Monte Carlo Simulations of the Stopped Muon Monitor at LBNE Using Geant 4

Total Page:16

File Type:pdf, Size:1020Kb

Monte Carlo Simulations of the Stopped Muon Monitor at LBNE Using Geant 4 Monte Carlo Simulations of the Stopped Muon Monitor at LBNE using Geant 4 Daniel Poulson Senior Honors Thesis University of Colorado at Boulder, Department of Physics Defended 11/7/2013 Honors Committee: Thesis Advisor: Prof. Eric D. Zimmerman Physics Honors Advisor: Prof. James Thompson Physics Honors Committee Member: Prof. Andrew Hamilton APS This thesis entitled: Monte Carlo simulations of the Stopped Muon Monitor at LBNE using Geant 4 written by Daniel C. Poulson has been approved for the Department of Physics Prof. Eric D. Zimmerman Prof. James Thompson Prof. Andrew Hamilton Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Abstract The purpose of the Long–Baseline Neutrino Experiment is to make measurements of neutrino oscillations. The stopped muon monitors are one part of the experiment, and are designed to measure absolute flux and composition of the tertiary muon beam. The detectors operate by detecting µ+ decay in an interior water volume, and 12B decay produced by µ− capture on a graphite shell. The design of the stopped muon monitors is simulated with a Monte Carlo software package called Geant 4. The detector’s response to µ+, µ−, 12B, as well as fast and thermal neutron backgrounds are reviewed and analysed. The inability of the stopped muon monitor to detect most 12B decays, as well as the overlap in signal of neutron interactions and 12B decay, require design modifications. The graphite shell is removed and should be exchanged for a neutron shielding material, while the water volume should be replaced with mineral oil. A scintillating veto is also included to identify events which originate, and are fully contained by the mineral oil. Follow-up simulations indicate that the 12B signal is significantly improved and the scintillating veto may be able to identify fully contained events. Contents 1 Introduction 1 1.1 Context .................................... 1 1.2 Overview.................................... 1 2 Neutrino Oscillations 3 2.1 NeutrinosinMassandFlavorBases. 3 2.2 ThePMNSNeutrinoMixingMatrix. 5 2.3 Charge-Parity Violation and Mass Effects . 7 3 The Long-Baseline Neutrino Experiment 8 3.1 AcceleratorExperiments ........................... 8 3.2 LBNE ..................................... 12 3.3 TheMuonAlcove............................... 14 4 The Stopped Muon Monitor Design and Simulation 17 4.1 TheStoppedMuonMonitor ......................... 17 4.2 Geant4 .................................... 19 5 Simulations of the Stopped Muon Monitor 22 5.1 Checking Physical Processes . 22 5.2 Simulations using the CDR Design . 27 5.3 IssueswiththeCDRDesignoftheSMM . 30 5.4 Simulations with the Revised Design . 33 5.4.1 Light Yield Changes . 33 5.4.2 VetoStudies.............................. 39 5.5 AdditionalNeutronBackground . 40 6 LBNE Simulations and Future Analysis 42 6.1 G4LBNESimulations............................. 42 6.2 FutureAnalysis ................................ 43 i 7 Conclusion 46 ii List of Figures 2.1 The two possible options for mass hierarchy, NH (a) and IH (b), depending 2 on the sign of ∆m32. This scale shows only the differences in masses. It does not show the bottom of the scale since neutrino oscillations may only measure mass differences and not absolute neutrino mass. There is a 95% confidence level that m . (0.3 1.3) eV/c2 putting the scale here in j j − 2 4 the sub eV /c [1]. ..............................P 6 3.1 A simple diagram of the creation of the ν beam. Imagetakenfrom[2] . 9 3.2 Mean rate of energy loss in different materials for different muon momen- tum. Radiative effects such as Bremsstrahlung are not included. Plot takenfrom[1]................................. 11 3.3 An aerial photon of Fermilab with markers for the future LBNE installa- tions.Imagetakenfrom[2]. .. .. 