Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

Index of Information

SPECIES: acetosella

Introductory Distribution and Occurrence Management Considerations Botanical and Ecological Characteristics Fire Ecology Fire Effects References

Introductory

SPECIES: Rumex acetosella

AUTHORSHIP AND CITATION : Esser, Lora L. 1995. Rumex acetosella. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24].

ABBREVIATION : RUMACE

SYNONYMS : NO-ENTRY

SCS CODE : RUAC3

COMMON NAMES : sheep sorrel common sheep sorrel red sorrel

TAXONOMY : The currently accepted scientific name of sheep sorrel is Rumex acetosella L. [29,34,51,95]. It is in the family . There are no recognized infrataxa [34,44].

LIFE FORM : Forb

FEDERAL LEGAL STATUS : No special status

1 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

OTHER STATUS : NO-ENTRY

DISTRIBUTION AND OCCURRENCE

SPECIES: Rumex acetosella

GENERAL DISTRIBUTION : Sheep sorrel is a forb of Eurasian origin that has naturalized throughout temperate North America with the possible exceptions of Louisiana, Mississippi, and Alabama, and the northern Canadian provinces [46,75,95].

ECOSYSTEMS : Sheep sorrel is found in nearly all FRES ecosystems.

STATES : AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY ME MD MA MI MN MO MT NE NV NH NJ NM NY NC ND OH OK OR PA RI SC SD TN TX UT VT VA WA WV WI WY AB BC MB NB NS ON PQ SK

BLM PHYSIOGRAPHIC REGIONS : 1 Northern Pacific Border 2 Cascade Mountains 3 Southern Pacific Border 4 Sierra Mountains 5 Columbia Plateau 6 Upper Basin and Range 8 Northern Rocky Mountains 9 Middle Rocky Mountains 10 Wyoming Basin 11 Southern Rocky Mountains 12 Colorado Plateau 13 Rocky Mountain Piedmont 14 Great Plains 15 Black Hills Uplift 16 Upper Missouri Basin and Broken Lands

KUCHLER PLANT ASSOCIATIONS : NO-ENTRY

SAF COVER TYPES : Sheep sorrel is found in nearly all SAF Cover Types.

SRM (RANGELAND) COVER TYPES : 101 Bluebunch wheatgrass 102 Idaho fescue 103 Green fescue 108 Alpine Idaho fescue

2 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

110 Ponderosa pine-grassland 201 Blue oak woodland 203 Riparian woodland 204 North coastal shrub 215 Valley grassland 216 Montane meadows 304 Idaho fescue-bluebunch wheatgrass 409 Tall forb 411 Aspen woodland 601 Bluestem prairie 804 Tall fescue 809 Mixed hardwood and pine

HABITAT TYPES AND PLANT COMMUNITIES : Sheep sorrel occurs mainly in grassland, mixed-grass prairie, and montane meadow communities of western North America, but is also common in forested communities throughout temperate North America.

Sheep sorrel is common in floodplain and riparian habitats. In western Washington sheep sorrel is found on gravel bars and floodplains dominated by Scouler willow (Salix scouleriana). Other associates include Virginia strawberry (Fragaria virginiana), velvetgrass (Holcus lanatus), white clover (Trifolium repens), curly dock (Rumex crispus), and bog rush (Juncus effusus) [20]. In Oregon sheep sorrel occurs in a riparian mountain meadow community dominated by cheatgrass (Bromus tectorum) [45]. In California sheep sorrel occurs in a freshwater marsh community dominated by tall fescue (Festuca arundinacea), sedge (Carex spp.), and narrow-leaved cattail (Typha angustifolia) [18].

Sheep sorrel is commonly found in old fields, annual grassland, and montane meadow communities. In Connecticut sheep sorrel occurs in a postagricultural little bluestem (Schizachyrium scoparium) grassland. Associates include redtop (Agrostis alba) and yellow sedge (Carex pensylvanica) [69]. In New Jersey sheep sorrel is a member of an old-field plant community dominated by Canada goldenrod (Solidago canadensis) [9]. Sheep sorrel is commonly found in southern Appalachian grassy bald communities dominated by mountain oatgrass (). Other associates include thornless blackberry (Rubus canadensis), hillside (Vaccinium pallidum), and violet (Viola spp.) [56,60]. In Indiana sheep sorrel occurs in a little bluestem community with hackberry (Celtis occidentalis) and smooth horsetail (Equisetum laevigatum) [81]. In Montana sheep sorrel occurs in mixed-grass prairie communities [86].

In California sheep sorrel is common in annual grassland, montane meadow, and perennial bunchgrass communities. Associates include ripgut brome (Bromus rigidus), soft chess (B. hordeaceus), silver hairgrass (Aira caryophyllea), Kentucky bluegrass (Poa pratense), Sandberg bluegrass (P. nevadensis), Italian thistle (Carduus pycnocephalus), wild oat (Avena fatua), and Italian ryegrass (Lolium multiflorum) [8,12,18,61].

At Point Reyes National Seashore, California, sheep sorrel occurs in a coastal grassland community with coast rock cress (Arabis blepharophylla), poison-oak (Toxicodendron diversiloba), California barberry (Berberis pinnata), and the endangered Sonoma spineflower (Chorizanthe valida) [11,12].

