A Machine Learning Approach for Investigating Delirium As a Multifactorial Syndrome
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Topical Corticosteroids and Fungal Keratitis: a Review of the Literature and Case Series
Journal of Clinical Medicine Review Topical Corticosteroids and Fungal Keratitis: A Review of the Literature and Case Series Karl Anders Knutsson 1,*, Alfonso Iovieno 2,3, Stanislav Matuska 1, Luigi Fontana 2 and Paolo Rama 1 1 Cornea and Ocular Surface Unit, San Raffaele Scientific Institute, 20132 Milan, Italy; [email protected] (S.M.); [email protected] (P.R.) 2 Arcispedale Santa Maria Nuova—IRCCS, 42123 Reggio Emilia, Italy; [email protected] (A.I.); [email protected] (L.F.) 3 Department of Ophthalmology, University of British Columbia, Vancouver, BC V6T 1Z, Canada * Correspondence: [email protected] or [email protected]; Tel./Fax: +39-022-6432-648 Abstract: The management of fungal keratitis is complex since signs and symptoms are subtle and ocular inflammation is minimal in the preliminary stages of infection. Initial misdiagnosis of the condition and consequent management of inflammation with corticosteroids is a frequent occurrence. Topical steroid use is considered to be a principal factor for development of fungal keratitis. In this review, we assess the studies that have reported outcomes of fungal keratitis in patients receiving steroids prior to diagnosis. We also assess the possible rebound effect present when steroids are abruptly discontinued and the clinical characteristics of three patients in this particular clinical scenario. Previous reports and the three clinical descriptions presented suggest that in fungal keratitis, discontinuing topical steroids can induce worsening of clinical signs. In these cases, we recommend to slowly taper steroids and continue or commence appropriate antifungal therapy. Citation: Knutsson, K.A.; Iovieno, A.; Keywords: fungal keratitis; topical corticosteroids; topical steroids; rebound effect Matuska, S.; Fontana, L.; Rama, P. -
Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity
molecules Review Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity Valery M. Dembitsky 1,2,*, Ekaterina Ermolenko 2, Nick Savidov 1, Tatyana A. Gloriozova 3 and Vladimir V. Poroikov 3 1 Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada; [email protected] 2 A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; [email protected] 3 Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; [email protected] (T.A.G.); [email protected] (V.V.P.) * Correspondence: [email protected]; Tel.: +1-403-320-3202 (ext. 5463); Fax: +1-888-858-8517 Abstract: Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, Citation: Dembitsky, V.M.; which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, Ermolenko, E.; Savidov, N.; the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with Gloriozova, T.A.; Poroikov, V.V. -
Download and Use
Shenkin et al. BMC Medicine (2019) 17:138 https://doi.org/10.1186/s12916-019-1367-9 RESEARCHARTICLE Open Access Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method Susan D. Shenkin1, Christopher Fox2, Mary Godfrey3, Najma Siddiqi4, Steve Goodacre5, John Young6, Atul Anand7, Alasdair Gray8, Janet Hanley9, Allan MacRaild8, Jill Steven8, Polly L. Black8, Zoë Tieges1, Julia Boyd10, Jacqueline Stephen10, Christopher J. Weir10 and Alasdair M. J. MacLullich1* Abstract Background: Delirium affects > 15% of hospitalised patients but is grossly underdetected, contributing to poor care. The 4 ‘A’s Test (4AT, www.the4AT.com) is a short delirium assessment tool designed for routine use without special training. Theprimaryobjectivewastoassesstheaccuracyofthe4ATfor delirium detection. The secondary objective was to compare the 4AT with another commonly used delirium assessment tool, the Confusion Assessment Method (CAM). Methods: This was a prospective diagnostic test accuracy study set in emergency