12 3.4 The side-view of the near site. The proton beam is angled down towards the Homestake Mine in Lead, SD (to the left). Image taken from [2] . .. 13 3.5 The liquid-argon time projection chamber to be used at the Homestake mine. This detector will provide data on the composition of the neutrino beam.Imagestakenfrom[3]. 14 3.6 The layout of the Muon Alcove. Each muon detector measures a different characteristic of the muon beam. For scale the distance between the and of the absorber and the beginning of the blue blocks is approximately 6 m. Imagemodifiedfrom[4] ........................... 16 3.7 The three types of muon detectors to be used in the Muon Alcove for LBNE.Imagestakenfrom[4] . .. .. 16 4.1 Two basic Feynman diagrams showing muon interactions. .. 18 4.2 A top view of the Muon Alcove. The SMMs are laid out with a 5x5 cross of detectors at the first layer, followed by several three detector high columns. Each layer is separated by a wall of shielding blue-blocks. Image takenfrom[4]................................. 19 iii 4.3 Comparing the mass attenuation coefficient of Al for γ rays of two Geant 4 physics models (Low Energy [ ]; Standard [ ]) against actual data taken • ◦ fromtheNISTdatabase[—]. Imagetakenfrom[5] . 21 5.1 The top and side view of the simulated SMM. Regions I, II, III, and IV correspond to graphite, PMTs, water, and aluminum respectively. .... 23 5.2 The starting x and y-positions of all simulated µ+. It can be seen that the positions are uniformly distributed throughout the volume. .. 24 5.3 The number of hits recorded at the PMTs (per 150,000 µ+ decays) vs z and r2 positions. The radius is squared in order to accommodate greater areabeingsweptoutasradiusincreases. 25 5.4 Comparison of signals from positive and negative muon decays. Zero hit eventsarenotincluded. ........................... 26 5.5 Comparison of signals from positive and negative muon decays including zero hit events. The peak at zero corresponds to µ− capture on nuclei. 26 5.6 The Geant 4 simulated 12B decay energy spectrum. The histogram has beennormalizedsothatsumofentriesis1. 27 5.7 The number of optical photons at PMTs for neutrons starting in the water volumefrom10MeVto10eV. ....................... 28 5.8 The number of optical photons at PMTs for neutrons starting in the water volumefrom10MeVto10eVonalogscale. 29 5.9 The number of optical photons at PMTs for µ+ uniformily distributed throughtheentiredetectorvolume. 30 5.10 The number of optical photons at PMTs for 12B simulated throughout the graphitevolumeoftheSMM. .. .. 31 5.11 Position dependence of the number of hits detected vs z and r2 positions. 32 5.12 The number of optical photons at PMTs for 12B simulated throughout the watervolumeoftheSMM. ......................... 32 5.13 The top and side view of the revised SMM. Regions I, II, III, IV, V corre- spond to graphite, PMTs, mineral oil, the scintillating veto, and aluminum respectively. .................................. 34 5.14 Simulations of 177,000 µ+ inwaterandMarcol7. 34 5.15 Simulations of 177,000 12BinwaterandMarcol7. 35 5.16 Simulations of 177,000 10 eV neutrons in water and Marcol 7. ... 35 5.17 Simulations of 177,000 µ+ in mineral oil with varying light yield. 36 5.18 Simulations of 177,000 12B in mineral oil with varying light yield. 36 5.19 Simulations of 177,000 10 eV neutrons in mineral oil with varying light yield. 37 iv 5.20 Simulations of 10 MeV to 10 eV neutrons to see the effect of Marcol 7 on the neutron background. Zero hit events are not included. ... 38 5.21 A comparison of 10 eV neutrons with 2.2 MeV photons, both histograms do not inclue zero hit events. The region of overlap is the first part of the neutronhistogram. .............................. 38 5.22 Part of the distibution of optical photons created in the scintillating veto. 39 5.23 Comparisons of all µ+ decays against the veto cut and the events which started in the mineral oil. Events with zero hits are suppressed. ... 