Descriptions of Single-Winner Voting Systems
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Approval Voting Under Dichotomous Preferences: a Catalogue of Characterizations
Draft – June 25, 2021 Approval Voting under Dichotomous Preferences: A Catalogue of Characterizations Florian Brandl Dominik Peters University of Bonn Harvard University [email protected] [email protected] Approval voting allows every voter to cast a ballot of approved alternatives and chooses the alternatives with the largest number of approvals. Due to its simplicity and superior theoretical properties it is a serious contender for use in real-world elections. We support this claim by giving eight characterizations of approval voting. All our results involve the reinforcement axiom, which requires choices to be consistent across different electorates. In addition, we consider strategyproofness, consistency with majority opinions, consistency under cloning alternatives, and invariance under removing inferior alternatives. We prove our results by reducing them to a single base theorem, for which we give a simple and intuitive proof. 1 Introduction Around the world, when electing a leader or a representative, plurality is by far the most common voting system: each voter casts a vote for a single candidate, and the candidate with the most votes is elected. In pioneering work, Brams and Fishburn (1983) proposed an alternative system: approval voting. Here, each voter may cast votes for an arbitrary number of candidates, and can thus choose whether to approve or disapprove of each candidate. The election is won by the candidate who is approved by the highest number of voters. Approval voting allows voters to be more expressive of their preferences, and it can avoid problems such as vote splitting, which are endemic to plurality voting. Together with its elegance and simplicity, this has made approval voting a favorite among voting theorists (Laslier, 2011), and has led to extensive research literature (Laslier and Sanver, 2010). -
Instructor's Manual
The Mathematics of Voting and Elections: A Hands-On Approach Instructor’s Manual Jonathan K. Hodge Grand Valley State University January 6, 2011 Contents Preface ix 1 What’s So Good about Majority Rule? 1 Chapter Summary . 1 Learning Objectives . 2 Teaching Notes . 2 Reading Quiz Questions . 3 Questions for Class Discussion . 6 Discussion of Selected Questions . 7 Supplementary Questions . 10 2 Perot, Nader, and Other Inconveniences 13 Chapter Summary . 13 Learning Objectives . 14 Teaching Notes . 14 Reading Quiz Questions . 15 Questions for Class Discussion . 17 Discussion of Selected Questions . 18 Supplementary Questions . 21 3 Back into the Ring 23 Chapter Summary . 23 Learning Objectives . 24 Teaching Notes . 24 v vi CONTENTS Reading Quiz Questions . 25 Questions for Class Discussion . 27 Discussion of Selected Questions . 29 Supplementary Questions . 36 Appendix A: Why Sequential Pairwise Voting Is Monotone, and Instant Runoff Is Not . 37 4 Trouble in Democracy 39 Chapter Summary . 39 Typographical Error . 40 Learning Objectives . 40 Teaching Notes . 40 Reading Quiz Questions . 41 Questions for Class Discussion . 42 Discussion of Selected Questions . 43 Supplementary Questions . 49 5 Explaining the Impossible 51 Chapter Summary . 51 Error in Question 5.26 . 52 Learning Objectives . 52 Teaching Notes . 53 Reading Quiz Questions . 54 Questions for Class Discussion . 54 Discussion of Selected Questions . 55 Supplementary Questions . 59 6 One Person, One Vote? 61 Chapter Summary . 61 Learning Objectives . 62 Teaching Notes . 62 Reading Quiz Questions . 63 Questions for Class Discussion . 65 Discussion of Selected Questions . 65 CONTENTS vii Supplementary Questions . 71 7 Calculating Corruption 73 Chapter Summary . 73 Learning Objectives . 73 Teaching Notes . -
Selecting the Runoff Pair
Selecting the runoff pair James Green-Armytage New Jersey State Treasury Trenton, NJ 08625 [email protected] T. Nicolaus Tideman Department of Economics, Virginia Polytechnic Institute and State University Blacksburg, VA 24061 [email protected] This version: May 9, 2019 Accepted for publication in Public Choice on May 27, 2019 Abstract: Although two-round voting procedures are common, the theoretical voting literature rarely discusses any such rules beyond the traditional plurality runoff rule. Therefore, using four criteria in conjunction with two data-generating processes, we define and evaluate nine “runoff pair selection rules” that comprise two rounds of voting, two candidates in the second round, and a single final winner. The four criteria are: social utility from the expected runoff winner (UEW), social utility from the expected runoff loser (UEL), representativeness of the runoff pair (Rep), and resistance to strategy (RS). We examine three rules from each of three categories: plurality rules, utilitarian rules and Condorcet rules. We find that the utilitarian rules provide relatively high UEW and UEL, but low Rep and RS. Conversely, the plurality rules provide high Rep and RS, but low UEW and UEL. Finally, the Condorcet rules provide high UEW, high RS, and a combination of UEL and Rep that depends which Condorcet rule is used. JEL Classification Codes: D71, D72 Keywords: Runoff election, two-round system, Condorcet, Hare, Borda, approval voting, single transferable vote, CPO-STV. We are grateful to those who commented on an earlier draft of this paper at the 2018 Public Choice Society conference. 2 1. Introduction Voting theory is concerned primarily with evaluating rules for choosing a single winner, based on a single round of voting. -
