Disease Models and Infectious Phenotypes of Mycobacterium Avium Subspecies Paratuberculosis

Total Page:16

File Type:pdf, Size:1020Kb

Disease Models and Infectious Phenotypes of Mycobacterium Avium Subspecies Paratuberculosis AN ABSTRACT OF THE DISSERTATION OF Jamie L. Everman for the degree of Doctor of Philosophy in Microbiology presented on December 9, 2014. Title: Disease Models and Infectious Phenotypes of Mycobacterium avium subspecies paratuberculosis Abstract approved: ___________________________________________________ Luiz E. Bermudez Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic inflammatory bowel disease that affects ruminant populations worldwide. The characteristic stages of the disease make diagnosis difficult, resulting in silent transmission among animals in a herd for years before proper detection of the infection. The extensive prevalence of Johne’s disease has driven a continuous effort to more readily understand the pathogenesis of the bacterium and to develop more effective preventative measures to curb the spread of the disease within herds. In this dissertation, we aim to create a more effective model for studying MAP infection within the intestinal mucosa, to utilize the milk-induced virulence phenotype to study how opsonization affects cell infection, and to study the metabolic interaction between MAP and the host phagocyte during infection. We describe a novel in vitro cell culture passage model which indicates that MAP changes during passage between bovine epithelial cells and macrophages, developing a more pro-inflammatory phenotype. We show that the inflammatory MAP phenotype not only increases gene expression of lipid metabolism- and modification-related genes, but that it is also composed of a set of lipids that are unique to the phenotype. Ultimately, we were able to identify these inflammatory- related transcripts in naturally MAP-infected bovine tissues, thus validating our model and indicating that the changing MAP phenotype may be a contributing factor in driving the development of inflammation within MAP infected animals. By using a different infectious phenotype that develops after MAP exposure to milk, a reservoir and transmission source of the bacterium, we demonstrate that opsonization of MAP results in more efficient translocation across an epithelial monolayer. Upon infection, we determine that macrophages more readily kill opsonized MAP in a rapid and specific manner. Furthermore, we begin to characterize one of the highest upregulated genes in this milk-induced phenotype, MAP1203, and its interaction with the intestinal epithelium. We establish that the putative cell wall associated protein is involved in both binding to and invasion of bovine MDBK epithelial cells when over-expressed in MAP during infection. Together, these data indicate the importance of the infectious phenotype developed after milk exposure and its role in the pathogenesis and transmission of Johne’s disease. Finally, we utilize Acanthamoeba castellanii (amoeba) as a phagocytic host and describe the influence that MAP infection has on the metabolic activity of the cell. We detail how MAP stimulates the metabolism of the amoeba and how that stimulation directly mirrors the pattern of survival and the intracellular burden of MAP over the course of infection. We identify bacterial mutants that result in excessive or deficient stimulation of the metabolic activity within host cell and by utilizing phenotype arrays, we illustrate that amoeba change the use of specific carbon sources based on the MAP strain used for infection. These data aid in beginning to understand the bacterial mechanisms that drive the metabolic interactions between MAP and the phagocytic host. Our results describe novel model systems for studying Johne’s disease and further our understanding about the host-pathogen interactions that occur within the intestinal mucosa of infected cattle. We show that the shifting phenotypes of MAP may be important contributing factors for detection, diagnosis, and in driving the progression of Johne’s disease. These findings offer new methods and the identification of new bacterial phenotype targets that could be used as the basis of developing more efficacious strategies in detecting and preventing Johne’s disease. ©Copyright by Jamie L. Everman December 9, 2014 All Rights Reserved Disease Models and Infectious Phenotypes of Mycobacterium avium subspecies paratuberculosis by Jamie L. Everman A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented December 9, 2014 Commencement June 2015 Doctor of Philosophy dissertation of Jamie L. Everman presented on December 9, 2014 APPROVED: Major Professor, representing Microbiology Chair of the Department of Microbiology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Jamie L. Everman, Author ACKNOWLEDGEMENTS I would first and foremost like to thank Dr. Luiz Bermudez for allowing me to conduct my doctoral research in his lab, for continuous discussion and exchange of ideas, and for the constant support he has offered throughout my time in the lab. His lessons, mentoring, contributions, and guidance have been invaluable in shaping me into becoming the research scientist I am today. I would also like to thank my committee members Dr. Dan Rockey, Dr. Martin Schuster, Dr. Manoj Pastey, Dr. Lia Danelishvili and Dr. Ricardo Letelier for their support and input to my projects. I would like to extend my sincerest thanks to all of the Bermudez lab members past and present. To the graduate students, technicians, and research staff, Lia Danelishvili, Lmar Babrak, Sasha Rose, Brendan