40 6.1 Negative muon energy after the absorber with parentage information. 44 6.2 Negative muon energy after the absorber with parentage information. Ver- ticallogscale.................................. 44 6.3 Positive muon energy after the absorber with parentage information. 45 6.4 Positive muon energy after the absorber with parentage information. Ver- ticallogscale.................................. 45 v List of Tables 2.1 A 2013 update on the status of experimental best fits for the neutrino 2 mixing parameters. Since the sign of ∆m31 is ambiguous, some parameters have two rows for fits of the normal and inverted hierarchies. Data taken from[6]..................................... 6 3.1 The main decay modes for K and π, which are produced after the proton beam collides with the target. This table also holds for all charges replaced 0 0 with their charge conjugates. The K is a superposition of 50 % KS 0 and 50 % KL. It can be seen that there are potential decays which may contaminate the νµ beam in the form of νe, νµ, and νe. Data taken from [1] 10 5.1 A list of the simulated concentric cylinders used to construct the SMM. Larger cylinders encapsulate the cylinders which are smaller. The height of each cylinder spans one radius length above and one radius length below thecenterofthedetector. .. .. 23 vi Chapter 1 Introduction 1.1 Context The standard model of particle physics contains all of the particles which are currently known and describes their interaction. This model has been highly successful in its theoretical predictions when compared with experiment. However, there are still some particle interactions which are not included within the framework of the standard model. These interactions fall into the category of new physics. Describing the underlying phys- ical processes which describe new physics is the next step expanding understanding of sub-atomic physics. One example of new physics which goes beyond the standard model focuses on one of the subgroups of particles called neutrinos, and the phenomenon of neutrino mixing which is called neutrino oscillations. Understanding of neutrino oscillations has increased in recent decades due to several large scale neutrino measuring experiments.
Recommended publications
  • Arxiv:2010.09509V2 [Hep-Ph] 2 Apr 2021 in Searches for CLFV Or LNV, Incoming Muons Are the Source of Both the Μ → E Signal and the RMC Back- Ground
    FERMILAB-PUB-20-525-T The high energy spectrum of internal positrons from radiative muon capture on nuclei Ryan Plestid1, 2, ∗ and Richard J. Hill1, 2, y 1Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA 2Theoretical Physics Department, Fermilab, Batavia, IL 60510,USA (Dated: April 5, 2021) The Mu2e and COMET collaborations will search for nucleus-catalyzed muon conversion to positrons (µ− ! e+) as a signal of lepton number violation. A key background for this search is radiative muon capture where either: 1) a real photon converts to an e+e− pair “externally" in surrounding material; or 2) a virtual photon mediates the production of an e+e− pair “internally”. If the e+ has an energy approaching the signal region then it can serve as an irreducible background. In this work we describe how the near end-point internal positron spectrum can be related to the real photon spectrum from the same nucleus, which encodes all non-trivial nuclear physics. I. INTRODUCTION Specifically, on a nucleus (e.g. aluminum), the reaction µ− + [A; Z] ! e+ + [A; Z − 2] ; (1) Charged lepton flavor violation (CLFV) is a smok- ing gun signature of physics beyond the Standard Model becomes a viable target for observation (see also [7]). (SM) and is one of the most sought-after signals at the While neutrinoless double beta (0νββ) decay is often intensity frontier [1–4]. Important search channels in- touted as the most promising direction for the discovery volving the lightest two lepton generations are µ ! 3e, of LNV, there do exist extensions of the SM that predict µ ! eγ, and nucleus-catalyzed µ ! e [1–6].
