Sexual Reproduction of Scleractinian Corals

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Reproduction of Scleractinian Corals Sexual Reproduction of Scleractinian Corals Peter L. Harrison Abstract Sexual reproduction by scleractinian reef corals is (1999), Kolinski and Cox (2003), Guest et al. (2005a), important for maintaining coral populations and evolution- Harrison and Booth (2007), and Baird et al. (2009a). ary processes. The ongoing global renaissance in coral repro- Scleractinian reef-building corals are foundation species duction research is providing a wealth of new information on on coral reefs because they provide the complex three- this topic, and has almost doubled the global database on dimensional structure and primary framework of the reef, coral reproductive patterns during the past two decades. and essential habitats and other important resources for many Information on sexual reproduction is now available for 444 thousands of associated species (reviewed by Harrison and scleractinian species, and confirms that hermaphroditic Booth 2007). These corals are distinguished from other broadcast spawning is the dominant pattern among coral spe- members of the Class Anthozoa (Phylum Cnidaria) such as cies studied to date. Relatively few hermaphroditic or gono- soft corals, by their continuous hard calcium carbonate choric brooding species have been recorded. Multispecific crystal exoskeleton, which form the essential building blocks coral spawning has been recorded on many reefs, but the of the reef ecosystem when cemented together by crustose degree of reproductive synchrony varies greatly within and coralline algae. The term “coral” is used in this review to among species at different geographic locations. refer to these hard corals from the Order Scleractinia. Although corals are widely distributed throughout the Keywords world’s seas and deeper ocean environments, they are particu- larly significant in shallow tropical and subtropical seas where the mutualistic symbiosis between the coral polyps and their endosymbiotic dinoflagellates (zooxanthellae) fuels light enhanced calcification and rapid growth of reef-building cor- als, resulting in coral reef development. Corals can be broadly divided ecologically, but not systematically, into reef-building 1 Introduction (hermatypic) corals and non-reef-building (ahermatypic) cor- als. Hermatypic corals create the primary reef framework and This review provides an overview of global knowledge and most hermatypic species in shallow warm-water habitats nor- emerging patterns in the reproductive characteristics of the mally contain millions of zooxanthellae (i.e., zooxanthellate); 444 scleractinian species for which information on sexual in contrast, although ahermatypic corals also secrete complex reproduction is available, and updates the previous review by aragonite exoskeletons they do not usually contribute signifi- Harrison and Wallace (1990), with particular emphasis on cantly to reef formation, and mostly lack zooxanthellae (e.g., new discoveries and data from the past 2 decades. Sexual Yonge 1973; Schuhmacher and Zibrowius 1985; Cairns 2007). reproduction in scleractinian corals has been widely studied However, some azooxanthellate corals do contribute to reef- in many regions of the world, and substantial new informa- building and are therefore hermatypic, including some deeper- tion has become available since earlier detailed reviews on water and deep-sea colonial cold-water corals that form reefs this subject by Fadlallah (1983), Harrison and Wallace (1990), or bioherms, which provide important habitats for many other and Richmond and Hunter (1990), with more recent topic species (e.g., Brooke and Young 2003; Waller and Tyler 2005; reviews provided by Richmond (1997), Harrison and Jamieson Friewald and Roberts 2005). The total number of extant scleractinian “species” is not known, and estimating global coral species richness is com- P.L. Harrison( ) plicated by a number of issues (e.g., Veron 1995, 2000; School of Environmental Science and Management, Southern Cross University, Lismore, NSW, 2480, Australia Cairns 1999, 2007; Harrison and Booth 2007). These include e-mail: [email protected] the limited exploration of deeper reef, mesophotic, and Z. Dubinsky and N. Stambler (eds.), Coral Reefs: An Ecosystem in Transition, 59 DOI 10.1007/978-94-007-0114-4_6, © Springer Science+Business Media B.V. 2011 60 P.L. Harrison deep-sea environments, as well as some shallow tropical reef regions where new species are likely to be found, and imper- fect taxonomic resolution of highly variable species and potential cryptic species. Furthermore, the discovery of hybridization among some morphologically different coral morphospecies (e.g., Willis et al. 1992, 1997; Szmant et al. 1997; van Oppen et al. 2002; Vollmer and Palumbi 2002) challenges the application of the traditional biological- species