departments or acute medical wards involving acute medical patients aged ≥ 70. All those without acutely life-threatening illness or coma were eligible. Patients underwent (1) reference standard delirium assessment based on DSM-IV criteria and (2) were randomised to either the index test (4AT, scores 0–12; prespecified score of > 3 considered positive) or the comparator (CAM; scored positive or negative), in a random order, using computer-generated pseudo-random numbers, stratified by study site, with block allocation. Reference standard and 4AT or CAM assessments were performed by pairs of independent raters blinded to the results of the other assessment. Results: Eight hundred forty-three individuals were randomised: 21 withdrew, 3 lost contact, 32 indeterminate diagnosis, 2 missing outcome, and 785 were included in the analysis. -
Development and Validation of the 4AT: a New Rapid Screening Tool for Delirium
Development and validation of the 4AT: a new rapid screening tool for delirium REC no. Scotland 15/SS/0071 England 15/YH/0317 R&D no. Edinburgh 2015/0347 Sheffield 18021 Bradford 1949 International Standard Randomised Controlled Trial Number: ISRCTN 53388093 UK Clinical Research Network: ID 19502 Funding Acknowledgement: This project was funded by the National Institute for Health Research Health Technology Assessment Programme (project number 11/143/01) Chief Investigator Professor Alasdair MacLullich Professor of Geriatric Medicine Edinburgh Delirium Research Group Geriatric Medicine Unit University of Edinburgh Room F1424 Royal Infirmary of Edinburgh 51 Little France Crescent Edinburgh EH16 4TJ tel +44 (0) 131 242 6481 fax +44 (0) 131 242 6370 4AT Study Protocol Version 5, 28th July 2015 Page 1 of 29 Co-investigator and Collaborators Christopher Fox, Reader in Psychiatry and Honorary Consultant in Old Age Psychiatry, University of East Anglia Mary Godfrey, Reader in Health and Social Care, Institute of Health Sciences, University of Leeds Najma Siddiqi, Consultant Psychiatrist, Bradford District NHS Care Trust, and Clinical Senior Lecturer, University of York Steve Goodacre, Professor of Emergency Medicine, School of Health and Related Research, University of Sheffield John Young, Professor of Elderly Care Medicine, Academic Unit of Elderly Care and Rehabilitation, University of Leeds Atul Anand, Clinical Research Fellow (Cardiovascular Sciences and Geriatric Medicine), University of Edinburgh Susan Shenkin, Clinical Senior Lecturer -
Antiparasitic, Antibacterial, and Antifungal Activities Derived from a Terminalia Catappa Solution Against Some Tilapia (Oreochromis Niloticus) Pathogens
Antiparasitic, Antibacterial, and Antifungal Activities Derived from a Terminalia catappa Solution against Some Tilapia (Oreochromis niloticus) Pathogens C. Chitmanat, K. Tongdonmuan, P. Khanom, P. Pachontis and W. Nunsong Department of Fisheries Technology College of Agricultural Production Maejo University, Chiang Mai, 50290 Thailand Keywords: antibacterial activity, antiparasitic activity, antifungal activity, Terminalia catappa, medicinal plant, tilapia Abstract Tilapia, Oreochromis niloticus, is one of the most economically important fishery products of Thailand with export viability. Unfortunately, disease losses cause a major problem in the production of farmed tilapia. Most farmers have been using chemicals and antibiotics to treat fish pathogens which leads to the creation of antibiotic resistant pathogens and undesired residues in the fish and in the environment. Food safety is currently a great concern worldwide and Thailand’s inspectors are now finding antibiotic residues in exported fish products. The purpose of the present research is to apply the Indian almond, Terminalia catappa, as an alternative to the use of chemicals and antibiotics in the aquaculture industry. Dried leaves of Indian almond were ground and dissolved in water. A variety of concentrations of this solution were used to determine resulting activities against tilapia pathogens. The results indicated that Trichodina, fish ectoparasites, were eradicated at 800 ppm. The growth of two strains of Aeromonas hydrophila was also inhibited at a concentration of 0.5 mg/ml Indian almond leaves upward. In addition, this solution can reduce the fungal infection in tilapia eggs. Research is underway to determine the toxicity of this solution, if any, on tilapia and the isolation of the active ingredients in the Indian almond for fish pathogen treatment. -