Sheep sorrel is a common understory species in forested habitats throughout North America. In Pennsylvania sheep sorrel occurs in eastern white pine (Pinus strobus)-poverty oatgrass (D. spicata) communities; associates include Canada goldenrod, fireweed (Epilobium angustifolium), whorled yellow loosestrife (Lysimachia quadrifolia), Virginia springbeauty (Claytonia virginica), trout lily (Erythronium americanum), mountain wood sorrel (Oxalis montana), and violet [3,49,93]. In Alberta sheep sorrel is a member of an 80-year-old white spruce (Picea glauca)-jack pine (Pinus banksiana)-feathermoss

3 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

(Pleurozium spp.) community [21]. In Idaho sheep sorrel occurs in grand fir (Abies grandis)/wild ginger (Asarum caudatum), grand fir/pachistima (Pachistima myrsinites), and grand fir/ninebark (Physocarpus malvaceus) habitat types [30,53,54,99]. In California sheep sorrel occurs in redwood (Sequoia sempervirens), Douglas-fir (Pseudotsuga menziesii), and Oregon white oak (Quercus garryana) habitats [22,50,83].

In Montana and Wyoming, sheep sorrel is found in alpine tundra environments [94].

MANAGEMENT CONSIDERATIONS

SPECIES: Rumex acetosella

IMPORTANCE TO LIVESTOCK AND WILDLIFE : In Arizona sheep sorrel is grazed by cattle and sheep, but has little forage value [39]. Sheep sorrel contains oxalic acid which can be poisonous [46,100].

In California and Ohio sheep sorrel is grazed by mule deer [50,70]. In Idaho, Montana, and Wisconsin sharp-tailed grouse and ruffed grouse eat sheep sorrel seed [40,41,76,86].

PALATABILITY : In Utah palatability ratings for sheep sorrel are fair for cattle and poor for sheep and horses [100].

NUTRITIONAL VALUE : Sheep sorrel nutritional levels are adequate to meet the requirements of mule deer [50]. Energy and protein content ratings of sheep sorrel are poor. Nutritional values are rated as poor for waterfowl and fair for elk, mule deer, upland game birds, small nongame birds, and small mammals [100].

COVER VALUE : In Utah sheep sorrel cover values are rated as fair for small mammals and small nongame birds and poor for upland game birds and waterfowl [100].

VALUE FOR REHABILITATION OF DISTURBED SITES : Sheep sorrel colonizes disturbed sites such as clearcuts, streambanks, and surface mined lands. It has been used for revegetation of disturbed lands, although it is rated low for erosion control, and short- and long-term revegetation potential [100]. In a mining and smelting region of Sudbury, Ontario, sheep sorrel established when a thin sprinkling of limestone was applied to the soil [97].

In east-central Texas revegetation of eight unreclaimed mine sites occurred naturally. These sites and an adjacent unmined site were sampled to determine vegetational changes over time. The percent

4 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

frequency of sheep sorrel was as follows [79]:

3m* 6m 5y 10y 15y 20y 30y 50y control

0 11 4 6 4 3 0 0 0

*m=months since first sampling, y=years since first sampling

In Pennsylvania an attempt was made to transplant rootstocks of sheep sorrel on black waste sites created by anthracite mining. All emergent vegetation was subsequently heat killed [77].

OTHER USES AND VALUES : Sheep sorrel leaves are used in salads [4,51]. The Nuxalk Indians of British Columbia eat sheep sorrel [55].

OTHER MANAGEMENT CONSIDERATIONS : Sheep sorrel is classified as a noxious weed in 23 states [67]. It is a serious weed in pastures and rangelands. Control is difficult because of its perennial, creeping rhizomes [4,52]. Sheep sorrel is a common weed in West Virginia, except in limestone regions; liming the soil may help eradicate sheep sorrel [82].

Sheep sorrel presence and abundance are indicative of poor and "sour" soils [82,87]. It reaches peak abundance at low soil nitrogen levels [87]. Sheep sorrel is potentially poisonous to livestock because of the presence of soluble oxalates [19]; however, it is grazed by sheep and cattle [39]. In Idaho sheep sorrel is an increaser species under heavy grazing regimes, and a decreaser species under light grazing regimes [54]. In Oregon percent frequency of sheep sorrel was not affected by late season cattle grazing in a riparian mountain meadow [45].

In Novia Scotia sheep sorrel is one of the most common weed species in lowbush blueberry fields. Control with hexazinone was attempted but after the activity of the herbicide decreased, sheep sorrel grew and produced a large number of seeds [62]. In Pennsylvania in a goldenrod (Solidago spp.)-aster (Aster spp.) community, sheep sorrel was dominant in 1- and 3-year-old plowed, disked, prometone-treated plots [64].

Control Methods: Repeat cultivation during dry weather gradually weakens rootstalks of sheep sorrel [19]. According to Fitzsimmons [19] several herbicides can selectively control sheep sorrel.