concept based on reproductive isolation between different species, for some corals. If we assume that the current primarily morphologically based taxonomy provides an appropriate indication of global coral species richness, there are probably at least 900 extant hermatypic scleractinian species (e.g., Wallace 1999; Veron 2000; J. Veron, personal communication). Of these, 827 Fig. 1 A brooded Isopora cuneata planula searching reef substratum covered with crustose coralline algae for a suitable site for initial attach- zooxanthellate hermatypic coral species have been assessed ment and metamorphosis into a juvenile polyp (Photo: author) for their conservation status (Carpenter et al. 2008). In addi- tion, at least 706 azooxanthellate scleractinian species are known, including 187 colonial and 519 solitary coral species, that initiates the formation of the calcium carbonate exoskel- with their most common depth range being 200–1,000 m eton. Subsequent growth during an initial presexual juvenile (Cairns 2007). Of the more than 1,500 recognized coral phase leads to development of the adult form that becomes species, aspects of sexual reproduction have now been sexually reproductive, which completes the life cycle recorded in at least 444 species, the vast majority being shal- (Harrison and Wallace 1990). low-water zooxanthellate hermatypic coral species. This Asexual reproduction produces genetically identical global knowledge base provides a wealth of information on modules that may prolong the survival of the genotype, the biology and ecology of coral reproduction that surpasses whereas sexual reproduction enables genetic recombination most other marine invertebrate groups, and corals therefore and production of new coral genotypes that may enhance fit- provide an important model for assessing life history and ness and survival of the species. Four basic patterns of sexual evolutionary theory. reproduction are evident among corals, which include: This chapter focuses mainly on sexual reproductive char- hermaphroditic broadcast spawners, hermaphroditic brood- acteristics in hermatypic species because these corals have ers, gonochoric broadcast spawners, or gonochoric brooders. been more extensively studied and are foundation species on Hermaphroditic corals have both sexes developed in their coral reefs (Harrison and Booth 2007). Additional reference polyps and colonies, whereas gonochoric corals have sepa- is made to sexual reproduction in some ahermatypic sclerac- rate sexes; and corals with these sexual patterns either broad- tinian species, and an overview of asexual reproduction in cast spawn their gametes for external fertilization and corals is provided below to highlight the diversity of repro- subsequent embryo and larval development, or have internal ductive processes exhibited by scleractinians. fertilization and brood embryos and planula larvae within their polyps (reviewed by Harrison and Wallace 1990; Richmond and Hunter 1990). However, not all coral species are readily classified into these basic patterns, as mixed 2 Coral Life Cycle and Reproduction sexual patterns or both modes of development are known to occur in some species. Corals have a relatively simple life cycle involving a domi- nant benthic polyp phase and a shorter planula larval phase. The polyp phase is characterized by growth of tissues and 2.1 Asexual Budding and Reproduction skeleton that often includes one or more forms of asexual budding or reproduction; and repeated cycles of sexual repro- duction (iteroparity) involving the production of gametes, Different modes of asexual production can be distinguished; fertilization, embryo development, and a larval phase that is asexual budding of polyps leads to the formation of coral usually planktonic and dispersive to some degree (Harrison colonies, while various forms of asexual reproduction result and Wallace 1990). If the planula survives and successfully in the production of new modules that form physically sepa- attaches and settles permanently on hard substratum (Fig. 1), rate but genetically identical clones (ramets) (reviewed by it metamorphoses from the larval form into a juvenile polyp Highsmith 1982; Cairns 1988; Harrison and Wallace 1990; Sexual Reproduction of Scleractinian Corals 61 Richmond 1997). Most hermatypic coral species (Wallace 1999; Veron 2000) and about 26% of the known ahermatypic azooxanthellate coral species (Cairns 2007) form colonies via asexual budding of polyps and are therefore modular, iterative colonial organisms. Budded polyps usually form by growth and internal division of existing polyps (intratentacu- lar budding) or development of new polyps from tissues adjacent to, or between, existing polyps (extra-tentacular budding) (reviewed
Recommended publications
  • Checklist of Fish and Invertebrates Listed in the CITES Appendices
    JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No.
