Supplementary Tables Table S1. List of the 121 Lung Cancer Cell Lines

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Tables Table S1. List of the 121 Lung Cancer Cell Lines Supplementary Tables Table S1. List of the 121 lung cancer cell lines screened for MAX alterations. Information about the histopathology of each cell line, and the presence of alterations at MYC and BRG1 is also included. Grey boxes indicate that no information is available. Table S2. List of genes that are up-regulated or down-regulated upon MAX reconstitution. The values represent the n-fold change in the level of gene expression of each of the lung cancer cell lines infected with the wild type MAX relative to the controls (Ø). Table S3. List of genes that are up-regulated or down-regulated upon depletion of BRG1. The values represent the n-fold change in the level of gene expression of each of the lung cancer cell lines infected with the shBRG1 relative to the controls Ø. Table S4. List of the cell lines included in Figure 5. The information about alterations at the indicated genes was obtained from different sources, as indicated. For data extracted from databases we applied the following criteria to define a mutation: i) mutations at tumor suppressor genes (BRG1, SMARCB1, MAX, ARID1A, PRBM1, and MGA) should be homozygous and predictive of truncated proteins, ii) for amplification at the MYC family of oncogenes, only very high levels of gene amplification have been considered to be positive. Other genes, related to MYC/MAX or to the SWI/SNF complex, have also been searched for alterations (i.e., ARID1B, ARID2, MXI, MXDs) but either no alterations were reported in the databases or the changes did not fulfill our selection criteria. CCLE, Cancer Cell Line Encyclopedia (Broad-Novartis Cancer Cell Line Encyclopedia; website, http://www.broadinstitute.org/ccle/). COSMIC, Catalogue of Somatic Mutations in Cancer (Trust Sanger Institute’s Cancer Cell Line Project; website, http://cancer.sanger.ac.uk/). Table S1: List of the 121 lung cancer cell lines screened for MAX alterations. Information about the histopathology of each cell line, and the presence of alterations at MYC and BRG1 is also included. Grey boxes indicate that no information is available. Cell line Histopathology MAX BRG1 MYC MYCL1 MYCN H1417 SCLC Mutant LU134 SCLC Mutant LU165 SCLC Mutant CORL95 SCLC Mutant A427 AC Mutant A549 AC Mutant DMS114 SCLC Mutant H1299 LCC/NSCLC Mutant H1573 AC Mutant H1703 AC Mutant H1819 AC Mutant H2126 AC Mutant H23 AC Mutant HCC366 AC Mutant H522 AC Mutant H661 LCC Mutant H841 SCLC Mutant HCC15 SCC Mutant Ma29 AC Mutant RERFLCMS AC Mutant DMS273 SCLC Ampl. Ampl. H1395 AC Ampl. H187 SCLC Ampl. H1975 AC Ampl. H2122 AC Ampl. H2170 SCC Ampl. H2171 SCLC Ampl. H446 SCLC Ampl. H460 AC Ampl. H524 SCLC Ampl. H82 SCLC Ampl. HCC44 AC Ampl. Lu135 SCLC Ampl. LU65 LCC/NSCLC Ampl. N417 SCLC Ampl. H1963 SCLC Ampl. H2029 SCLC Ampl. H2107 SCLC Ampl. H2141 SCLC Ampl. H510 SCLC Ampl. H889 SCLC Ampl. HCC33 SCLC Ampl. H1770 Neuroendocrine Ampl. H526 SCLC Ampl. H69 SCLC Ampl. H720 CARCINOID Ampl. ABC1 AC CALU1 SCC CALU3 AC DMS153 SCLC DMS53 SCLC EBC1 SCC H1048 AC H1155 LCC/NSCLC H1184 SCLC H128 SCLC H1339 SCLC H1385 NSCLC H1436 SCLC H1437 AC H1450 SCLC H1607 SCLC H1618 SCLC H1623 AC H1648 AC H1650 AC H1672 SCLC H1930 SCLC AC H1993 H2009 AC H2081 SCLC H2087 AC H209 SCLC H2195 SCLC H2196 SCLC H2227 SCLC H2291 AC H2347 AC H249 SCLC H322 AC H345 SCLC H441 AC H520 SCC H596 AC-SCC H711 SCLC H719 SCLC H727 LCC/NSCLC H774 SCLC H820 AC HCC193 AC HCC515 AC HCC78 AC HCC827 AC HCC95 SCC II-18 AC LC1SQSF SCC LK2 SCC Lu139 SCLC Lu24 SCLC LU99 LCC/NSCLC Ma1 AC Ma10 AC Ma12 AC Ma17 AC Ma2 LCC Ma24 AC Ma25 LCC Ma26 AC Ms18 SCLC PC10 SCC PC13 LCC PC14 AC PC3 AC PC7 AC PC9 AC RERF-LC-OK AC SBC5 SCLC SHP77 SCLC SKMES1 SCC MAX-signature Supplementary Table S2 OFFICIAL_GENGene Name Lu134_H1417_Lu165_MAX TNFSF12 TNFSF12-TNFSF13 readthrough transcript; tumor necrosis factor (ligand) superfamily, 1.123 1.424 5.376 KISS1R kinesin family member 20A 1.865 2.569 2.258 GDF15 growth differentiation factor 15 1.865 5.97 2.203 ADAD2 adenosine deaminase domain containing 2 1.156 1.477 2.058 MCTP2 multiple coagulation factor deficiency 2 1.282 1.354 2.056 NIM1 naked cuticle homolog 2 (Drosophila) 1.146 2.434 2.014 ADAMTS18 ADAM metallopeptidase with thrombospondin type 1 motif, 18 1.5 2.189 1.955 PRSS56 PRSS56 1.199 2.311 1.946 ENST000004404ENST00000440451 1.732 2.671 1.908 SSC5D hypothetical LOC284297 1.105 1.446 1.904 FAM162A family with sequence similarity 162, member A 1.63 2.047 1.856 APLN apelin 1.409 2.404 1.82 IER3 heparan sulfate proteoglycan 2 1.311 1.746 1.761 PRR7 proline rich 7 (synaptic) 1.081 1.123 1.75 HK2 histone cluster 1, H3j; histone cluster 1, H3i; histone cluster 1, H3h; histone cluster 1, H 3.783 7.459 1.746 SYCE3 synaptonemal complex central element protein 3 1.211 1.635 1.717 RCOR2 REST corepressor 2 1.119 1.685 1.716 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 2.105 2.326 1.714 C4orf47 chromosome 4 open reading frame 47 2.01 1.933 1.69 SV2B synaptic vesicle glycoprotein 2B; hypothetical protein LOC100128403 1.23 1.681 1.669 GMPR glutaminase 1.646 1.479 1.65 CXCR4 chemokine (C-X-C motif) receptor 4 1.357 2.051 1.646 SLC9B1 solute carrier family 9, subfamily B 1.095 1.232 1.644 C6orf57 chromosome 6 open reading frame 57 1.239 1.619 1.639 LOC728730 similar to hCG2031213 1.272 1.331 1.635 C7orf52 chromosome 7 open reading frame 52 1.36 2.152 1.633 NRTN neurotensin 1.133 1.715 1.626 VEGFA vascular endothelial growth factor A 7.84 4.103 1.61 KREMEN2 kallikrein-related peptidase 11 1.112 1.628 1.604 DDIT3 DNA-damage-inducible transcript 3 1.208 2.248 1.603 ADA adenosine deaminase 2.06 3.379 1.595 PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 1.503 2.912 1.583 F12 coagulation factor XII (Hageman factor) 1.235 1.426 1.583 LOC285141 hypothetical protein LOC283713 1.385 1.717 1.582 Page 1 MAX-signature P4HA1 prolyl 4-hydroxylase, alpha polypeptide I 1.989 2.651 1.581 STC2 stanniocalcin 2 1.938 1.506 1.58 COPZ2 coatomer protein complex, subunit zeta 2 1.148 2.314 1.578 MLKL MHC class I polypeptide-related sequence B 1.339 1.499 1.578 VWA5A von Willebrand factor A domain containing 5A 1.291 2.354 1.575 TMEM130 transmembrane protein 130 1.101 1.744 1.566 SNORD114-23 small nucleolar RNA, C/D box 114-14; small nucleolar RNA, C/D box 113-1; small nucle 1.134 1.376 1.564 WFDC2 WAP four-disulfide core domain 2 1.45 1.329 1.562 ABCG4 ATP-binding cassette, sub-family G (WHITE), member 4 1.116 1.714 1.561 MMP10 matrix metallopeptidase 1 (interstitial collagenase) 2.266 1.317 1.55 ADM adrenomedullin 1.893 2.329 1.537 FUT3 fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group) 1.171 3.059 1.534 GPR172B G protein-coupled receptor 171 1.126 1.566 1.525 LOC100289187 similar to Protein FAM27D1 1.376 1.743 1.524 GAL3ST1 galactose-3-O-sulfotransferase 1 1.07 1.537 1.519 TRIB3 tribbles homolog 3 (Drosophila) 2.903 4.329 1.511 BATF2 basic leucine zipper transcription factor, ATF-like 2 1.295 2.269 1.505 FBXO2 F-box protein 2 1.151 2.177 1.505 AHNAK AHNAK nucleoprotein 1.392 1.199 1.504 ESRP1 epithelial splicing regulatory protein 1 1.237 1.713 1.502 MMP1 MLX interacting protein-like 1.503 1.247 1.501 NGEF neuronal guanine nucleotide exchange factor 0.947 2.059 1.496 PARP14 poly (ADP-ribose) polymerase family, member 14 1.109 4.825 1.494 FHOD1 formin homology 2 domain containing 1 1.104 2.194 1.493 LOC155060 hypothetical protein LOC149351 1.236 1.431 1.489 SEC24D SEC24 family, member D (S. cerevisiae) 1.155 1.257 1.488 TMC4 transmembrane channel-like 4 1.456 1.923 1.486 SYNGR3 synaptogyrin 3 1.112 1.959 1.485 TXNIP thioredoxin interacting protein 1.51 1.839 1.485 NFATC4 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 4 1.383 2.132 1.483 RELB v-rel reticuloendotheliosis viral oncogene homolog B 1.249 1.412 1.48 PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 