Rangevote.Pdf
Smith typeset 845 Sep 29, 2004 Range Voting Range voting Warren D. Smith∗ [email protected] December 2000 Abstract — 3 Compact set based, One-vote, Additive, The “range voting” system is as follows. In a c- Fair systems (COAF) 3 candidate election, you select a vector of c real num- 3.1 Non-COAF voting systems . 4 bers, each of absolute value ≤ 1, as your vote. E.g. you could vote (+1, −1, +.3, −.9, +1) in a 5-candidate 4 Honest Voters and Utility Voting 5 election. The vote-vectors are summed to get a c- ~x i xi vector and the winner is the such that is maxi- 5 Rational Voters and what they’ll generi- mum. cally do in COAF voting systems 5 Previously the area of voting systems lay under the dark cloud of “impossibility theorems” showing that no voting system can satisfy certain seemingly 6 A particular natural compact set P 6 reasonable sets of axioms. But I now prove theorems advancing the thesis 7 Rational voting in COAF systems 7 that range voting is uniquely best among all possi- ble “Compact-set based, One time, Additive, Fair” 8 Uniqueness of P 8 (COAF) voting systems in the limit of a large num- ber of voters. (“Best” here roughly means that each 9 Comparison with previous work 10 voter has both incentive and opportunity to provide 9.1 How range voting behaves with respect to more information about more candidates in his vote Nurmi’s list of voting system problems . 10 than in any other COAF system; there are quantities 9.2 Some other properties voting systems may uniquely maximized by range voting.) have .................... -
Chapter 3 Voting Systems
Chapter 3 Voting Systems 3.1 Introduction We rank everything. We rank movies, bands, songs, racing cars, politicians, professors, sports teams, the plays of the day. We want to know “who’s number one?” and who isn't. As a lo- cal sports writer put it, “Rankings don't mean anything. Coaches continually stress that fact. They're right, of course, but nobody listens. You know why, don't you? People love polls. They absolutely love ’em” (Woodling, December 24, 2004, p. 3C). Some rankings are just for fun, but people at the top sometimes stand to make a lot of money. A study of films released in the late 1970s and 1980s found that, if a film is one of the 5 finalists for the Best Picture Oscar at the Academy Awards, the publicity generated (on average) generates about $5.5 mil- lion in additional box office revenue. Winners make, on average, $14.7 million in additional revenue (Nelson et al., 2001). In today's inflated dollars, the figures would no doubt be higher. Actors and directors who are nominated (and who win) should expect to reap rewards as well, since the producers of new films are eager to hire Oscar-winners. This chapter is about the procedures that are used to decide who wins and who loses. De- veloping a ranking can be a tricky business. Political scientists have, for centuries, wrestled with the problem of collecting votes and moulding an overall ranking. To the surprise of un- 1 CHAPTER 3. VOTING SYSTEMS 2 dergraduate students in both mathematics and political science, mathematical concepts are at the forefront in the political analysis of voting procedures. -
Minimax Is the Best Electoral System After All
1 Minimax Is the Best Electoral System After All Richard B. Darlington Department of Psychology, Cornell University Abstract When each voter rates or ranks several candidates for a single office, a strong Condorcet winner (SCW) is one who beats all others in two-way races. Among 21 electoral systems examined, 18 will sometimes make candidate X the winner even if thousands of voters would need to change their votes to make X a SCW while another candidate Y could become a SCW with only one such change. Analysis supports the intuitive conclusion that these 18 systems are unacceptable. The well-known minimax system survives this test. It fails 10 others, but there are good reasons to ignore all 10. Minimax-T adds a new tie-breaker. It surpasses competing systems on a combination of simplicity, transparency, voter privacy, input flexibility, resistance to strategic voting, and rarity of ties. It allows write-ins, machine counting except for write-ins, voters who don’t rate or rank every candidate, and tied ratings or ranks. Eleven computer simulation studies used 6 different definitions (one at a time) of the “best” candidate, and found that minimax-T always soundly beat all other tested systems at picking that candidate. A new maximum-likelihood electoral system named CMO is the theoretically optimum system under reasonable conditions, but is too complex for use in real-world elections. In computer simulations, minimax and minimax-T nearly always pick the same winners as CMO. Comments invited [email protected] Copyright Richard B. Darlington May be distributed free for non-commercial purposes 2 1. -