    [Show full text]
  • Comprehensive Phylogenomic Analyses Resolve Cnidarian Relationships and the Origins of Key Organismal Traits
    Comprehensive phylogenomic analyses resolve cnidarian relationships and the origins of key organismal traits Ehsan Kayal1,2, Bastian Bentlage1,3, M. Sabrina Pankey5, Aki H. Ohdera4, Monica Medina4, David C. Plachetzki5*, Allen G. Collins1,6, Joseph F. Ryan7,8* Authors Institutions: 1. Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution 2. UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France 3. Marine Laboratory, university of Guam, UOG Station, Mangilao, GU 96923, USA 4. Department of Biology, Pennsylvania State University, University Park, PA, USA 5. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA 6. National Systematics Laboratory, NOAA Fisheries, National Museum of Natural History, Smithsonian Institution 7. Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA 8. Department of Biology, University of Florida, Gainesville, FL, USA PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3172v1 | CC BY 4.0 Open Access | rec: 21 Aug 2017, publ: 21 Aug 20171 Abstract Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including symbiosis, colonial body plans and elaborate life histories, however, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome scale data that includes representatives of all cnidarian classes.
    [Show full text]
  • Species Diversity of Mushroom Corals (Family Fungiidae) in the Inner Gulf of Thailand
    The Natural History Journal of Chulalongkorn University 2(2): 47-49, August 2002 ©2002 by Chulalongkorn University Species Diversity of Mushroom Corals (Family Fungiidae) in the Inner Gulf of Thailand LALITA PUTCHIM, SUCHANA CHAVANICH * AND VORANOP VIYAKARN Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, THAILAND Mushroom coral (Family Fungiidae) is one islands (Fig. 1, Table 1). These species included of the most conspicuous groups in the tropical Ctenactis crassa (Dana, 1846), C. echinata Indo-Pacific reefs. These corals usually aggre- (Pallas, 1766), Fungia fungites (Linnaeus, gate in large clumps that are able to create the 1758), Lithophyllon undulatum Rehberg, 1892, reef formation (Pichon, 1974; Littler et al., Podabacia crustacea (Pallas, 1766), and Poly- 1997). In the tropical Indo-Pacific region, 41 phyllia talpina (Lamarck, 1801) (Fig. 1). Each species of fungiid corals have been found (Hoek- study site had four species of fungiids, but only sema, 1989). However, their biogeography is two species overlapped between the two sites. yet still unclear. In the Gulf of Thailand, little F. fungites, C. echinata, L. undulatum, and P. is known about the species diversity of fungiids crustacea were found at Ko Kham while F. and their distribution. Seven species were fungites, C. crassa, C. echinata, and P. talpina recorded by field survey at the Sichang Islands, were found at Ko Khram. Chon Buri Province (Sakai et al., 1986; Sara- From observations at Ko Khram and Ko sas, 1994), and 14 species were found in the Kham, it is interesting to note that more than coral collections at the institutes and museums 50% of live corals found in the study areas around the country (Jiravat, 1985).
    [Show full text]
  • Growth and Population Dynamic Model of the Reef Coral Fungia Granulosa Klunzinger, 1879 at Eilat, Northern Red Sea
    Journal of Experimental Marine Biology and Ecology View metadata, citation and similar papers at core.ac.uk L brought to you by CORE 249 (2000) 199±218 www.elsevier.nl/locate/jembe provided by Almae Matris Studiorum Campus Growth and population dynamic model of the reef coral Fungia granulosa Klunzinger, 1879 at Eilat, northern Red Sea Nanette E. Chadwick-Furmana,b,* , Stefano Goffredo c , Yossi Loya d aInteruniversity Institute for Marine Science, P.O. Box 469, Eilat, Israel bFaculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel cDepartment of Evolutionary and Experimental Biology, University of Bologna, via Selmi 3, I-40126 Bologna, Italy dDepartment of Zoology, The George S. Wise Faculty of Life Sciences, and the Porter Super-Center for Ecological and Environmental Studies, Tel Aviv University, Tel Aviv, Israel Received 18 August 1999; received in revised form 10 February 2000; accepted 9 March 2000 Abstract The lack of population dynamic information for most species of stony corals is due in part to their complicated life histories that may include ®ssion, fusion and partial mortality of colonies, leading to an uncoupling of coral age and size. However, some reef-building corals may produce compact upright or free-living individuals in which the above processes rarely occur, or are clearly detectable. In some of these corals, individual age may be determined from size, and standard growth and population dynamic models may be applied to gain an accurate picture of their life history. We measured long-term growth rates (up to 2.5 years) of individuals of the free-living mushroom coral Fungia granulosa Klunzinger, 1879 at Eilat, northern Red Sea, and determined the size structure of a population on the shallow reef slope.