BOTANICAL AND ECOLOGICAL CHARACTERISTICS

SPECIES: Rumex acetosella

GENERAL BOTANICAL CHARACTERISTICS : Sheep sorrel is an introduced rhizomatous perennial herb that sometimes forms dense colonies by adventitious shoots from widely spreading roots and rhizomes [19,29,35,52,92]. Stems are erect, slender, and 4 to 24 inches (10-60 cm) tall [33,72,95]. Leaves are 0.8 to 4 inches (2-10 cm) long and 0.4 to 0.8 inch (1-2 cm) wide [33,34,72]. The fruit is an

5 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

achene [25,29,38,72,95]. Roots are slender, almost fibrous and penetrate to a depth of 5 feet (1.5 m) [48].

RAUNKIAER LIFE FORM : Hemicryptophyte Geophyte

REGENERATION PROCESSES : Sexual: Sheep sorrel reproduces by seed. It is wind pollinated and seed is dispersed by wind and insects [37,91]. Sheep sorrel regularly colonizes from buried seed following disturbance [14,21,26]. In Massachusetts sheep sorrel was not present in the ground cover of most eastern white pine and red pine (Pinus resinosa) stands, but seeds were contained in soil samples from 1-to 80-year-old stands. In the laboratory soil-stored seeds from all stands germinated [57].

Vegetative: Sheep sorrel reproduces from creeping roots and rhizomes [2,16,48,77]. Shoots develop from stem buds that arise adventitiously at irregular intervals on horizontal roots. Adventitious buds are usually found in the top 8 inches (20 cm) of soil [48].

SITE CHARACTERISTICS : Sheep sorrel is common in fields, pastures, meadows, waste places, and along roadsides [4,29,39,46,72,95]. In Olympic National Park, Washington, sheep sorrel is commonly found on lower terraces and gravel bars of the riparian zone [1,13,63]. Sheep sorrel is generally found in open, unshaded areas on disturbed sites [29,92,95]. It thrives on acidic soils with low fertility, but is adapted to a variety of soil types [19,29,96]. Sheep sorrel is commonly found on sandy loam, fine sandy, silty, and gravelly soils [6,7,14,58,99].

Elevations for sheep sorrel are as follows:

feet meters

Arizona 5,500-8,000 1,650-2,400 [46] California 0-9,900 0-3,000 [34] Colorado 4,000-11,200 1,200-3,360 [33,100] Connecticut 1,020-1,050 310-320 [14] Idaho 2,800-6,000 853-1,830 [65,99] Montana 3,300-6,200 990-1,860 [100] New York 900-1,700 270-510 [85] Oregon <4,000 <1,200 [66] Utah 4,500-9,100 1,350-2,730 [95,100] Washington <4,000 <1,200 [66] Wyoming 6,000-9,000 1,800-2,700 [100]

SUCCESSIONAL STATUS : Sheep sorrel invades disturbed sites and may move onto undisturbed sites when growing conditions are ideal [1,16,52,77]. It is commonly found on clearcut, burned, and flood-disturbed riparian sites [1,13,27,94]. It colonizes rapidly by seed and may persist for 15 to 20 years through vegetative growth and propagation [16]. Competition from other species on good soils may reduce its abundance [19].

In South Carolina sheep sorrel is found in the early seral stages of a disturbed old-field broomsedge bluestem (Andropogon virginicus) community [101].

In the Pacific Northwest sheep sorrel seed generally remains viable in the soil long enough to provide a source of new infestations when the soil is disturbed [19]. In Massachusetts buried sheep sorrel seed germinated from soil samples from eastern white pine and red pine stands

6 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

1 to 80 years old [57].

Sheep sorrel is moderately shade tolerant. In the foothills of the Sierra Nevada and Coast Ranges, California, sheep sorrel was more abundant under dead blue oak (Quercus douglasii) trees (5.7%) than in open grassland (5.2%) or live blue oak stands (<0.1%) [36].

SEASONAL DEVELOPMENT : Sheep sorrel flowering dates are as follows:

California Mar-Aug [68] Idaho May-Sept [19] Georgia Mar-Jun [98] Kansas Apr-July [4] Montana May-Aug [100] North Carolina Mar-July [72,98] North Dakota May-Jun [100] Oregon May-Sept [19] South Carolina Mar-July [72,98] Tennessee Mar-Jun [98] Virginia Mar-Jun [98] Washington May-Sept [19] West Virginia May-Sept [82] Great Plains Apr-Aug [29]

FIRE ECOLOGY

SPECIES: Rumex acetosella

FIRE ECOLOGY OR ADAPTATIONS : Sheep sorrel probably survives fire by sprouting from rhizomes and roots [47,72]. It probably regenerates from on-site buried seed.

POSTFIRE REGENERATION STRATEGY : Rhizomatous herb, rhizome in soil Ground residual colonizer (on-site, initial community) Secondary colonizer - off-site seed

FIRE EFFECTS

SPECIES: Rumex acetosella

IMMEDIATE FIRE EFFECT ON PLANT : Sheep sorrel is probably top-killed by fire.