1.494 3.673 1.48 C1orf213 chromosome 1 open reading frame 213 1.115 1.477 1.475 PLA2G4D phospholipase A2, group IVD (cytosolic) 1.106 2.561 1.472 FGF11 fibroblast growth factor 11 1.275 1.546 1.472 SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid transporter 4) 5.221 4.071 1.468 Page 2 MAX-signature MYO15A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian) 1.599 2.224 1.467 APOE hypothetical LOC100129500; apolipoprotein E 1.549 5.763 1.466 MSMB mannose-P-dolichol utilization defect 1 1.95 1.26 1.461 AATK apoptosis-associated tyrosine kinase 2.453 2.297 1.461 SMPDL3A sphingomyelin phosphodiesterase, acid-like 3A 1.916 1.336 1.46 PDK1 pyruvate dehydrogenase kinase, isozyme 1 1.904 4.317 1.458 GRTP1 gastrin-releasing peptide 1.245 1.876 1.453 ATF3 activating transcription factor 3 1.389 1.43 1.448 ROPN1 ropporin, rhophilin associated protein 1 2.063 1.728 1.446 LDHA leucine carboxyl methyltransferase 2 2.049 1.97 1.446 MOXD1 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) 1.269 1.632 1.444 ZNF204P zinc finger protein 204 pseudogene 1.374 1.582 1.441 ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide 1.411 2.633 1.438 OBFC1 obscurin-like 1 1.12 1.401 1.436 SERPINA6 serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 6 1.194 1.802 1.436 RPRML reprimo-like 1.133 2.012 1.434 LOC100507401 LOC100507401 1.135 1.66 1.431 BIK BCL2-interacting killer (apoptosis-inducing) 1.866 1.478 1.431 FLJ37644 hypothetical gene supported by AK094963 1.17 1.365 1.428 EML2 echinoderm microtubule associated protein like 2 1.954 1.773 1.428 TMEM45B transmembrane protein 45B 2.067 1.403 1.425 PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 1.513 1.727 1.424 CLDN1
Recommended publications
  • Connexin 40.1 (GJD4) (NM 153368) Human Tagged ORF Clone Lentiviral Particle – RC222438L3V | Origene
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC222438L3V Connexin 40.1 (GJD4) (NM_153368) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Connexin 40.1 (GJD4) (NM_153368) Human Tagged ORF Clone Lentiviral Particle Symbol: GJD4 Synonyms: CX40.1 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_153368 ORF Size: 1110 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC222438). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_153368.1 RefSeq Size: 1580 bp RefSeq ORF: 1113 bp Locus ID: 219770 UniProt ID: Q96KN9 Protein Families: Transmembrane MW: 40 kDa Gene Summary: Connexins, such as GJD4, are involved in the formation of gap junctions, intercellular conduits that directly connect the cytoplasms of contacting cells. Each gap junction channel is formed by docking of 2 hemichannels, each of which contains 6 connexin subunits (Sohl et al., 2003 [PubMed 12881038]).[supplied by OMIM, Mar 2008] This product is to be used for laboratory only.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Universidad Autónoma De Madrid Regulatory Mechanisms of Germinal Centers
    Universidad Autónoma de Madrid Departamento de Biología Molecular Regulatory mechanisms of Germinal Centers PhD Thesis Arantxa Pérez García Madrid, 2016 Regulatory mechanisms of Germinal Centers Memoria presentada por la licenciada en Biología Arantxa Pérez García para optar al título de doctor por la Universidad Autónoma de Madrid Directora de tesis: Almudena R. Ramiro Este trabajo ha sido realizado en el laboratorio de Biología de linfocitos B, en el Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, 2016 Memoria presentada por Arantxa Pérez García, licenciada en Biología, para optar al grado de doctor por la Universidad Autónoma de Madrid. Esta tesis ha sido realizada en el laboratorio de Biología de Linfocitos B del Centro Nacional de Investigaciones Cardiovasculares (CNIC), bajo la dirección de la Doctora Almudena R. Ramiro, y para que así conste y a los efectos oportunos, firma el siguiente certificado; En Madrid, a 21 de Abril de 2016 Almudena R. Ramiro RESUMEN Tras el reconocimiento del antígeno, los linfocitos