    [Show full text]
  • 4 Muon Capture on the Deuteron 7 4.1 Theoretical Framework
    February 8, 2008 Muon Capture on the Deuteron The MuSun Experiment MuSun Collaboration model-independent connection via EFT http://www.npl.uiuc.edu/exp/musun V.A. Andreeva, R.M. Careye, V.A. Ganzhaa, A. Gardestigh, T. Gorringed, F.E. Grayg, D.W. Hertzogb, M. Hildebrandtc, P. Kammelb, B. Kiburgb, S. Knaackb, P.A. Kravtsova, A.G. Krivshicha, K. Kuboderah, B. Laussc, M. Levchenkoa, K.R. Lynche, E.M. Maeva, O.E. Maeva, F. Mulhauserb, F. Myhrerh, C. Petitjeanc, G.E. Petrova, R. Prieelsf , G.N. Schapkina, G.G. Semenchuka, M.A. Sorokaa, V. Tishchenkod, A.A. Vasilyeva, A.A. Vorobyova, M.E. Vznuzdaeva, P. Winterb aPetersburg Nuclear Physics Institute, Gatchina 188350, Russia bUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA cPaul Scherrer Institute, CH-5232 Villigen PSI, Switzerland dUniversity of Kentucky, Lexington, KY 40506, USA eBoston University, Boston, MA 02215, USA f Universit´eCatholique de Louvain, B-1348 Louvain-la-Neuve, Belgium gRegis University, Denver, CO 80221, USA hUniversity of South Carolina, Columbia, SC 29208, USA Co-spokespersons underlined. 1 Abstract: We propose to measure the rate Λd for muon capture on the deuteron to better than 1.5% precision. This process is the simplest weak interaction process on a nucleus that can both be calculated and measured to a high degree of precision. The measurement will provide a benchmark result, far more precise than any current experimental information on weak interaction processes in the two-nucleon system. Moreover, it can impact our understanding of fundamental reactions of astrophysical interest, like solar pp fusion and the ν + d reactions observed by the Sudbury Neutrino Observatory.
    [Show full text]
  • Status of the Alcap Experiment
    Status of the AlCap experiment R. Phillip Litchfield∗† UCL E-mail: [email protected] The AlCap experiment is a joint project between the COMET and Mu2e collaborations. Both experiments intend to look for the lepton-flavour violating conversion m + A ! e + A, using ter- tiary muons from high-power pulsed proton beams. In these experiments the products of ordinary muon capture in the muon stopping target are an important concern, both in terms of hit rates in tracking detectors and radiation damage to equipment. The goal of the AlCap experiment is to provide precision measurements of the products of nuclear capture on Aluminium, which is the favoured target material for both COMET and Mu2e. The results will be used for optimising the design of both conversion experiments, and as input to their simulations. Data was taken in December 2013 and is currently being analysed. 16th International Workshop on Neutrino Factories and Future Neutrino Beam Facilities - NUFACT2014, arXiv:1501.04880v1 [physics.ins-det] 20 Jan 2015 25 -30 August, 2014 University of Glasgow, United Kingdom ∗Speaker. †On behalf of the AlCap Collaboration © Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Status of the AlCap experiment R. Phillip Litchfield 1. Muon to electron conversion and the motivation for AlCap The term ‘muon to electron conversion’ refers to processes that cause the neutrinoless decay of a muon into an electron, specifically those in which the muon is the ground-state orbit of an atomic nucleus.1 In this case the conservation of momentum and energy can be achieved by coherent interaction on the nucleus, i.e.