7 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

DISCUSSION AND QUALIFICATION OF FIRE EFFECT : NO-ENTRY

PLANT RESPONSE TO FIRE : Sheep sorrel probably sprouts from rhizomes following fire and establishes from on-site seed [14,21,26]. Several studies describe establishment or increase of sheep sorrel after fire. Very severe fire may kill sheep sorrel.

In New Brunswick a woodlot was clearcut in the fall of 1949 and prescribed burned in April 1951. The number of stems of sheep sorrel per area present in June 1949, 1950, 1951, and 1952 were 0, 0, 18, and 28, respectively [31]. In New Brunswick understory layers of 11 mixed hardwood stands representing an age sequence of 7 to 57 postfire years were examined. Sampling occurred in July and August 1973 and 1974. Sheep sorrel was found in stands 7, 10, 13, 17, and 25 years old. It did not occur in some 7-year-old stands, or in stands 18, 20, 29, and 37 years old [58].

In Idaho seral brushfields in a grand fir/pachistima habitat type were prescribed burned on May 14, 1975, and a portion was seeded on May 15, 1975. Sheep sorrel was present on the burn-only area, but did not occur on the burn-and-seed site. Frequency (out of 10 possible plots) of sheep sorrel was as follows [53]:

Prefire Postfire year July 3, 1974 1 2 4

control 1 2 3 3 burn only 0 0 5 4 burn and seed 0 0 0 0

In Idaho a wildfire burned a ponderosa pine (Pinus ponderosa) forest and adjacent montane grassland on August 10, 1973 for 43 days. Fourteen sites were examined in June 1974 and June 1976. Percent cover and frequency of sheep sorrel on burned and unburned sites were as follows [65]: 1974 1976 burned unburned burned unburned

cover +/- SD t* +/- 1 t +/- t 2 +/- 3 1 +/- 2 frequency +/- SD 1 +/- t t +/- 1 2 +/- 4 1 +/- 2

*t = trace

In Washington on the Mount Adams huckleberry (Vaccinium spp.) fields, an experimental area was prescribed burned from October 3-7, 1972. Average understory cover (%) of sheep sorrel from 1972 to 1977 was as follows [66]:

1972 (before treatment) 1973 1974 1975 1977

unburned, uncut 0.2 0.2 0.3 0.3 0.2 thin, underburn 0.2 0.6 0.9 1.2 1.5 clearcut and burn 0.2 0.9 1.9 1.0 1.6

In Great Britain severe fires in late summer 1976 killed all surface vegetation. Sheep sorrel first appeared in burned areas in October 1985, postfire year 9 [59].

DISCUSSION AND QUALIFICATION OF PLANT RESPONSE : Some research describes no change in cover or frequency in sheep sorrel after fire. In California the effects of a late fall burn on a mountain meadow in Grover Hot Springs State Park were evaluated. Both wet and

8 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

dry meadow plots were prescribed burned by a low- to moderate-intensity fire in mid-November 1987. Sheep sorrel was found only on dry plots before burning and did not increase following fire [8].

In Connecticut experimental tracts were set up in a little bluestem grassland in 1967. Tract A was prescribed burned annually from 1968-1976, and in 1978, 1980, 1983, and 1985. Tract B was prescribed burned annually from 1968-1975, and in 1978, 1980, 1983, and 1985. Sheep sorrel percent cover and frequency in two burns and 2 control plots on each tract were as follows [69]:

Tract A Tract B 1967 1985 1967 1985 cover freq cover freq cover freq cover freq

treatment Burn <1 9 2 6 <1 29 <1 5 Control <1 22 0 0 1 65 <1 27

The following Research Project Summaries provide information on prescribed fire use and postfire response of plant community species, including sheep sorrel, that was not available when this review was originally written:

Vegetation response to restoration treatments in ponderosa pine-Douglas-fir forests of western Montana

Effects of surface fires in a mixed red and eastern white pine stand in Michigan

Vegetation change in grasslands and heathlands following multiple spring, summer, and fall prescription fires in Massachusetts

FIRE MANAGEMENT CONSIDERATIONS : NO-ENTRY

REFERENCES

SPECIES: Rumex acetosella

REFERENCES :

1. Agee, James K. 1988. Successional dynamics in forest riparian zones. In: Raedeke, Kenneth J., ed. Streamside management: riparian wildlife and forestry interactions. Institute of Forest Resources Contribution No. 58. Seattle, WA: University of Washington, College of Forest Resources: 31-43. [7657]

9 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

2. Antos, Joseph A.; Zobel, Donald B. 1985. Plant form, developmental plasticity and survival following burial by volcanic tephra. Canadian Journal of Botany. 63: 2083-2090. [12553]

3. Auchmoody, L. R.; Walters, R. S. 1988. Revegetation of a brine-killed forest site. Soil Science Society of America Journal. 52: 277-280. [11374]

4. Bare, Janet E. 1979. Wildflowers and weeds of Kansas. Lawrence, KS: The Regents Press of Kansas. 509 p. [3801]

5. Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434]

6. Biswell, H. H. 1956. Ecology of California grasslands. Journal of Forestry. 9: 19-24. [11182]

7. Blewett, Thomas. 1978. Prairie and savanna restoration in the Necedah National Wildlife Refuge. In: Glenn-Lewin, David C.; Landers, Roger Q., Jr., eds. Proceedings, 5th Midwest prairie conference; 1976 August 22-24; Ames, IA. Ames, IA: Iowa State University: 154-157. [3370]