POLYTECHNICAL UNIVERSITY of MADRID Identification of Voting
POLYTECHNICAL UNIVERSITY OF MADRID Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. FINAL MASTERS THESIS Pitshu Mulomba Mukadi Bachelor’s degree in Chemistry Democratic Republic of Congo Madrid, 2013 RURAL DEVELOPMENT & SUSTAINABLE MANAGEMENT PROJECT PLANNING UPM MASTERS DEGREE 1 POLYTECHNICAL UNIVERSIY OF MADRID Rural Development and Sustainable Management Project Planning Masters Degree Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. FINAL MASTERS THESIS Pitshu Mulomba Mukadi Bachelor’s degree in Chemistry Democratic Republic of Congo Madrid, 2013 2 3 Masters Degree in Rural Development and Sustainable Management Project Planning Higher Technical School of Agronomy Engineers POLYTECHICAL UNIVERSITY OF MADRID Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. Pitshu Mulomba Mukadi Bachelor of Sciences in Chemistry [email protected] Director: Ph.D Susan Martín [email protected] Madrid, 2013 4 Identification of voting systems for the identification of preferences in public participation. Case Study: application of the Borda Count system for collective decision making at the Salonga National Park in the Democratic Republic of Congo. Abstract: The aim of this paper is to review the literature on voting systems based on Condorcet and Borda. -
Stat 155 Lecture 23 Notes
Stat 155 Lecture 23 Notes Daniel Raban April 26, 2018 1 Impossibility Theorems and Properties of Voting Systems 1.1 The Gibbard-Satterthwaite theorem Last time we introduced Arrow's1 Impossibility theorem. Theorem 1.1 (Arrow's Impossibility theorem). For jΓj ≥ 3, any ranking rule R that satisfies both IIA and unanimity is a dictatorship. Here is another impossibility theorem. Definition 1.1. A voting rule f is a function that takes the voters' preference profile π to the winner in Γ. Definition 1.2. A voting rule f is onto the set Γ of candidates if, for all candidates A 2 Γ, there is a preference profile π such that f(π) = A. If f is not onto Γ, some candidate is excluded from winning. Theorem 1.2 (Gibbard-Satterthwaite). For jΓj ≥ 3, any voting rule f that is onto Γ and is not strategically vulnerable is a dictatorship. Proof. The proof is by contradiction; we use f to construct a ranking rule that violates Arrow's theorem. Suppose f is onto Γ, not strategically vulnerable, and not a dictatorship. Define . = R(π) via ( A . B f(πfA;Bg) = A; B . A f(πfA;Bg) = B; where πS maintains the order of candidates in S but moves them above all other candidates in all voters' preferences. If f is onto Γ and not strategically vulnerable, then for all S ⊆ Γ, f(πS) 2 S, so . is complete; otherwise, in the path from a π0 2 f −1(S) to πS, some voter switch would 1Kenneth Arrow was a professor of Operations Research and Economics at Stanford. -
Explaining All Three-Alternative Voting Outcomes*
Journal of Economic Theory 87, 313355 (1999) Article ID jeth.1999.2541, available online at http:ÂÂwww.idealibrary.com on Explaining All Three-Alternative Voting Outcomes* Donald G. Saari Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730 dsaariÄnwu.edu Received January 12, 1998; revised April 13, 1999 A theory is developed to explain all possible three-alternative (single-profile) pairwise and positional voting outcomes. This includes all preference aggregation paradoxes, cycles, conflict between the Borda and Condorcet winners, differences among positional outcomes (e.g., the plurality and antiplurality methods), and dif- ferences among procedures using these outcomes (e.g., runoffs, Kemeny's rule, and Copeland's method). It is shown how to identify, interpret, and construct all profiles supporting each paradox. Among new conclusions, it is shown why a standard for the field, the Condorcet winner, is seriously flawed. Journal of Economic Literature Classification Numbers: D72, D71. 1999 Academic Press 1. INTRODUCTION Over the last two centuries considerable attention has focussed on the properties of positional voting procedures. These commonly used approaches assign points to alternatives according to how each voter posi- tions them. The standard plurality method, for instance, assigns one point to a voter's top-ranked candidate and zero to all others, while the Borda count (BC) assigns n&1, n&2, ..., n&n=0 points, respectively, to a voter's first, second, ..., nth ranked candidate. The significance of these pro- cedures derives from their wide usage, but their appeal comes from their mysterious paradoxes (i.e., counterintuitive conclusions) demonstrating highly complex outcomes. By introducing doubt about election outcomes, these paradoxes raise the legitimate concern that, inadvertently, we can choose badly even in sincere elections. -