Jeffrey, Rashmi Gupta, Jessica Chinison, Michael McNamara, and Laura Hauck, your suggestions, brainstorming, help, and laughs made working in the lab a wonderful experience. To all of the undergraduates and professional veterinary students I have worked with, Erin Flannery, Navid Ziaie, Eugenio Mannucci, Sadie Rice, and Lucy Garcia Flores, your contributions to all our projects have been immense and are greatly appreciated. To all of the students, faculty, and administrative staff in Dryden hall, thanks you for being my sounding board and for all the friendship throughout the years. A big thanks to the Department of Microbiology, especially Mary Fulton, and the Department of Biomedical Sciences, specifically Beth Chamblin, Denny Weber, and Jayne Theurer, for providing assistance with all the paperwork, travel, and official business, and for listening to and helping me with all my questions and concerns. Many thanks go to the Department of Veterinary Medicine for technical advice and guidance on bovine sample preparation, blood collection, milk collection, and general veterinary techniques. The following personnel were wonderfully forgiving with all my questions and early morning interruptions, and offered a friendly face and suggestions during various stages of my projects: Robert Murray (LARC), Dr. Helen Diggs and Dr. Jennifer Grossman (Laboratory Research Veterinarians), Teresa Sawyer (TEM), Darlene Joyner (LARC), Hayden Bush and Jeff Behm (OSU Dairy Center), and the Histology laboratory. To all the members of every softball, soccer, dodgeball, ultimate frisbee team, and gym class I have been a part of while in Corvallis, for all the fun memories and for the maintenance of my sanity, I give my sincerest thanks. Last but certainly not least, I would like to extend my love and immense gratitude towards my family. Mom and Dad, thanks for lending words of confidence during the tough days and for pretending to understand all my research when I got excited talking about it when it worked. Finally, to my wonderful boyfriend Brian, thank you so much for standing by me for all these years all the way from Colorado, it has been a long road but your encouragement and support has been invaluable. CONTRIBUTION OF AUTHORS Chapter 2: Jamie L. Everman conducted the experiments, contributed to experimental design, preparation of the manuscript, and data analysis. Dr. Luiz E. Bermudez contributed to the experimental design, data analysis, manuscript preparation, and funding of the project. Chapter 3: Jamie L. Everman conducted the experiments, contributed to experimental design, preparation of the manuscript, and data analysis. Dr. Torsten M. Eckstein performed and analyzed lipidomics and HPLC-ES/MS data. Dr. John Bannantine designed and produced the MAP K10 microarray slides and contributed to array protocols and experimental design. Jonathan Roussey and Dr. Paul Coussens contributed bovine tissue samples from their ongoing study at Michigan State University. Dr. Luiz E. Bermudez was involved in the experimental design, data analysis, manuscript composition, and funding of the project. Chapter 4: Jamie L. Everman conducted the experiments, contributed to experimental design, preparation of the manuscript, and data analysis. Erin F. Flannery conducted the screening of the MAP libraries and optimization of metabolic activity assays. Eugenio U. Mannucci contributed to the experimental design and optimization of phenotype arrays with amoeba. Dr. Luiz E. Bermudez contributed to the experimental design, data analysis, manuscript preparation, and funding of the project. Chapter 5: Jamie L. Everman conducted the experiments, contributed to experimental design, preparation of the manuscript, and data analysis. Lucero Garcia Flores conducted induction and purification assays of MAP1203 protein. Dr. Luiz E. Bermudez contributed
Recommended publications
  • The Immune-Adherence Activity of Normal Sera with Respect to Certain Particulate Antigens
    Vol. XL, No. 1 (February, 1959), wasised on 13.2.59. THE BRITISH JONAL OF EXPERIMENTAL PATHOLOGY VOL. XL APRIL, 1959 NO. 2 THE IMMUNE-ADHERENCE ACTIVITY OF NORMAL SERUM J. L. TURK From the London School of Hygiene and Tropical Medicine, Keppel Street, London, W.C.1 Received for publication August 22, 1958 A HEAT labile non-specific complement-fixing activity in normal serum was described by Mackie and Finkelstein (1930). A similar activity was described by Pillemer et al. (1954) which they called the properdin system. That part of the properdin system which is absorbed by zymosan and a wide range of poly- saccharides has been shown to account for some of the bactericidal and viricidal activity of normal serum (Pillemer et al., 1954 and 1955). Properdin appears to need Mg+ + ions and serum co-factors resembling the 4 components of comple- ment for its action. The immune-adherence phenomenon (Nelson, 1953), in which an antigen coated with its specific antibody and after fixing all 4 components of complement will adhere to the primate red cell, provides a sensitive test with which to re- explore the immunological activity of normal sera. Antibody to particulate antigens can be titrated by counting the numbers of red cells with adherent antigens, in immune-adherence reaction mixtures, under the phase contrast microscope. Nelson and Lebrun (1956) found that normal guinea-pig serum caused the immune-adherence of starch grains and Nelson and Kelsey (personal communi- cation) found the same true for zymosan. The present work describes the immune-adherence activity of normal sera with respect to certain particulate antigens.