8. Boyd, Robert S.; Woodward, Roy A.; Walter, Gary. 1993. Fire effects on a

10 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

montane Sierra Nevada meadow. California Fish and Game. 70(3): 115-125. [24152]

9. Carson, Walter P.; Pickett, S. T. A. 1990. Role of resources and disturbance in the organization of an old-field plant community. Ecology. 71(1): 226-238. [11078]

10. Clampitt, Christopher A. 1993. Effects of human disturbances on prairies and the regional endemic Aster curtus in western Washington. Northwest Science. 67(3): 163-169. [23038]

11. Clark, Ronilee A.; Fellers, Gary M. 1986. Rare plants of Point Reyes National Seashore. Tech. Rep. No. 22. Davis, CA: University of California, Institute of Ecology; San Francisco, CA: U.S. Department of the Interior, National Park Service, Western Region. 117 p. [18095]

12. Davis, Liam H.; Sherman, Robert J. 1992. Ecological study of the rare Chorizanthe valida (Polygonaceae) at Point Reyes National Seashore, California. Madrono. 39(4): 271-280. [19787]

13. DeFerrari, Collette M.; Naiman, Robert J. 1994. A multi-scale assessment of the occurrence of exotic plants on the Olympic Peninsula, Washington. Journal of Vegetation Science. 5: 247-258. [23698]

14. Del Tredici, Peter. 1977. The buried seeds of Comptonia peregrina, the sweet fern. Bulletin of the Torrey Botanical Club. 104(3): 270-275. [21893]

15. Dorn, Robert D. 1988. Vascular plants of Wyoming. Cheyenne, WY: Mountain West Publishing. 340 p. [6129]

16. Escarre, Josep; Houssard, Claudie; Thompson, John D. 1994. An exper. study of the role of seedling density & neighbor relatedness in the persistence of Rumex acetosella in an old-field succession. Canadian Journal of Botany. 72(9): 1273-1281. [24362]

17. Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p. [905]

18. Fiedler, Peggy Lee; Leidy, Robert A. 1987. Plant communities of Ring Mountain Preserve, Marin County, California. Madrono. 34(3): 173-192. [4068]

19. Fitzsimmons, J. P.; Burrill, L. C. 1993. Red sorrel: Rumex acetosella L. Weeds. Corvallis, OR: Pacific Northwest Extension Publication; PNW 446: [25189]

20. Fonda, R. W. 1974. Forest succession in relation to river terrace development in Olympic National Park, Washington. Ecology. 55(5): 927-942. [6746]

21. Fyles, James W. 1989. Seed bank populations in upland coniferous forests in central Alberta. Canadian Journal of Botany. 67: 274-278. [6388]

22. Gardner, Robert A. 1958. Soil-vegetation associations in the redwood - Douglas-fir zone of California. In: Proceedings, 1st North American forest soils conference; [Date of conference unknown]; East Lansing, MI. East Lansing, MI: Michigan State University, Agricultural Experiment Station: 86-101. [12581]

23. Garrison, George A.; Bjugstad, Ardell J.; Duncan, Don A.; [and others]. 1977. Vegetation and environmental features of forest and range

11 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

ecosystems. Agric. Handb. 475. Washington, DC: U.S. Department of Agriculture, Forest Service. 68 p. [998]

24. Gashwiler, Jay S. 1970. Plant and mammal changes on a clearcut in west-central Oregon. Ecology. 51(6): 1018-1026. [8523]

25. Gleason, Henry A.; Cronquist, Arthur. 1991. Manual of vascular plants of northeastern United States and adjacent Canada. 2nd ed. New York: New York Botanical Garden. 910 p. [20329]

26. Granstrom, A.; Schimmel, J. 1993. Heat effects on seeds and rhizomes of a selection of boreal forest plants and potential reaction to fire. Oecologia. 94: 307-313. [22867]

27. Granstrom, Anders. 1982. Seed banks in five boreal forest stands originating between 1810 and 1963. Canadian Journal of Botany. 60: 1815-1821. [5940]

28. Grant, S. A.; Torvell, L.; Smith, H. K.; [and others]. 1987. Comparative studies of diet selection by sheep and cattle: blanket bog and heather moor. Journal of Ecology. 75: 947-960. [21037]

29. Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p. [1603]

30. Green, Pat; Jensen, Mark. 1991. Plant succession within managed grand fir forests of northern Idaho. In: Harvey, Alan E.; Neuenschwander, Leon F., compilers. Proceedings--management and productivity of western-montane forest soils; 1990 April 10-12; Boise, ID. Gen. Tech. Rep. INT-280. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 232-236. [15987]

31. Hall, I. V. 1955. Floristic changes following the cutting and burning of a woodlot for blueberry production. Canadian Journal of Agricultural Science. 35: 143-152. [9012]

32. Hall, Ivan V.; Aalders, Lewis E.; Nickerson, Nancy L.; Vander Kloet, Sam P. 1979. The biological flora of Canada. I. Vaccinium angustifolium Ait., sweet lowbush blueberry. Canadian Field-Naturalist. 93(4): 415-430. [9185]