Arxiv:1811.06739V3 [Cs.GT] 3 Jun 2019 St
MEASURING MAJORITY POWER AND VETO POWER OF VOTING RULES ALEKSEI Y. KONDRATEV AND ALEXANDER S. NESTEROV Abstract. We study voting rules with respect to how they allow or limit a majority from dominating minorities: whether a voting rule makes a majority powerful, and whether minorities can veto the candidates they do not prefer. For a given voting rule, the minimal share of voters that guarantees a victory to one of their most preferred candidates is the measure of majority power, and the minimal share of voters that allows them to veto each of their least preferred candidates is the measure of veto power. We find tight bounds on these minimal shares for voting rules that are popular in the literature and in real elections. We order these rules according to majority power and veto power. The instant-runoff voting has both the highest majority power and the highest veto power and the plurality rule has the lowest. In general, the higher the majority power of a voting rule is, the higher its veto power. The three exceptions are: voting with proportional veto power, Black’s rule, and Borda rule, which have a relatively low level of majority power and a high level of veto power and thus provide minority protection. Our results can shed light on how voting rules provide different incentives for voter participation and candidate nomination. Keywords: majority tyranny, voting system, plurality voting, two-round system, Borda count, voting paradox, minority protection, electoral participation, voting procedure, voting method, voting rule, preferential voting, electoral system JEL Classification D71, D72 Date: 03 June 2019. -
This Is Chapter 25 of a Forthcoming Book Edited by K. Arrow, A. Sen, and K
This is Chapter 25 of a forthcoming book edited by K. Arrow, A. Sen, and K. Suzumura. It is intended only for participants of my 2007 MAA short course on the “mathematics of voting” in New Orleans. Chapter 25 GEOMETRY OF VOTING1 Donald G. Saari Director, Institute for Mathematical Behavioral Sciences Departments of Mathematics and Economics University of California, Irvine Irvine, California 92698 1. Introduction 2. Simple Geometric Representations 2.1 A geometric profile representation 2.2 Elementary geometry; surprising results 2.3 The source of pairwise voting problems 2.4 Finding other pairwise results 3. Geometry of Axioms 3.1 Arrow’s Theorem 3.2 Cyclic voters in Arrow’s framework? 3.3 Monotonicity, strategic behavior, etc. 4. Plotting all election outcomes 4.1 Finding all positional and AV outcomes 4.2 The converse; finding election relationships 5. Finding symmetries – and profile decompositions 6. Summary Abstract. I show how to use simple geometry to analyze pairwise and posi- tional voting rules as well as those many other decision procedures, such as runoffs and Approval Voting, that rely on these methods. The value of us- ing geometry is introduced with three approaches, which depict the profiles along with the election outcomes, that help us find new voting paradoxes, compute the likelihood of disagreement among various election outcomes, and explain problems such as the “paradox of voting.” This geometry even extends McGarvey’s theorem about possible pairwise election rankings to 1This research was supported by NSF grant DMI-0233798. My thanks to K. Arrow, N. Baigent, H. Nurmi, T. Ratliff, M. -
Comparative Survey of Multiwinner Election Methods
Smith typeset 18:38 18 Jun 2006 multiwinner survey Comparative survey of multiwinner election methods Warren D. Smith∗ [email protected] June 18, 2006 Abstract — After ≈ 100 years of relative sterility, recent to explain that. progress has both invented several new multiwinner vot- ing systems, and allowed us to begin to judge which of them is the best. We define and compare them here and 2 Statement of the problem come to the tentative conclusion that W.D.Smith’s uncon- ventional “asset voting” system is the best multiwinner There are V > 1 voters and C > 1 candidates. The voters election system known, and can be argued, for fundamen- cast some sort of “votes” that somehow provide information tal reasons, to be unmatchable by any conventional voting about their preferences among the candidates. Those votes system. are somehow processed by the election system, with the result being the selection of W “winning candidates,” 1 W < C. ≤ The question is what the votes and election system ought to 1 Multiwinner versus single-winner be. voting systems In my opinion, the situation with single-winner elections is 3 Properties for multiwinner elec- comparatively simple because there is a clear yardstick, called “Bayesian regret,” (which is a rigorously mathematically and tion systems statistically defined quantity) for deciding whether election As either an election system design tool, or as a method of system A is “better” than election system B. My computer discriminating better from worse election systems, one can try measured Bayesian regrets in a vast number of simulated elec- demanding the election system have certain properties.