    [Show full text]
  • WO 2012/077038 Al 14 June 20 12 ( 14.06.20 12) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/077038 Al 14 June 20 12 ( 14.06.20 12) W P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A21D 13/00 (2006.01) A23L 1/29 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A21D 13/08 (2006.01) A23L 1/30 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A23C 9/13 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/IB201 1/055462 OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, (22) International Filing Date: SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 5 December 201 1 (05.12.201 1) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, 61/419,885 6 December 2010 (06.
    [Show full text]
  • Production of Microbial Polysaccharides for Use in Food
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260201214 Production of microbial polysaccharides for use in food Chapter · March 2013 DOI: 10.1533/9780857093547.2.413 CITATIONS READS 21 4,237 1 author: Ioannis Giavasis University of Thessaly 39 PUBLICATIONS 588 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Archimedes View project Bacillus toyonensis View project All content following this page was uploaded by Ioannis Giavasis on 30 April 2018. The user has requested enhancement of the downloaded file. 1 2 3 4 5 6 16 7 8 9 Production of microbial polysaccharides 10 11 for use in food 12 Ioannis Giavasis, Technological Educational Institute of Larissa, Greece 13 14 DOI: 15 16 Abstract: Microbial polysaccharides comprise a large number of versatile 17 biopolymers produced by several bacteria, yeast and fungi. Microbial fermentation has enabled the use of these ingredients in modern food and 18 delivered polysaccharides with controlled and modifiable properties, which can be 19 utilized as thickeners/viscosifiers, gelling agents, encapsulation and film-making 20 agents or stabilizers. Recently, some of these biopolymers have gained special 21 interest owing to their immunostimulating/therapeutic properties and may lead to 22 the formation of novel functional foods and nutraceuticals. This chapter describes the origin and chemical identity, the biosynthesis and production process, and the 23 properties and applications of the most important microbial polysaccharides. 24 25 Key words: biosynthesis, food biopolymers, functional foods and nutraceuticals, 26 microbial polysaccharides, structure–function relationships. 27 28 29 16.1 Introduction 30 31 Microbial polysaccharides form a large group of biopolymers synthesized 32 by many microorganisms, as they serve different purposes including cell 33 defence, attachment to surfaces and other cells, virulence expression, energy 34 reserves, or they are simply part of a complex cell wall (mainly in fungi).
