the west and from about 40o - 75o N in the east (ICES 1996; NAMMCO 1998a,b) (Fig.1).
    [Show full text]
  • Ommastrephidae 199
    click for previous page Decapodiformes: Ommastrephidae 199 OMMASTREPHIDAE Flying squids iagnostic characters: Medium- to Dlarge-sized squids. Funnel locking appara- tus with a T-shaped groove. Paralarvae with fused tentacles. Arms with biserial suckers. Four rows of suckers on tentacular clubs (club dactylus with 8 sucker series in Illex). Hooks never present hooks never on arms or clubs. One of the ventral pair of arms present usually hectocotylized in males. Buccal connec- tives attach to dorsal borders of ventral arms. Gladius distinctive, slender. funnel locking apparatus with Habitat, biology, and fisheries: Oceanic and T-shaped groove neritic. This is one of the most widely distributed and conspicuous families of squids in the world. Most species are exploited commercially. Todarodes pacificus makes up the bulk of the squid landings in Japan (up to 600 000 t annually) and may comprise at least 1/2 the annual world catch of cephalopods.In various parts of the West- ern Central Atlantic, 6 species of ommastrephids currently are fished commercially or for bait, or have a potential for exploitation. Ommastrephids are powerful swimmers and some species form large schools. Some neritic species exhibit strong seasonal migrations, wherein they occur in huge numbers in inshore waters where they are accessable to fisheries activities. The large size of most species (commonly 30 to 50 cm total length and up to 120 cm total length) and the heavily mus- cled structure, make them ideal for human con- ventral view sumption. Similar families occurring in the area Onychoteuthidae: tentacular clubs with claw-like hooks; funnel locking apparatus a simple, straight groove.
    [Show full text]
  • Comparative Morphology of Early Stages of Ommastrephid Squids from the Mediterranean Sea
    INTERUNIVERSITY MASTER OF AQUACULTURE 2011 – 2012 Comparative morphology of early stages of ommastrephid squids from the Mediterranean Sea Student GIULIANO PETRONI Tutor Dra. MERCÈ DURFORT Department of Cellular Biology , Faculty of Biology, University of Barcelona Principal Investigator Dr. ROGER VILLANUEVA (PI) Depart ment of renewable marine resources, Institut de Ciències del Mar, CSIC Research Institute Institut de Ciències del Mar, CSIC, Barcelona ABSTRACT Early life of oceanic squids is poorly known due to the difficulties in locating their pelagic egg masses in the wild or obtaining them under laboratory conditions. Recent in vitro fertilization techniques were used in this study to provide first comparative data of the early stages of the most important ommastrephid squid species from the Mediterranean Sea: Illex coindetii , Todaropsis eblanae and Todarodes sagittatus . Eggs, embryos and newly hatched paralarvae were described through development highlighting sizes and morphological differences between species. Duration of embryonic development in I. coindetii and T. eblanae was strictly correlated with temperature and egg size. Embryos of T. sagittatus were unable to reach hatchling stage and died during organogenesis. With the aim to distinguish rhynchoutheuthion larvae of I. coindetii and T. eblanae , particular attention was given to a few types of characters useful for species identification. The general structure of arm and proboscis suckers was described based on the presence of knobs on the chitinous ring. Chromatophore patterns on mantle and head were given for hatchlings of both species and showed some individual variation. A peculiar skin sculpture was observed under a binocular microscope on the external mantle surface of T. eblanae . SEM analysis revealed the presence of a network of hexagonal cells covered by dermal structures which may have a high taxonomic value.
    [Show full text]
  • Illex Coindetii to the Genus Illex (Cephalopoda: Ommastrephidae)
    13 Chapter 2 Systematic and distributional relationships of Illex coindetii to the genus Illex (Cephalopoda: Ommastrephidae) Clyde F.E. Roper1 and Katharina M. Mangold2 1 Department of Invertebrate Zoology -Mollusca, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, USA 2 Observatoire Oceanologique de Banyuls, Laboratoire Arago Universite de Pierre et Marie Curie (Paris VI). C.N.R.S. Institut National des Sciences de l'Université, Banyuls-sur-Mer 66650, France Abstract: The systematic status of Illex coindetii is analysed based on a study of specimens from across the known geographic range of the species. On the basis of several morphological characters, some newly recognized, particularly on the hectocotylized arm, I. coindetii is shown to be a single, variable, widely distributed species, morphotypes of which occur throughout the Mediterranean Sea, the eastern Atlantic from Great Britain to Namibia and the western Atlantic from the southeastern Caribbean Sea, the Gulf of Mexico and the Straits of Florida. I. coindetii is distinct from the other species of Illex that occur in the western Atlantic. Species characters are compared and a diagnostic key to the four species of Illex is presented. 1 Introduction Illex coindetii (Vérany, 1839) was described originally from the Mediterranean waters off Nice, France. It has been recorded subsequently from the entire Mediterranean Sea, the eastern Atlantic from the Bristol Channel, British Isles, southward to Namibia, and the western Atlantic from the Caribbean Sea, Gulf of Mexico and Straits of Florida (Lu 1973, Roper et al. 1984, Nesis 1987). The exceptionally widespread distribution throughout the eastern Atlantic and the Mediterranean, as well as its disjunct occurrence on opposite sides of the Atlantic, is an unusual distribution for a neritic cephalopod.
    [Show full text]