    [Show full text]
  • Biomineralisation in Reef-Building Corals: from Molecular Mechanisms to Environmental Control
    C. R. Palevol 3 (2004) 453–467 General Palaeontology (Palaeobiochemistry) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control Denis Allemand a,b,*, Christine Ferrier-Pagès a, Paola Furla a,1, Fanny Houlbrèque a, Sandrine Puverel a,b, Stéphanie Reynaud a, Éric Tambutté a, Sylvie Tambutté a, Didier Zoccola a a Centre scientifique de Monaco, avenue Saint-Martin, 98000 Monaco, principauté de Monaco b UMR 1112 INRA–UNSA, faculté des sciences, université Nice–Sophia-Antipolis, parc Valrose, BP 71, 06108 Nice cedex 2, France Received 7 October 2003; accepted after revision 12 July 2004 Available online 30 September 2004 Written on invitation of the Editorial Board Abstract Coral reefs constitute real oasis sheltering for about one third of the identified fishes, representing a major advantage for the economy and tourism of many tropical countries. However it is paradoxical to notice that their formation at the cellular level or even at the scale of the organism is still poorly known. Effectively, biomineralisation, the process that is at the basis of their edification, is always the subject of numerous researches. Two combined mechanisms lead to the formation of a biomineral, the synthesis/secretion of macromolecules referred to as ‘organic matrix’, and the transport of ions (calcium, bicarbonates and protons in the case of calcification) to the mineralising site. This review shows a view of the works carried out on biominerali- sation in scleractinian corals, including some aspects on the control of calcification by environmental parameters. It also gives insights into the biological basis of the use of coral skeletons as environmental archives in palaeo-oceanography.
    [Show full text]
  • Resurrecting a Subgenus to Genus: Molecular Phylogeny of Euphyllia and Fimbriaphyllia (Order Scleractinia; Family Euphylliidae; Clade V)
    Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphylliidae; clade V) Katrina S. Luzon1,2,3,*, Mei-Fang Lin4,5,6,*, Ma. Carmen A. Ablan Lagman1,7, Wilfredo Roehl Y. Licuanan1,2,3 and Chaolun Allen Chen4,8,9,* 1 Biology Department, De La Salle University, Manila, Philippines 2 Shields Ocean Research (SHORE) Center, De La Salle University, Manila, Philippines 3 The Marine Science Institute, University of the Philippines, Quezon City, Philippines 4 Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 5 Department of Molecular and Cell Biology, James Cook University, Townsville, Australia 6 Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan 7 Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Manila, Philippines 8 Taiwan International Graduate Program-Biodiversity, Academia Sinica, Taipei, Taiwan 9 Institute of Oceanography, National Taiwan University, Taipei, Taiwan * These authors contributed equally to this work. ABSTRACT Background. The corallum is crucial in building coral reefs and in diagnosing systematic relationships in the order Scleractinia. However, molecular phylogenetic analyses revealed a paraphyly in a majority of traditional families and genera among Scleractinia showing that other biological attributes of the coral, such as polyp morphology and reproductive traits, are underutilized. Among scleractinian genera, the Euphyllia, with nine nominal species in the Indo-Pacific region, is one of the groups Submitted 30 May 2017 that await phylogenetic resolution. Multiple genetic markers were used to construct Accepted 31 October 2017 Published 4 December 2017 the phylogeny of six Euphyllia species, namely E. ancora, E. divisa, E.
    [Show full text]
  • Scleractinian Reef Corals: Identification Notes
    SCLERACTINIAN REEF CORALS: IDENTIFICATION NOTES By JACKIE WOLSTENHOLME James Cook University AUGUST 2004 DOI: 10.13140/RG.2.2.24656.51205 http://dx.doi.org/10.13140/RG.2.2.24656.51205 Scleractinian Reef Corals: Identification Notes by Jackie Wolstenholme is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................ i INTRODUCTION .................................................................................................................................................. 1 ABBREVIATIONS AND DEFINITIONS ............................................................................................................. 2 FAMILY ACROPORIDAE.................................................................................................................................... 3 Montipora ........................................................................................................................................................... 3 Massive/thick plates/encrusting & tuberculae/papillae ................................................................................... 3 Montipora monasteriata .............................................................................................................................. 3 Massive/thick plates/encrusting & papillae ...................................................................................................