    [Show full text]
  • (19) 11 Patent Number: 6165500
    USOO6165500A United States Patent (19) 11 Patent Number: 6,165,500 Cevc (45) Date of Patent: *Dec. 26, 2000 54 PREPARATION FOR THE APPLICATION OF WO 88/07362 10/1988 WIPO. AGENTS IN MINI-DROPLETS OTHER PUBLICATIONS 75 Inventor: Gregor Cevc, Heimstetten, Germany V.M. Knepp et al., “Controlled Drug Release from a Novel Liposomal Delivery System. II. Transdermal Delivery Char 73 Assignee: Idea AG, Munich, Germany acteristics” on Journal of Controlled Release 12(1990) Mar., No. 1, Amsterdam, NL, pp. 25–30. (Exhibit A). * Notice: This patent issued on a continued pros- C.E. Price, “A Review of the Factors Influencing the Pen ecution application filed under 37 CFR etration of Pesticides Through Plant Leaves” on I.C.I. Ltd., 1.53(d), and is subject to the twenty year Plant Protection Division, Jealott's Hill Research Station, patent term provisions of 35 U.S.C. Bracknell, Berkshire RG12 6EY, U.K., pp. 237-252. 154(a)(2). (Exhibit B). K. Karzel and R.K. Liedtke, “Mechanismen Transkutaner This patent is Subject to a terminal dis- Resorption” on Grandlagen/Basics, pp. 1487–1491. (Exhibit claimer. C). Michael Mezei, “Liposomes as a Skin Drug Delivery Sys 21 Appl. No.: 07/844,664 tem” 1985 Elsevier Science Publishers B.V. (Biomedical Division), pp 345-358. (Exhibit E). 22 Filed: Apr. 8, 1992 Adrienn Gesztes and Michael Mazei, “Topical Anesthesia of 30 Foreign Application Priority Data the Skin by Liposome-Encapsulated Tetracaine” on Anesth Analg 1988; 67: pp 1079–81. (Exhibit F). Aug. 24, 1990 DE) Germany ............................... 40 26834 Harish M. Patel, "Liposomes as a Controlled-Release Sys Aug.
    [Show full text]
  • Production of Microbial Polysaccharides for Use in Food
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/260201214 Production of microbial polysaccharides for use in food Chapter · March 2013 DOI: 10.1533/9780857093547.2.413 CITATIONS READS 17 3,663 1 author: Ioannis Giavasis Technological Educational Institute of Thessaly 34 PUBLICATIONS 501 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biovalorization of olive mill waste View project Phytochemicals and beneficial to human health associated in goji berry fruits from Thessaly region. View project All content following this page was uploaded by Ioannis Giavasis on 30 April 2018. The user has requested enhancement of the downloaded file. 1 2 3 4 5 6 16 7 8 9 Production of microbial polysaccharides 10 11 for use in food 12 Ioannis Giavasis, Technological Educational Institute of Larissa, Greece 13 14 DOI: 15 16 Abstract: Microbial polysaccharides comprise a large number of versatile 17 biopolymers produced by several bacteria, yeast and fungi. Microbial fermentation has enabled the use of these ingredients in modern food and 18 delivered polysaccharides with controlled and modifiable properties, which can be 19 utilized as thickeners/viscosifiers, gelling agents, encapsulation and film-making 20 agents or stabilizers. Recently, some of these biopolymers have gained special 21 interest owing to their immunostimulating/therapeutic properties and may lead to 22 the formation of novel functional foods and nutraceuticals. This chapter describes the origin and chemical identity, the biosynthesis and production process, and the 23 properties and applications of the most important microbial polysaccharides. 24 25 Key words: biosynthesis, food biopolymers, functional foods and nutraceuticals, 26 microbial polysaccharides, structure–function relationships.
    [Show full text]
  • In Macrophages Hans TAPPER and Roger SUNDLER Department of Medical and Physiological Chemistry, Lund University, P.O
    Biochem. J. (1995) 306, 829-835 (Printed in Great Britain) 829 Glucan receptor and zymosan-induced lysosomal enzyme secretion in macrophages Hans TAPPER and Roger SUNDLER Department of Medical and Physiological Chemistry, Lund University, P.O. Box 94, S-221 00 Lund, Sweden A receptor for ,-glucan was in the present study shown to was shown to be trypsin-sensitive, Ca2+/Mg2+-independent, re- mediate binding of zymosan particles to resident mouse per- circulating and also present in an intracellular mobilizable pool. itoneal macrophages. Lysosomal enzyme secretion in response to Binding of ligand to the ,-glucan receptor and inhibition of the zymosan was maximal at a low particle/cell ratio, continuous for lysosomal secretory response to zymosan were both more efficient at least 3 h after particle/cell contact and inhibitable by soluble with glucans of larger size, indicating that clustering of glucan glucan. Latex particles of various size caused no selective receptors at the cell surface occurs. Such clustering could stabilize secretory response, but at high particle/cell ratios were toxic. By ligand binding by multiple interactions and possibly trigger use of a fluorescent ligand, the macrophage fl-glucan receptor intracellular signalling events on binding of zymosan particles. INTRODUCTION particle diameter of 3 /am composed mainly of the carbohydrate The outcome of inflammatory reactions is highly dependent on polymers glucan and mannan [10]. Attachment of zymosan several macrophage activities such as the generation of eicos- particles to mouse macrophages has been suggested to be anoids and cytokines, the processing and presentation of antigen mediated by receptors for complement components (by in- and the secretion of lysosomal hydrolases [1].