33. Harrington, H. D. 1964. Manual of the plants of Colorado. 2d ed. Chicago: The Swallow Press Inc. 666 p. [6851]

34. Hickman, James C., ed. 1993. The Jepson manual: Higher plants of California. Berkeley, CA: University of California Press. 1400 p. [21992]

35. Hitchcock, C. Leo; Cronquist, Arthur. 1973. Flora of the Pacific Northwest. Seattle, WA: University of Washington Press. 730 p. [1168]

36. Holland, V. L. 1980. Effect of blue oak on rangeland forage production in central California. In: Plumb, Timothy R., technical coordinator. Proceedings of the symposium on the ecology, management, and utilization of California oaks; 1979 June 26-28; Claremont, CA. Gen. Tech. Rep. PSW-44. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station: 314-318. [7052]

37. Houssard, C.; Escarre, J. 1991. The effects of seed weight on growth and competitive ability of Rumex acetosella from two successional old-fields. Oecologia. 86(2): 236-242. [25190]

38. Hulten, Eric. 1968. Flora of Alaska and neighboring territories. Stanford, CA: Stanford University Press. 1008 p. [13403]

39. Humphrey, Robert R. 1955. Forage production on Arizona ranges, IV. Coconino, Navajo, Apache Counties: A study in range condition. Bulletin 266. Tucson, AZ: University of Arizona, Agricultural Experiment Station.

12 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

84 p. [5087]

40. Hungerford, K. E. 1951. Ruffed grouse populations and cover use in northern Idaho. Transactions, 16th North American Wildlife Conference. [Volume unknown]: 216-224. [13618]

41. Hungerford, Kenneth E. 1957. Evaluating ruffed grouse foods for habitat improvement. Transactions, 22nd North American Wildlife Conference. [Volume unknown]: 380-395. [15905]

42. Jobidon, R.; Thibault, J. R.; Fortin, J. A. 1989. Phytotoxic effect of barley, oat, and wheat-straw mulches in eastern Quebec forest plantations 1. Effects on red raspberry (Rubus idaeus). Forest Ecology and Management. 29: 277-294. [9899]

43. Juday, Glenn Patrick. 1992. Alaska Research Natural Areas. 3: Serpentine Slide. Gen. Tech. Rep. PNW-GTR-271. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 66 p. [21511]

44. Kauffman, J. Boone; Krueger, W. C.; Vavra, M. 1983. Effects of late season cattle grazing on riparian plant communities. Journal of Range Management. 36(6): 685-691. [16965]

46. Kearney, Thomas H.; Peebles, Robert H.; Howell, John Thomas; McClintock, Elizabeth. 1960. Arizona flora. 2d ed. Berkeley, CA: University of California Press. 1085 p. [6563]

47. Keown, Larry D. 1978. Fire management in the Selway-Bitterroot Wilderness, Moose Creek Ranger District, Nezperce National Forest. Missoula, MT: U.S. Department of Agriculture, Forest Service, Northern Region. 163 p. [18634]

48. Kiltz, B. F. 1930. Perennial weeds which spread vegetatively. Journal of the American Society of Agronomy. 22(3): 216-234. [25191]

49. Kolb, T. E.; Bowersox, T. W.; McCormick, L. H. 1990. Influences of light intensity on weed-induced stress of tree seedlings. Canadian Journal of Forestry Research. 20: 503-507. [12251]

50. Krueger, William C.; Donart, Gary B. 1974. Relationship of soils to seasonal deer forage quality. Journal of Range Management. 27(2): 114-117. [25192]

51. Kudish, Michael. 1992. Adirondack upland flora: an ecological perspective. Saranac, NY: The Chauncy Press. 320 p. [19376]

52. Lackschewitz, Klaus. 1991. Vascular plants of west-central Montana--identification guidebook. Gen. Tech. Rep. INT-227. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 648 p. [13798]

53. Leege, Thomas A.; Godbolt, Grant. 1985. Herebaceous response following prescribed burning and seeding of elk range in Idaho. Northwest Science. 59(2): 134-143. [1436]

54. Leege, Thomas A.; Herman, Daryl J.; Zamora, Benjamin. 1981. Effects of cattle grazing on mountain meadows in Idaho. Journal of Range Management. 34(4): 324-328. [2961]

55. Lepofsky, Dana; Turner, Nancy J.; Kuhnlein, Harriet V. 1985. Determining the availability of traditional wild plant foods: an example of Nuxalk foods, Bella Coola, British Columbia. Ecology of Food and Nutrition. 16: 223-241. [7002]

56. Lindsay, Mary M.; Bratton, Susan Power. 1979. Grassy balds of the Great Smoky Mountains: their history and flora in relation to potential management. Environmental Management. 3(5): 417-430. [23347]

13 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

57. Livingston, R. B.; Allessio, Mary L. 1968. Buried viable seed in successional field and forest stands, Harvard Forest, Massachusetts. Bulletin of the Torrey Botanical Club. 95(1): 58-69. [3377]