B pueden iniciar la reacción de centro germinal (GC), en la cual diversifican sus genes de inmunoglobulinas, mediante las reacciones de hipermutación somática (SHM) y cambio de isotipo (CSR), dando lugar a células plasmáticas o B memoria. La transición a través de los diferentes estadios de esta reacción implica la expresión coordinada de redes de genes que permiten una correcta diversificación de los linfocitos B. A nivel molecular, las reacciones de SHM y CSR se desencadenan por la desaminación de citosinas en los genes de las inmunoglobulinas, mediada por AID. La actividad de AID en linfocitos B no está restringida a los genes de las inmunoglobulinas, pudiendo introducir mutaciones en otros genes y mediar translocaciones cromosómicas con potencial linfomagénico.
    [Show full text]
  • Podocyte Specific Knockdown of Klf15 in Podocin-Cre Klf15flox/Flox Mice Was Confirmed
    SUPPLEMENTARY FIGURE LEGENDS Supplementary Figure 1: Podocyte specific knockdown of Klf15 in Podocin-Cre Klf15flox/flox mice was confirmed. (A) Primary glomerular epithelial cells (PGECs) were isolated from 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice and cultured at 37°C for 1 week. Real-time PCR was performed for Nephrin, Podocin, Synaptopodin, and Wt1 mRNA expression (n=6, ***p<0.001, Mann-Whitney test). (B) Real- time PCR was performed for Klf15 mRNA expression (n=6, *p<0.05, Mann-Whitney test). (C) Protein was also extracted and western blot analysis for Klf15 was performed. The representative blot of three independent experiments is shown in the top panel. The bottom panel shows the quantification of Klf15 by densitometry (n=3, *p<0.05, Mann-Whitney test). (D) Immunofluorescence staining for Klf15 and Wt1 was performed in 12-week old Podocin-Cre Klf15flox/flox and Podocin-Cre Klf15+/+ mice. Representative images from four mice in each group are shown in the left panel (X 20). Arrows show colocalization of Klf15 and Wt1. Arrowheads show a lack of colocalization. Asterisk demonstrates nonspecific Wt1 staining. “R” represents autofluorescence from RBCs. In the right panel, a total of 30 glomeruli were selected in each mouse and quantification of Klf15 staining in the podocytes was determined by the ratio of Klf15+ and Wt1+ cells to Wt1+ cells (n=6 mice, **p<0.01, unpaired t test). Supplementary Figure 2: LPS treated Podocin-Cre Klf15flox/flox mice exhibit a lack of recovery in proteinaceous casts and tubular dilatation after DEX administration.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Identification of KIF4A and Its Effect on the Progression of Lung
    Bioscience Reports (2021) 41 BSR20203973 https://doi.org/10.1042/BSR20203973 Research Article Identification of KIF4A and its effect on the progression of lung adenocarcinoma based on the bioinformatics analysis Yexun Song1, Wenfang Tang2 and Hui Li2 Downloaded from http://portlandpress.com/bioscirep/article-pdf/41/1/BSR20203973/902647/bsr-2020-3973.pdf by guest on 03 October 2021 1Department of Otolaryngology-Head Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; 2Department of Respiratory Medicine, The First Hospital of Changsha, Changsha 410000, Hunan Province, China Correspondence: HuiLi([email protected]) Background: Lung adenocarcinoma (LUAD) is the most frequent histological type of lung cancer, and its incidence has displayed an upward trend in recent years. Nevertheless, little is known regarding effective biomarkers for LUAD. Methods: The robust rank aggregation method was used to mine differentially expressed genes (DEGs) from the gene expression omnibus (GEO) datasets. The Search Tool for the Retrieval of Interacting Genes (STRING) database was used to extract hub genes from the protein–protein interaction (PPI) network. The expression of the hub genes was validated us- ing expression profiles from TCGA and Oncomine databases and was verified by real-time quantitative PCR (qRT-PCR). The module and survival analyses of the hub genes were de- termined using Cytoscape and Kaplan–Meier curves. The function of KIF4A as a hub gene was investigated in LUAD cell lines. Results: The PPI analysis identified seven DEGs including BIRC5, DLGAP5, CENPF, KIF4A, TOP2A, AURKA, and CCNA2, which were significantly upregulated in Oncomine and TCGA LUAD datasets, and were verified by qRT-PCR in our clinical samples.