    [Show full text]
  • Subject Categories and Scope Descriptions Co Q
    International Nuclear Information System (INIS) • LU Q CD XA0202260 D) c CO IAEA-ETDE/TNIS-2 o X LU CO -I—• SUBJECT CATEGORIES AND SCOPE DESCRIPTIONS CO Q ETDE/INIS Joint Reference Series No. 2 CT O c > LU O O E "- =3 CO I? O cB CD C , LU • CD 3 CO -Q T3 CD >- c •a « C c CD o o CD «2 i- CO .3-3/33 CO ,_ CD a) O % 3 O •z. a. Renewable energy technologies • Radiation protection • Energy storage, conversion, and consumption Radioactive waste management • Energy policy • Radiation effects on living organisms • Fossil fuels INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, JULY 2002 ETDE/INIS Joint Reference Series No. 2 SUBJECT CATEGORIES AND SCOPE DESCRIPTIONS INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, JULY 2002 SUBJECT CATEGORIES AND SCOPE DESCRIPTIONS IAEA, VIENNA, 2002 IAEA-ETDE/INIS-2 ISBN 92-0-112902-5 ISSN 1684-095X © IAEA, 2002 Printed by the IAEA in Austria July 2002 PREFACE This document is one in a series of publications known as the ETDE/INIS Joint Reference Series. It defines the subject categories and provides the scope descriptions to be used for categorization of the nuclear literature for the preparation of INIS input by national and regional centers. Together with volumes of the INIS Reference Series and ETDE/INIS Joint Reference Series it defines the rules, standards and practices and provides the authorities to be used in the International Nuclear Information System. A list of the volumes published in the IMS Reference Series and ETDE/ENIS Joint Reference Series can be found at the end of this publication.
    [Show full text]
  • Radiative Muon Capture on Carbon, Oxygen and Calcium
    TRI-PP -90-21 May 1990 Radiative muon capture on carbon, oxygen and calcium D.S. Armstrong/") S. Ahmad/6) R.A. Burnham/C) T.P. Gorringe.W M.D. Hasinoff, A.J. Larabee<e>, and C.E. Waltham University of British Columbia, Vancouver, B.C., Canada V6T 2A6 G. AzuelosO, J.A. Macdonald, T. Numao and J-M. Poutissou TRIUMF, Vancouver, B.C., Canada VST 2A3 M. Blecher and D.H. Wright'^ Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 E.T.H. Clifford^) and J. Summhammer*1' TRIUMF and University of Victoria, Victoria, B.C., Canada V8W 2Y2 P. Depommier and R. Poutissou Universile de Montreal, Montreal, P.Q., Canada II3C 3J7 H. Mes National Research Council of Canada, Ottawa, Canada KlA OR6 B.C. Robertson Queen's University, Kingston, Ontario, Canada K7L 3N6 The photon energy spectra from radiative muon capture on 12C,16 O and 40Ca have been measured using a time projection chamber as a pair spec- trometer. The branching ratio for radiative muon capture is sensitive to <7P, the induced pseudoscalar coupling constant of the weak interaction. Ex- pressed in terms of the axial-vector weak coupling constant ga, values of 40 16 ffp/So = 5.7 ± 0.8 and gp/ga = 7.3 ± 0.9 are obtained for Ca and O respectively, from comparison with phenomenological calculations of the nu- clear response. From comparison with microscopic calculations, values of {oT 4 Ca 16 and 12 gp/ga = 4.6± 1.8, 13.6 +}|, and 16.2 ±J$ ° . °. C, respec- •:« tively are obtained.
    [Show full text]
  • Electroweak Structure of Light Nuclei Within Chiral Effective Field Theory
    Few-Body Systems (EFB22) manuscript No. (will be inserted by the editor) Laura E. Marcucci Electroweak structure of light nuclei within chiral effective field theory Received: date / Accepted: date Abstract We review the results of the most recent calculations for the electromagnetic structure of light nuclei, the weak muon capture on deuteron and 3He and the weak proton-proton capture reaction at energies of astrophysical interest, performed within the chiral effective field theory framework. Keywords Chiral effective field theory · Electromagnetic Form Factors · Light nuclei · Muon capture · Proton-proton weak capture 1 Introduction Among the great advantages of the chiral effective field theory (χEFT) framework, the two following ones are here of interest: (i) the possibility of deriving nuclear electroweak (EW) currents consistently with the nuclear interaction, and (ii) the possibility of setting a hierarchy among the different contri- butions, both for the interactions and the currents. In fact, it is well known that χEFT can justify a priori the empirical observation that the contribution of three-nucleon interactions to nuclear structure is far less significant than that of the two-nucleon force. Furthermore, the χEFT power counting allows to recognize which are the most significant contributions also among the different currents. The idea of using χEFT to derive the nuclear EW transition operators was first implemented by Park et al. [1] in the nineties. They derived the nuclear electromagnetic (EM) current and charge operators, within the so-called heavy-baryon chiral perturbation theory (HBχPT) approach, where the baryons are treated as heavy static sources, and the perturbative expansion is performed in terms of the involved momenta over the baryon mass.