Itraconazole Inhibits AKT/Mtor Signaling and Proliferation in Endometrial Cancer Cells
ANTICANCER RESEARCH 37 : 515-520 (2017) doi:10.21873/anticanres.11343 Itraconazole Inhibits AKT/mTOR Signaling and Proliferation in Endometrial Cancer Cells HIROSHI TSUBAMOTO 1,2 , KAYO INOUE 1, KAZUKO SAKATA 1, TOMOKO UEDA 1, RYU TAKEYAMA 1, HIROAKI SHIBAHARA 1 and TAKASHI SONODA 2 1Department of Obstetrics and Gynecology, Hyogo College of Medicine, Nishinomiya, Japan; 2Department of Medical Oncology, Meiwa Hospital, Nishinomiya, Japan Abstract. Background: Itraconazole is a common antifungal functions by blocking ergosterol synthesis in fungal cell agent that has demonstrated anticancer activity in preclinical membrane. Itraconazole has been repositioned as an anticancer and clinical studies. This study investigated whether agent in both pre-clinical and clinical studies, and was found itraconazole exerts this effect in endometrial cancer (EC) cells. to reverse P-glycoprotein-mediated chemoresistance of cancer Materials and Methods: Cell viability was evaluated with the cells (4, 5) and inhibit angiogenesis (6) as well as Hedgehog 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (7, 8) and AKT/mammalian target of rapamycin (mTOR) (9, assay, and gene and protein expression were assessed by 10) signaling, which are associated with dysregulation of microarray analysis and immunoblotting, respectively, in five intracellular cholesterol transport (9, 11). Recent studies have EC cell lines. Results: Itraconazole-suppressed proliferation of also reported the induction of autophagy and inhibition of AN3-CA, HEC-1A and Ishikawa cells (p<0.05) but not of lymphangiogenesis by itraconazole (11, 12). HEC-50B or SNG-II cells. Itraconazole did not suppress GLI1 We have been treating patients with refractory solid or GLI2 transcription but did inhibit the expression of tumours by combination itraconazole chemotherapy since mammalian target of rapamycin (mTOR) signaling components 2008. -
Delirium Screening in the Emergency Department: a Systematic Review and Meta-Analysis
Delirium Screening in the Emergency Department: A Systematic Review and Meta-analysis Qian Zhang Lanzhou University Meixi Chen Lanzhou University Liangying Hou Lanzhou University Ziqi Guo Lanzhou Universiry Qing Zhang Lanzhou University Baoshan Di Gansu Provincial Hospital Long Ge ( [email protected] ) Lanzhou University Research article Keywords: Delirium, Diagnosis, Emergency department, Systematic review Posted Date: October 30th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-97690/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/15 Abstract Background: Delirium is a complex syndrome characterized by a disturbance in attention and awareness, with a prevalence of 10-20% in patients admitted to the Emergency Department (ED). Screening tools have been developed to identify delirium in the ED, but their accuracy of screening remains unclear. To address this challenge, we conducted a comprehensive meta-analysis to systematically review the accuracy of delirium screening tools currently being used to assess ED patients. Methods: PubMed, PsycINFO, EMBASE, and the Cochrane Library were searched. Studies involving ED inpatients which compared diagnostic tools with the Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria as a reference standard were included. Two reviewers independently screened the studies, extracted data, and assessed the quality of studies using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 scale. We conducted a conventional meta-analysis for each screening tool. Then we used network meta-analysis method to calculate the relative sensitivity and specicity among the diagnostic tests. The diagnostic accuracies were then ranked through the superiority index. -