    [Show full text]
  • ARTICLE Doi:10.1038/Nature10523
    ARTICLE doi:10.1038/nature10523 Spatio-temporal transcriptome of the human brain Hyo Jung Kang1*, Yuka Imamura Kawasawa1*, Feng Cheng1*, Ying Zhu1*, Xuming Xu1*, Mingfeng Li1*, Andre´ M. M. Sousa1,2, Mihovil Pletikos1,3, Kyle A. Meyer1, Goran Sedmak1,3, Tobias Guennel4, Yurae Shin1, Matthew B. Johnson1,Zˇeljka Krsnik1, Simone Mayer1,5, Sofia Fertuzinhos1, Sheila Umlauf6, Steven N. Lisgo7, Alexander Vortmeyer8, Daniel R. Weinberger9, Shrikant Mane6, Thomas M. Hyde9,10, Anita Huttner8, Mark Reimers4, Joel E. Kleinman9 & Nenad Sˇestan1 Brain development and function depend on the precise regulation of gene expression. However, our understanding of the complexity and dynamics of the transcriptome of the human brain is incomplete. Here we report the generation and analysis of exon-level transcriptome and associated genotyping data, representing males and females of different ethnicities, from multiple brain regions and neocortical areas of developing and adult post-mortem human brains. We found that 86 per cent of the genes analysed were expressed, and that 90 per cent of these were differentially regulated at the whole-transcript or exon level across brain regions and/or time. The majority of these spatio-temporal differences were detected before birth, with subsequent increases in the similarity among regional transcriptomes. The transcriptome is organized into distinct co-expression networks, and shows sex-biased gene expression and exon usage. We also profiled trajectories of genes associated with neurobiological categories and diseases, and identified associations between single nucleotide polymorphisms and gene expression. This study provides a comprehensive data set on the human brain transcriptome and insights into the transcriptional foundations of human neurodevelopment.
    [Show full text]
  • Figure S1. Representative Report Generated by the Ion Torrent System Server for Each of the KCC71 Panel Analysis and Pcafusion Analysis
    Figure S1. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. A Figure S1. Continued. Representative report generated by the Ion Torrent system server for each of the KCC71 panel analysis and PCaFusion analysis. (A) Details of the run summary report followed by the alignment summary report for the KCC71 panel analysis sequencing. (B) Details of the run summary report for the PCaFusion panel analysis. B Figure S2. Comparative analysis of the variant frequency found by the KCC71 panel and calculated from publicly available cBioPortal datasets. For each of the 71 genes in the KCC71 panel, the frequency of variants was calculated as the variant number found in the examined cases. Datasets marked with different colors and sample numbers of prostate cancer are presented in the upper right. *Significantly high in the present study. Figure S3. Seven subnetworks extracted from each of seven public prostate cancer gene networks in TCNG (Table SVI). Blue dots represent genes that include initial seed genes (parent nodes), and parent‑child and child‑grandchild genes in the network. Graphical representation of node‑to‑node associations and subnetwork structures that differed among and were unique to each of the seven subnetworks. TCNG, The Cancer Network Galaxy. Figure S4. REVIGO tree map showing the predicted biological processes of prostate cancer in the Japanese. Each rectangle represents a biological function in terms of a Gene Ontology (GO) term, with the size adjusted to represent the P‑value of the GO term in the underlying GO term database.