    [Show full text]
  • Charged-Particle Spectra from $\Mu ^{-}$ Capture on Al
    PHYSICAL REVIEW C 101, 035502 (2020) Charged-particle spectra from μ− capture on Al A. Gaponenko ,1,* A. Grossheim,2 A. Hillairet,3 G. M. Marshall ,2 R. E. Mischke,2 and A. Olin 2,† 1Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA 2TRIUMF, Vancouver, British Columbia, Canada V6T 2A3 3Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada V8P 5C2 (Received 20 August 2019; revised manuscript received 13 December 2019; accepted 10 February 2020; published 13 March 2020) Published data on the emission of charged particles following nuclear muon capture are extremely limited. In addition to its interest as a probe of the nuclear response, these data are important for the design of some current searches for lepton flavor violation. This work presents momentum spectra of protons and deuterons following μ− capture in aluminum. It is the first measurement of a muon capture process performed with a tracking spectrometer. A precision of better than 10% over the momentum range of 100–190 MeV/c for protons is obtained; for deuterons of 145–250 MeV/c the precision is better than 20%. The observed partial yield of protons with emission momenta above 80 MeV/c (kinetic energy 3.4 MeV) is 0.0322 ± 0.0007(stat) ± 0.0022(syst) per capture, and for deuterons above 130 MeV/c (4.5 MeV) it is 0.0122 ± 0.0009(stat) ± 0.0006(syst). Extrapolating to total yields gives 0.045 ± 0.001(stat) ± 0.003(syst) ± 0.001(extrapolation) per capture for protons and 0.018 ± 0.001(stat) ± 0.001(syst) ± 0.002(extrapolation) for deuterons, which are the most precise measurements of these quantities to date.
    [Show full text]
  • Nuclear Isotope Production by Ordinary Muon Capture Reaction $
    Nuclear Isotope Production by Ordinary Muon Capture Reaction I I.H. Hashima,b,c,∗, H. Ejirib,d, F. Othmana, F. Ibrahima, F. Soberia, N.N.A.M.A. Ghania, T. Shimab, A. Satoe, K. Ninomiyaf aDepartment of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia. bResearch Center for Nuclear Physics, Osaka University, Ibaraki Osaka 567-0047, Japan. cNational Centre for Particle Physics, Universiti Malaya, 50603 Kuala Lumpur, Malaysia dNuclear Science, Czech Technical University, Prague, Czech Republic. eDepartment of Physics, Osaka University, Toyonaka Osaka 560-0043, Japan. fDepartment of Chemistry, Osaka University, Toyonaka Osaka 560-0043, Japan. Abstract Muon capture isotope production (MuCIP) using negative ordinary muon (µ) capture reactions (OMC) is used to efficiently produce various kinds of nuclear isotopes for both fundamental and applied science studies. The large capture probability of µ into a nucleus, together with the high intensity µ beam, make it possible to produce nuclear isotopes in the order of 10 9−10 per second de- pending on the muon beam intensity. Radioactive isotopes (RIs) produced by MuCIP are complementary to those produced by photon and neutron capture reactions and are used for various science and technology applications. MuCIP on NatMo by using the RCNP MuSIC µ beam is presented to demonstrate the feasibility of MuCIP. Nuclear isotopes produced by MuCIP are evaluated by using a pre-equilibrium (PEQ) and equilibrium (EQ) proton neutron emission model. Radioactive 99Mo isotopes and the metastable 99mTc isotopes, which Nat arXiv:1908.08166v3 [nucl-ex] 1 Oct 2019 are used extensively in medical science, are produced by MuCIP on Mo and IThis project is partially funded through the UTM-International Industry Institute Grant (IIIG) Grant No Q.J130000.3026.01M14 and the Fundamental Research Grant Scheme (FRGS) Grant No.