58. MacLean, David A.; Wein, Ross W. 1977. Changes in understory vegetation with increasing stand age in New Brunswick forests: species composition, cover, biomass, and nutrients. Canadian Journal of Botany. 55: 2818-2831. [10106]

59. Maltby, E.; Legg, C. J.; Proctor, M. C. F. 1990. The ecology of severe moorland fire on the North York Moors: effects of the 1976 fires, and subsequent surface and vegetation development. Journal of Ecology. 78(2): 490-518. [19852]

60. Mark, A. F. 1958. The ecology of the southern Appalachian grass balds. Ecological Monographs. 28(4): 293-336. [23350]

61. McBride, Joe R.; Norberg, Ed; Cheng, Sheauchi; Mossadegh, Ahmad. 1991. Seedling establishment of coast live oak in relation to seed caching by jay. In: Standiford, Richard B., technical coordinator. Proceedings of the symposium on oak woodlands and hardwood rangeland management; 1990 October 31 - November 2; Davis, CA. Gen. Tech. Rep. PSW-126. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: 143-148. [19055]

62. McCully, Kevin V.; Sampson, M. Glen; Watson, Alan K. 1991. Weed survey of Nova Scotia (Canada) lowbush blueberry (Vaccinium angustifolium) fields. Weed Science. 39(2): 180-185. [20036]

63. McKee, Arthur; LaRoi, George; Franklin, Jerry F. 1979. Structure, composition, and reproductive behavior of terrace forests, South Fork Hoh River, Olympic National Park. In: Proceedings, 2nd conference on scientific research in the National Parks; [Date of conference unknown]; [Location of conference unknown]. [Place of publication unknown]. [Publisher unknown]. 22-29. [21571]

64. Medve, Richard J. 1984. The mycorrhizae of pioneer species in disturbed ecosystems of western Pennsylvania. American Journal of Botany. 71(6): 787-794. [8544]

65. Merrill, Evelyn H.; Mayland, Henry F.; Peek, James M. 1980. Effects of a fall wildfire on herbacious vegetation on xeric sites in the Selway-Bitterroot Wilderness, Idaho. Journal of Range Management. 33(5): 363-367. [1642]

66. Minore, Don; Smart, Alan W.; Dubrasich, Michael E. 1979. Huckleberry ecology and management research in the Pacific Northwest. Gen. Tech. Rep. PNW-93. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 50 p. [6336]

67. Mitich, Larry W.; Kyser, Guy B. 1992. Impact of exotic weeds in the United States. In: Lym, Rodney G., ed. Proceedings, Western Society of Weed Science; 1992 March 10-12; Salt Lake City, UT. [Place of publication unknown]. Western Society of Weed Science: 86-93. [20616]

68. Munz, Philip A. 1973. A California flora and supplement. Berkeley, CA: University of California Press. 1905 p. [6155]

69. Niering, William A.; Dreyer, Glenn D. 1989. Effects of prescribed burning on Andropogon scoparius in postagricultural grasslands in Connecticut. American Midland Naturalist. 122: 88-102. [8768]

70. Nixon, Charles M.; McClain, Milford W.; Russell, Kenneth R. 1970. Deer food habits and range characteristics in Ohio. Journal of Wildlife Management. 34(4): 870-886. [16398]

14 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

71. Old, Richard. 1990. Rush skeletonweed (Chondrilla juncea L.) in Washington: Identification, biology, ecology and distribution. In: Roche, Ben F.; Roche, Cindy Talbott, eds. Range weeds revisted: Proceedings of a symposium: A 1989 Pacific Northwest range management short course; 1989 January 24-26; Spokane, WA. Pullman, WA: Washington State University, Department of Natural Resource Sciences, Cooperative Extension: 71-76. [14839]

72. Radford, Albert E.; Ahles, Harry E.; Bell, C. Ritchie. 1968. Manual of the vascular flora of the Carolinas. Chapel Hill, NC: The University of North Carolina Press. 1183 p. [7606]

73. Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p. [2843]

74. Roberts, Teresa L.; Vankat, John L. 1991. Floristics of a chronosequence corresponding to old field-deciduous forest succession in southwestern Ohio. II. Seed banks. Bulletin of the Torrey Botanical Club. 118(4): 377-384. [17753]

75. Roland, A. E.; Smith, E. C. 1969. The flora of Nova Scotia. Halifax, NS: Nova Scotia Museum. 746 p. [13158]

76. Schmidt, F. J. W. 1936. Winter food of the sharp-tailed grouse and pinnated grouse in Wisconsin. Wilson Bulletin. September: 186-203. [16729]

77. Schramm, J. R. 1966. Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Transactions of the American Philosophical Society. [Philidelphia, PA]; 56(1): 5-194. [24769]

78. Shiflet, Thomas N., ed. 1994. Rangeland cover types of the United States. Denver, CO: Society for Range Management. 152 p. [23362]

79. Skousen, J. G.; Call, C. A.; Knight, R. W. 1990. Natural revegetation of an unreclaimed lignite surface mine in east-central Texas. Southwestern Naturalist. 35(4): 434-440. [21195]