    [Show full text]
  • Supplemental Material Annexin A2-S100A10 Represents the Regulatory Component of Maxi-Cl Channel Dependent on Protein Tyrosine De
    Supplemental Material Annexin A2-S100A10 Represents the Regulatory Component of Maxi-Cl Channel Dependent on Protein Tyrosine Dephosphorylation and Intracellular Ca2+ Md. Rafiqul Islama Toshiaki Okadaa Petr G. Merzlyaka,b Abduqodir H. Toychieva,c Yuhko Ando-Akatsukad Ravshan Z. Sabirova,b Yasunobu Okadaa,e aDivision of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki, Japan, bInstitute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan, cDepartment of Biological Sciences, State University of New York College of Optometry, New York, NY, USA, dDepartment of Cell Physiology, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan, eDepartment of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan Supplementary Material Supplementary Fig. 1. Maxi-Cl currents in C127 cells were unaffected by siRNA- mediated silencing of three annexin family member genes, Anxa1, Anxa3 and Anxa11. Effects of knockdown mediated by Anxa1-specific siRNA (A), Anxa3-specific siRNA (B) and Anxa11-specific siRNA (C). Top panels: The effects on expression of ANXA mRNAs in C127 cells treated with non-targeting siRNA (cnt) or Anxa1/3/11-specific siRNA (si) detected by RT-PCR using Gapdh as a control. M: molecular size markers (100-bp ladder). These data represent triplicate experiments. Upper-middle panels: Representative time courses of Maxi-Cl current activation recorded at +25 mV after patch excision from C127 cells transfected with Anxa1/3/11-specific siRNA. Lower-middle panels: Voltage- dependent inactivation pattern of Maxi-Cl currents elicited by applying single voltage step pulses from 0 to 25 and 50 mV. Bottom panels: Summary of the effects of non-targeting siRNA (Control) and Anxa1/3/11-specific siRNA on the mean Maxi-Cl currents recorded at +25 mV.
    [Show full text]
  • Deciphering the Gene Expression Profile of Peroxisome Proliferator
    Chen et al. J Transl Med (2016) 14:157 DOI 10.1186/s12967-016-0871-3 Journal of Translational Medicine RESEARCH Open Access Deciphering the gene expression profile of peroxisome proliferator‑activated receptor signaling pathway in the left atria of patients with mitral regurgitation Mien‑Cheng Chen1*, Jen‑Ping Chang2, Yu‑Sheng Lin3, Kuo‑Li Pan3, Wan‑Chun Ho1, Wen‑Hao Liu1, Tzu‑Hao Chang4, Yao‑Kuang Huang5, Chih‑Yuan Fang1 and Chien‑Jen Chen1 Abstract Background: Differentially expressed genes in the left atria of mitral regurgitation (MR) pigs have been linked to peroxisome proliferator-activated receptor (PPAR) signaling pathway in the KEGG pathway. However, specific genes of the PPAR signaling pathway in the left atria of MR patients have never been explored. Methods: This study enrolled 15 MR patients with heart failure, 7 patients with aortic valve disease and heart failure, and 6 normal controls. We used PCR assay (84 genes) for PPAR pathway and quantitative RT-PCR to study specific genes of the PPAR pathway in the left atria. Results: Gene expression profiling analysis through PCR assay identified 23 genes to be differentially expressed in the left atria of MR patients compared to normal controls. The expressions of APOA1, ACADM, FABP3, ETFDH, ECH1, CPT1B, CPT2, SLC27A6, ACAA2, SMARCD3, SORBS1, EHHADH, SLC27A1, PPARGC1B, PPARA and CPT1A were significantly up-regulated, whereas the expression of PLTP was significantly down-regulated in the MR patients compared to normal controls. The expressions of HMGCS2, ACADM, FABP3, MLYCD, ECH1, ACAA2, EHHADH, CPT1A and PLTP were significantly up-regulated in the MR patients compared to patients with aortic valve disease.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]