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific
    Molecular Diversity, Phylogeny, and Biogeographic Patterns of Crustacean Copepods Associated with Scleractinian Corals of the Indo-Pacific Dissertation by Sofya Mudrova In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy of Science King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia November, 2018 2 EXAMINATION COMMITTEE PAGE The dissertation of Sofya Mudrova is approved by the examination committee. Committee Chairperson: Dr. Michael Lee Berumen Committee Co-Chair: Dr. Viatcheslav Ivanenko Committee Members: Dr. James Davis Reimer, Dr. Takashi Gojobori, Dr. Manuel Aranda Lastra 3 COPYRIGHT PAGE © November, 2018 Sofya Mudrova All rights reserved 4 ABSTRACT Molecular diversity, phylogeny and biogeographic patterns of crustacean copepods associated with scleractinian corals of the Indo-Pacific Sofya Mudrova Biodiversity of coral reefs is higher than in any other marine ecosystem, and significant research has focused on studying coral taxonomy, physiology, ecology, and coral-associated fauna. Yet little is known about symbiotic copepods, abundant and numerous microscopic crustaceans inhabiting almost every living coral colony. In this thesis, I investigate the genetic diversity of different groups of copepods associated with reef-building corals in distinct parts of the Indo-Pacific; determine species boundaries; and reveal patterns of biogeography, endemism, and host-specificity in these symbiotic systems. A non-destructive method of DNA extraction allowed me to use an integrated approach to conduct a diversity assessment of different groups of copepods and to determine species boundaries using molecular and taxonomical methods. Overall, for this thesis, I processed and analyzed 1850 copepod specimens, representing 269 MOTUs collected from 125 colonies of 43 species of scleractinian corals from 11 locations in the Indo-Pacific.
    [Show full text]
  • A Comparative View of Early Development in the Corals Favia Lizardensis, Ctenactis Echinata, and Acropora Millepora
    Okubo et al. BMC Evolutionary Biology (2016) 16:48 DOI 10.1186/s12862-016-0615-2 RESEARCHARTICLE Open Access A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora - morphology, transcriptome, and developmental gene expression Nami Okubo1,3*, David C. Hayward1, Sylvain Forêt1,2 and Eldon E. Ball1,2* Abstract Background: Research into various aspects of coral biology has greatly increased in recent years due to anthropogenic threats to coral health including pollution, ocean warming and acidification. However, knowledge of coral early development has lagged. The present paper describes the embryonic development of two previously uncharacterized robust corals, Favia lizardensis (a massive brain coral) and Ctenactis echinata (a solitary coral) and compares it to that of the previously characterized complex coral, Acropora millepora, both morphologically and in terms of the expression of a set of key developmental genes. Results: Illumina sequencing of mixed age embryos was carried out, resulting in embryonic transcriptomes consisting of 40605 contigs for C.echinata (N50 = 1080 bp) and 48536 contigs for F.lizardensis (N50 = 1496 bp). The transcriptomes have been annotated against Swiss-Prot and were sufficiently complete to enable the identification of orthologs of many key genes controlling development in bilaterians. Developmental series of images of whole mounts and sections reveal that the early stages of both species contain a blastocoel, consistent with their membership of the robust clade. In situ hybridization was used to examine the expression of the developmentally important genes brachyury, chordin and forkhead. The expression of brachyury and forkhead was consistent with that previously reported for Acropora and allowed us to confirm that the pseudo-blastopore sometimes seen in robust corals such as Favia spp.
    [Show full text]
  • Vrije Universiteit Brussel Genetic Structure of Heliofungia Actiniformis
    Vrije Universiteit Brussel Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo- Malay Archipelago: implications for live coral trade management efforts Knittweis, L.; W.S., Kraemer,; Timm, J.; Kochzius, Marc Published in: Conservation Genetics DOI: 10.1007/s10592-008-9566-5 Publication date: 2009 Document Version: Final published version Link to publication Citation for published version (APA): Knittweis, L., W.S., K., Timm, J., & Kochzius, M. (2009). Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts. Conservation Genetics, 10, 241-249. https://doi.org/10.1007/s10592-008-9566-5 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Conserv Genet (2009) 10:241–249 DOI 10.1007/s10592-008-9566-5 RESEARCH ARTICLE Genetic structure of Heliofungia actiniformis (Scleractinia: Fungiidae) populations in the Indo-Malay Archipelago: implications for live coral trade management efforts Leyla Knittweis Æ Wiebke Elsbeth Kraemer Æ Janne Timm Æ Marc Kochzius Received: 14 September 2007 / Accepted: 11 March 2008 / Published online: 8 May 2008 Ó Springer Science+Business Media B.V.
    [Show full text]
  • The Global Trade in Marine Ornamental Species
    From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization.
    [Show full text]