80. Stickney, Peter F. 1989. Seral origin of species originating in northern Rocky Mountain forests. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT; RWU 4403 files. 7 p. [20090]

81. Strait, Rebecca A.; Jackson, Marion T. 1986. An ecological analysis of the plant communities of Little Bluestem Prairie Nature Preserve: pre-burning versus post-burning. Proceedings, Indiana Academy of Science. 95: 447-452. [22165]

82. Strausbaugh, P. D.; Core, Earl L. 1977. Flora of West Virginia. 2nd ed. Morgantown, WV: Seneca Books, Inc. 1079 p. [23213]

83. Sugihara, Neil G.; Reed, Lois J.; Lenihan, James M. 1987. Vegetation of the Bald Hills oak woodlands, Redwood National Park, California. Madrono. 34(3): 193-208. [3788]

84. Swales, Dorothy E. 1975. An unusual habitat for Drosera rotundifolia L., its over-wintering state, and vegetative reproduction. Canadian Field-Naturalist. 89(2): 143-147. [22335]

85. Swan, Frederick R., Jr. 1970. Post-fire response of four plant communities in south-central New York state. Ecology. 51(6): 1074-1082. [3446]

86. Swenson, Jon E. 1985. Seasonal habitat use by sharp-tailed grouse, Tympanuchus phasianellus, on mixed-grass prairie in Montana. Canadian Field-Naturalist. 99(1): 40-46. [23501]

87. Tilman, David. 1988. Dynamics and structure of plant communities.

15 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

Monographs in Population Biology 26. Princeton, NJ: Princeton University Press. 360 p. [16944]

88. U.S. Department of Agriculture, Soil Conservation Service. 1994. Plants of the U.S.--alphabetical listing. Washington, DC: U.S. Department of Agriculture, Soil Conservation Service. 954 p. [23104]

89. U.S. Department of the Interior, National Biological Survey. [n.d.]. NP Flora [Data base]. Davis, CA: U.S. Department of the Interior, National Biological Survey. [23119]

90. Vankat, John L.; Carson, Walter P. 1991. Floristics of a chronosequence corresponding to old field-deciduous forest success. in southwestern Ohio. III. Post-disturbance vegetation. Bulletin of the Torrey Botanical Club. 118(4): 385-391. [17755]

91. Volland, Leonard A.; Dell, John D. 1981. Fire effects on Pacific Northwest forest and range vegetation. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Range Management and Aviation and Fire Management. 23 p. [2434]

92. Voss, Edward G. 1985. Michigan flora. Part II. Dicots (Saururaceae--Cornaceae). Bull. 59. Bloomfield Hills, MI: Cranbrook Institute of Science; Ann Arbor, MI: University of Michigan Herbarium. 724 p. [11472]

93. Walters, R. S.; Auchmoody, L. R. 1989. Vegetation re-establishment on a hardwood forest site denuded by brine. Landscape and Urban Planning. 17: 127-133. [9819]

94. Weaver, T.; Lichthart, J.; Gustafson, D. 1990. Exotic invasion of timberline vegetation, Northern Rocky Moutnains, USA. In: Schmidt, Wyman C.; McDonald, Kathy J., compilers. Proceedings--symposium on whitebark pine ecosystems: ecology and management of a high-mountain resource; 1989 March 29-31; Bozeman, MT. Gen. Tech. Rep. INT-270. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station: 208-213. [11688]

95. Welsh, Stanley L.; Atwood, N. Duane; Goodrich, Sherel; Higgins, Larry C., eds. 1987. A Utah flora. Great Basin Naturalist Memoir No. 9. Provo, UT: Brigham Young University. 894 p. [2944]

96. Wilson, Scott D.; Tilman, D. 1991. Interactive effects of fertilization and disturbance on community structure and resource availability in an old-field plant community. Oecologia. 88: 61-71. [25193]

97. Winterhalder, Keith. 1990. The trigger-factor approach to the initiation of natural regeneration of plant communities on industrially-damaged lands at Sudbury, Ontario. In: Hughes, H. Glenn; Bonnicksen, Thomas M., eds. Restoration '89: the new management challenge: Proceedings, 1st annual meeting of the Society for Ecological Restoration; 1989 January 16-20; Oakland, CA. Madison, WI: The University of Wisconsin Arboretum, Society for Ecological Restoration: 215-226. [14697]

98. Wofford, B. Eugene. 1989. Guide to the vascular plants of the Blue Ridge. Athens, GA: The University of Georgia Press. 384 p. [12908]

99. Zimmerman, G. T.; Neuenschwander, L. F. 1984. Livestock grazing influences on community structure, fire intensity, and fire frequency within the Douglas-fir/ninebark habitat type. Journal of Range Management. 37(2): 104-110. [10103]

100. Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information network (PIN) data base: Colorado, Montana, North Dakota, Utah, and Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 786 p. [806]

101. Golley, Frank B. 1965. Structure and function of an old-field broomsedge

16 of 17 9/24/2007 4:59 PM Rumex acetosella http://www.fs.fed.us/database/feis/plants/forb/rumace/all.html

community. Ecological Monographs. 35(1): 113-137. [17419]

FEIS Home Page

17 of 17 9/24/2007 4:59 PM