2021 Formulary List of Covered Prescription Drugs
2021 Formulary List of covered prescription drugs This drug list applies to all Individual HMO products and the following Small Group HMO products: Sharp Platinum 90 Performance HMO, Sharp Platinum 90 Performance HMO AI-AN, Sharp Platinum 90 Premier HMO, Sharp Platinum 90 Premier HMO AI-AN, Sharp Gold 80 Performance HMO, Sharp Gold 80 Performance HMO AI-AN, Sharp Gold 80 Premier HMO, Sharp Gold 80 Premier HMO AI-AN, Sharp Silver 70 Performance HMO, Sharp Silver 70 Performance HMO AI-AN, Sharp Silver 70 Premier HMO, Sharp Silver 70 Premier HMO AI-AN, Sharp Silver 73 Performance HMO, Sharp Silver 73 Premier HMO, Sharp Silver 87 Performance HMO, Sharp Silver 87 Premier HMO, Sharp Silver 94 Performance HMO, Sharp Silver 94 Premier HMO, Sharp Bronze 60 Performance HMO, Sharp Bronze 60 Performance HMO AI-AN, Sharp Bronze 60 Premier HDHP HMO, Sharp Bronze 60 Premier HDHP HMO AI-AN, Sharp Minimum Coverage Performance HMO, Sharp $0 Cost Share Performance HMO AI-AN, Sharp $0 Cost Share Premier HMO AI-AN, Sharp Silver 70 Off Exchange Performance HMO, Sharp Silver 70 Off Exchange Premier HMO, Sharp Performance Platinum 90 HMO 0/15 + Child Dental, Sharp Premier Platinum 90 HMO 0/20 + Child Dental, Sharp Performance Gold 80 HMO 350 /25 + Child Dental, Sharp Premier Gold 80 HMO 250/35 + Child Dental, Sharp Performance Silver 70 HMO 2250/50 + Child Dental, Sharp Premier Silver 70 HMO 2250/55 + Child Dental, Sharp Premier Silver 70 HDHP HMO 2500/20% + Child Dental, Sharp Performance Bronze 60 HMO 6300/65 + Child Dental, Sharp Premier Bronze 60 HDHP HMO -
Verapamil Inhibits Aspergillus Biofilm, but Antagonizes Voriconazole
Journal of Fungi Article Verapamil Inhibits Aspergillus Biofilm, but Antagonizes Voriconazole Hasan Nazik 1,2,*,†, Varun Choudhary 1 and David A. Stevens 1,2 1 California Institute for Medical Research, 2260 Clove Dr., San Jose, CA 95128, USA; [email protected] (V.C.); [email protected] (D.A.S.) 2 Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA * Correspondence: [email protected]; Tel.: +1-408-998-4554; Fax: +1-408-998-2723 † Permanent address: Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul 34452, Turkey. Received: 10 August 2017; Accepted: 18 September 2017; Published: 20 September 2017 Abstract: The paucity of effective antifungals against Aspergillus and increasing resistance, the recognition of the importance of Aspergillus biofilm in several clinical settings, and reports of verapamil—a calcium channel blocker—efficacy against Candida biofilm and hyphal growth, and synergy with an azole antifungal in vitro, led to a study of verapamil ± voriconazole against Aspergillus. Broth macrodilution methodology was utilized for MIC (minimum inhibitory concentration) and MFC (minimum fungicidal concentration) determination. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to verapamil, verapamil plus voriconazole, or voriconazole alone. For biofilm formation, we found less inhibition from the combinations than with either drug alone, or less inhibition from the combination than that of the more potent drug alone. For preformed biofilm, we found no significant change in activity comparing voriconazole alone compared to added verapamil, and no significant alteration of activity of the more potent voriconazole, at any concentration in the range tested, by addition of a concentration of verapamil that is inhibitory alone. -
Anatomical Classification Guidelines V2020 EPHMRA ANATOMICAL