    [Show full text]
  • Nutrition Receipe for Building Muscle
    NUTRITION RECEIPE FOR BUILDING MUSCLE INGREDIENTS 1. Start with breakfast Breakfast fuels the muscles and maintains them after sleeping for hours without nutrients. 2. After breakfast, time your meals and snacks every three hours (this means 5-6 meals/day) This provides nutrients throughout the day preventing your body from breaking down muscle tissue for energy sources. 3. Think total calories - Protein alone will not put on muscle Protein fills of your stomach quickly causing you to be full but it's lower in calories compared to carbohydrates. 4. Your post workout shake is necessary for building and repairing muscle 5. Hydrate with water to break down food and promote digestion Water also helps circulate nutrients throughout your body. If you are trying to gain weight, add in liquid calories to each meal and snack: drink 100% fruit juice, chocolate milk or shakes. 6. Snack before bed Your body's own natural human growth hormone peaks during this time. To maximize muscle building, take in a big snack full of carbohydrates, proteins and healthy fat like a sandwich, a protein shake with fruit, a breakfast sandwich, rice bowl, a peanut butter and jelly sandwich, cereal or chocolate milk.... 7. Consume food containing muscle building elements: leucine, glutamine and creatine Leucine is the only dietary amino acid that has the capacity to stimulate muscle growth. Foods containing leucine include: beef, beans, nuts, fish, milk. Glutamine is the key to building muscle and keeping muscle during intense training. Glutamine containing dilute foods include: beef, chicken, fish, eggs, milk, dairy products, wheat, cabbage, beets, beans, spinach.
    [Show full text]
  • Macrophage-Dependent Neutrophil Recruitment Is Impaired Under Conditions of Increased Intestinal Permeability in JAM-A-Deficient Mice
    www.nature.com/mi ARTICLE Macrophage-dependent neutrophil recruitment is impaired under conditions of increased intestinal permeability in JAM-A-deficient mice Anny-Claude Luissint1, Holly C. Williams2, Wooki Kim3, Sven Flemming1, Veronica Azcutia1, Roland S. Hilgarth1, Monique N. O’ Leary1, Timothy L. Denning4, Asma Nusrat1 and Charles A. Parkos1 Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam- afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota.
    [Show full text]
  • Honey and Its Nutritional and Anti-Inflammatory Value
    Ranneh et al. BMC Complementary Medicine and Therapies (2021) 21:30 BMC Complementary https://doi.org/10.1186/s12906-020-03170-5 Medicine and Therapies REVIEW Open Access Honey and its nutritional and anti- inflammatory value Yazan Ranneh1, Abdah Md Akim2* , Hasiah Ab. Hamid2, Huzwah Khazaai2, Abdulmannan Fadel3, Zainul Amiruddin Zakaria2, Mohammed Albujja4 and Mohd Fadzelly Abu Bakar1 Abstract Inflammation is the main key role in developing chronic diseases including cancer, cardiovascular diseases, diabetes, arthritis, and neurodegenerative diseases which possess a huge challenge for treatment. With massively compelling evidence of the role played by nutritional modulation in preventing inflammation-related diseases, there is a growing interest into the search for natural functional foods with therapeutic and preventive actions. Honey, a nutritional healthy product, is produced mainly by two types of bees: honeybee and stingless bee. Since both types of honey possess distinctive phenolic and flavonoid compounds, there is recently an intensive interest in their biological and clinical actions against inflammation-mediated chronic diseases. This review shed the light specifically on the bioavailability and bioaccessibility of honey polyphenols and highlight their roles in targeting inflammatory pathways in gastrointestinal tract disorders, edema, cancer, metabolic and cardiovascular diseases and gut microbiota. Keywords: Honey, Chronic inflammation, Bioavailability, Bioaccessibility, Bioactive compounds Background mechanisms involved in the response to honey supple- Honeybees which are named in Latin as Apis, use the mentation on inflammation-mediated chronic diseases collected nectar from plants to produce honey after re- as proposed by a wide collection of scientific papers in gurgitation and digestion of nectar. Several biological the literature. compounds from honeybees are added during honey for- mation.