    [Show full text]
  • The Nuclear Physics of Muon Capture
    Physics Reports 354 (2001) 243–409 The nuclear physics of muon capture D.F. Measday ∗ University of British Columbia, 6224 Agricultural Rd., Vancouver, BC, Canada V6T 1Z1 Received December 2000; editor: G:E: Brown Contents 4.8. Charged particles 330 4.9. Fission 335 1. Introduction 245 5. -ray studies 343 1.1. Prologue 245 5.1. Introduction 343 1.2. General introduction 245 5.2. Silicon-28 350 1.3. Previous reviews 247 5.3. Lithium, beryllium and boron 360 2. Fundamental concepts 248 5.4. Carbon, nitrogen and oxygen 363 2.1. Properties of the muon and neutrino 248 5.5. Fluorine and neon 372 2.2. Weak interactions 253 5.6. Sodium, magnesium, aluminium, 372 3. Muonic atom 264 phosphorus 3.1. Atomic capture 264 5.7. Sulphur, chlorine, and potassium 377 3.2. Muonic cascade 269 5.8. Calcium 379 3.3. Hyperÿne transition 275 5.9. Heavy elements 383 4. Muon capture in nuclei 281 6. Other topics 387 4.1. Hydrogen 282 6.1. Radiative muon capture 387 4.2. Deuterium and tritium 284 6.2. Summary of g determinations 391 4.3. Helium-3 290 P 6.3. The (; e±) reaction 393 4.4. Helium-4 294 7. Summary 395 4.5. Total capture rate 294 Acknowledgements 396 4.6. General features in nuclei 300 References 397 4.7. Neutron production 311 ∗ Tel.: +1-604-822-5098; fax: +1-604-822-5098. E-mail address: [email protected] (D.F. Measday). 0370-1573/01/$ - see front matter c 2001 Published by Elsevier Science B.V.
    [Show full text]
  • Muon Capture on Light Isotopes in Double Chooz
    Muon capture on light isotopes in Double Chooz Y. Abe,27 T. Abrah˜ao,5 H. Almazan,20 C. Alt,1 S. Appel,29 J.C. Barriere,14 E. Baussan,22 I. Bekman,1 M. Bergevin,9 T.J.C. Bezerra,25 L. Bezrukov,13 E. Blucher,6 T. Brugi`ere,22 C. Buck,20 J. Busenitz,2 A. Cabrera,4 L. Camilleri,8 R. Carr,8 M. Cerrada,7 E. Chauveau,25 P. Chimenti,31 A.P. Collin,20 E. Conover,6 J.M. Conrad,19 J.I. Crespo-Anad´on,7 K. Crum,6 A.S. Cucoanes,23, ∗ E. Damon,10 J.V. Dawson,4 H. de Kerret,4 J. Dhooghe,9 D. Dietrich,30 Z. Djurcic,3 J.C. dos Anjos,5 M. Dracos,22 A. Etenko,18 M. Fallot,23 J. Felde,9, † S.M. Fernandes,2 V. Fischer,14 D. Franco,4 M. Franke,29 H. Furuta,25 I. Gil-Botella,7 L. Giot,23 M. G¨oger-Neff,29 H. Gomez,4 L.F.G. Gonzalez,32 L. Goodenough,3 M.C. Goodman,3 N. Haag,29 T. Hara,17 J. Haser,20 D. Hellwig,1 M. Hofmann,29 G.A. Horton-Smith,15 A. Hourlier,4 M. Ishitsuka,27 J. Jochum,30 C. Jollet,22 F. Kaether,20 L.N. Kalousis,33 Y. Kamyshkov,24 M. Kaneda,27 D.M. Kaplan,12 T. Kawasaki,16 E. Kemp,32 D. Kryn,4 M. Kuze,27 T. Lachenmaier,30 C.E. Lane,10 T. Lasserre,4, 14 A. Letourneau,14 D. Lhuillier,14 H.P.