    [Show full text]
  • Changes in Vascular Permeability Produced in Rats by Dextran, Ovomucoid and Yeast Cell Wall Polysaccharides
    Brit. J. Pharmacol. (1965), 25, 602-609. CHANGES IN VASCULAR PERMEABILITY PRODUCED IN RATS BY DEXTRAN, OVOMUCOID AND YEAST CELL WALL POLYSACCHARIDES BY R. H. POYSER AND G. B. WEST From the Departments of Pharmacology, School of Pharmacy, Brighton College of Technology, Moulsecoomb, Brighton, and the School of Pharmacy, University of London, Brunswick Square, London, W.C.1 (Received January 27, 1965) A single intradermal injection of dextran or ovomucoid into the ventral abdominal skin of rats produces a local increase in vascular permeability which is antagonized by glucose and other sugars (Beraldo, Dias Da Silva & Lemos Fernandes, 1962). The release of histamine and the partial disruption of tissue mast cells by dextran are also inhibited by these sugars. The present work was undertaken to determine the relative activities of different sugars and other simple carbohydrates in antagonizing the local vascular changes produced not only by dextran and ovomucoid but also by two polysaccharide preparations extracted from the yeast cell wall, namely yeast mannan and zymosan (Pillemer & Ecker, 1941; Peat, Whelan & Edwards, 1961). Whereas dextran is a polymer of glucose, yeast mannan is a polymer consisting entirely of mannose. Dextran, ovomucoid and yeast mannan have all been shown to produce the anaphylactoid reaction when injected intraperitoneally into rats (Voorhees, Baker & Pulaskk 1951; Bombara & Morabito, 1961). METHODS Tests on vascular permeability in hooded Lister rats (body weight about 200 g) were carried out using the mnethod of Bonaccorsi & West (1963). After the intravenous injection of azovan blue dye (7 mg/kg), each rat received at least six intradermal injections into the shaved ventral abdominal skin.
    [Show full text]
  • Zymosan A, an Old Tool in Experimental Pharmacology with Newer Applications
    Mini Review Curre Res Diabetes & Obes J Volume 4 Issue 3 - October 2017 Copyright © All rights are reserved by Kanwaljit Chopra DOI: 10.19080/CRDOJ.2017.4.555638 Zymosan A, an Old Tool in Experimental Pharmacology with Newer Applications Ravinder Naik Dharavath, Vibhu Kumar and Kanwaljit Chopra* Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India Submission: October 02, 2017; Published: October 17, 2017 *Corresponding author: Kanwaljit Chopra, Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India, Tel: ; Fax: +91-172-2541142; Email: Abstract Insulin resistance (IR) is an important link between obesity and post obesity complications varying from diabetes mellitus to neurological usedinsults to such induce as cognitivereversible dysfunction IR conditions and in Alzheimer’s rodent models. disease. Though, Currently the insulin available resistance high calorific lasts asdiet long induced as zymosan preclinical is injected models to mimic animals, clinical but thepathologies pathogenesis of various that resemblesmetabolic todisorders that of obesity,but they IR are and highly metabolic time consuming.syndrome. However,Zymosan highA, a well-knownfat or high carbohydrate inflammagen diethas couldrecently be beenused in combination with zymosan to develop a novel animal model of IR where both inducers act synergistically to exert their primary actions. The combination of these two approaches may help in development
    [Show full text]
  • Jimmunol.1800002.Full.Pdf
    Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1 This information is current as Alex J. Freemerman, Liyang Zhao, Ajeeth K. Pingili, Bin of September 25, 2021. Teng, Alyssa J. Cozzo, Ashley M. Fuller, Amy R. Johnson, J. Justin Milner, Maili F. Lim, Joseph A. Galanko, Melinda A. Beck, James E. Bear, Jeremy D. Rotty, Lavanya Bezavada, Heather S. Smallwood, Michelle A. Puchowicz, Juan Liu, Jason W. Locasale, Douglas P. Lee, Brian J. Bennett, E. Dale Abel, Jeff C. Rathmell and Liza Makowski Downloaded from J Immunol published online 18 January 2019 http://www.jimmunol.org/content/early/2019/01/17/jimmun ol.1800002 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2019/01/17/jimmunol.180000 Material 2.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2019 by The American Association of Immunologists, Inc.
    [Show full text]