    [Show full text]
  • Prospective Study of Muon Storage Rings at Cern
    XC99FD1O1 CERN 99-02 ECFA 99-197 30Aprill999 LABORATOIRE EUROPEEN POUR LA PHYSIQUE DES PARTICULES CERN EUROPEAN LABORATORY FOR PARTICLE PHYSICS PROSPECTIVE STUDY OF MUON STORAGE RINGS AT CERN Edited by: Bruno Autin, Alain Blondel and John Ellis 30-47 GENEVA 1999 Copyright CERN, Genève, 1999 Propriété littéraire et scientifique réservée Literary and scientific copyrights reserved in pour tous les pays du monde. Ce document ne all countries of the world. This report, or peut être reproduit ou traduit en tout ou en any part of it, may not be reprinted or trans- partie sans l'autorisation écrite du Directeur lated without written permission of the copy- général du CERN, titulaire du droit d'auteur. right holder, the Director-General of CERN. Dans les cas appropriés, et s'il s'agit d'utiliser However, permission will be freely granted for le document à des fins non commerciales, cette appropriate non-commercial use. autorisation sera volontiers accordée. If any patentable invention or registrable Le CERN ne revendique pas la propriété des design is described in the report, CERN makes inventions brevetables et dessins ou modèles no claim to property rights in it but offers it susceptibles de dépôt qui pourraient être for the free use of research institutions, man- décrits dans le présent document; ceux-ci peu- ufacturers and others. CERN, however, may vent être librement utilisés par les instituts de oppose any attempt by a user to claim any recherche, les industriels et autres intéressés. proprietary or patent rights in such inventions Cependant, le CERN se réserve le droit de or designs as may be described in the present s'opposer à toute revendication qu'un usager document.
    [Show full text]
  • Download Download
    A Laboratory Study of Cosmic Ray Produced Radionuclides with Muons Joseph L. Breeden Martinsville High School Martinsville, Indiana 46151 Muons are a major constituent of the secondary cosmic radiation detected at sea level. They comprise 63% of the secondary radiation while 21% are neutrons, 15% are electrons, and <1% are pions and protons. This secondary cosmic radia- tion is responsible for 30 - 40% of the total natural background radiation (NCRP Report No. 45). Electrons, taus, and their respective neutrinos and antiparticles are members of the family of leptons along with the muon. Leptons are particles which in- teract exclusively through weak and electromagnetic forces. The muon possesses 2 a mass of 105.7 MeV/c , charge of ± 1, and a spin of Vz. It is simply a more massive version of the electron. Both positive and negative muons are produced in the atmosphere via the v p decays: -k + — /x+ + \i and t - — p- + /i. These muons can then free decay by the processes: fi+ — e+ + ve + v~n and /i— — e— + pe + v/i. The negative muons also can decay via a capture decay: \i- + p — n + v fi with the proton being bound in the nucleus of an atom. In the capture decay, 13 the muon first enters an orbit around the nucleus. It then falls rapidly (10~ sec.) into the nucleus and interacts with a proton forming a neutron and a neutrino thus changing atomic number of the element. Muon decay differs from that of electron capture because the muon capture process deposits an average of 35 MeV to the residual nucleus and is thus capable of ejecting several neutrons from the atomic nucleus.
    [Show full text]