EPHMRA ANATOMICAL CLASSIFICATION GUIDELINES 2020 Anatomical Classification Guidelines V2020 "The Anatomical Classification of Pharmaceutical Products has been developed and maintained by the European Pharmaceutical Marketing Research Association (EphMRA) and is therefore the intellectual property of this Association. EphMRA's Classification Committee prepares the guidelines for this classification system and takes care for new entries, changes and improvements in consultation with the product's manufacturer. The contents of the Anatomical Classification of Pharmaceutical Products remain the copyright to EphMRA. Permission for use need not be sought and no fee is required. We would appreciate, however, the acknowledgement of EphMRA Copyright in publications etc. Users of this classification system should keep in mind that Pharmaceutical markets can be segmented according to numerous criteria." © EphMRA 2020 Anatomical Classification Guidelines V2020 CONTENTS PAGE INTRODUCTION A ALIMENTARY TRACT AND METABOLISM 1 B BLOOD AND BLOOD FORMING ORGANS 28 C CARDIOVASCULAR SYSTEM 35 D DERMATOLOGICALS 50 G GENITO-URINARY SYSTEM AND SEX HORMONES 57 H SYSTEMIC HORMONAL PREPARATIONS (EXCLUDING SEX HORMONES) 65 J GENERAL ANTI-INFECTIVES SYSTEMIC 69 K HOSPITAL SOLUTIONS 84 L ANTINEOPLASTIC AND IMMUNOMODULATING AGENTS 92 M MUSCULO-SKELETAL SYSTEM 102 N NERVOUS SYSTEM 107 P PARASITOLOGY 118 R RESPIRATORY SYSTEM 120 S SENSORY ORGANS 132 T DIAGNOSTIC AGENTS 139 V VARIOUS 141 Anatomical Classification Guidelines V2020 INTRODUCTION The Anatomical Classification was initiated in 1971 by EphMRA. It has been developed jointly by Intellus/PBIRG and EphMRA. It is a subjective method of grouping certain pharmaceutical products and does not represent any particular market, as would be the case with any other classification system. -
Antibacterial Antibiotic Antifungal Antiparasitic Antiviral
All-In-One Flooring Solutions: Antibacterial Antibiotic Antifungal Antiparasitic Antiviral What are antimicrobials? The Dex-O-Cide Difference: Antimicrobials provide a much broader range Based on the active agent N-butyl-1, 2- benzisothiazo- lin-3-one (BBIT), it is specially formulated to protect of protection than antibacterials. While anti- flooring in tough and demanding environments, bacterials kill a range of bacteria, antimocro- especially those exposed to high levels of moisture, UV bials go further, acting also as an antibiotic, light, or unsanitary conditions. The silver ion producing additive is integrated throughout the floor coating matrix antifungal, antiparasitic and antiviral agent. - not just the surface, so scratches and other points of Antimicrobials kill, and prevent the growth and wear do not create a place where pathogens can create spread of, dangerous microscopic organisms a home to grow and spread. The antimicrobial does not wash or wear away, preserving the protective proper- including bacteria, viruses, yeast, fungi, proto- ties for the life of the floor. zoa and some algae. Bacterial Resistance: Dex-O-Cide Standards: How antimicrobials work: CoV (Covid19) • • ISO 22196 SARS • • ISO JIS 222801 Salmonella Typhi • Instead of using chemicals, Dex-O-Cide • FSANZ Staphylococcus Aureus • Antibacterial Flooring leverages the all- Streptococcus Pygenes • natural power of silver ions to penetrate cell MRSA • membranes of bacteria and kill the pathogen. E-coli • Listeria Welshimeri • Common bacterium have no defense against -
Growth Inhibition of Candida Species and Aspergillus Fumigatus by Statins Ian G
Growth inhibition of Candida species and Aspergillus fumigatus by statins Ian G. Macreadie, Georgia Johnson, Tanja Schlosser & Peter I. Macreadie CSIRO Health and Molecular and Technologies and P-Health Flagship, Parkville, Vic., Australia Correspondence: Ian G. Macreadie, CSIRO Abstract Molecular and Health Technologies, 343 Royal Parade, Parkville, Vic. 3052, Australia. Statins are a class of drugs widely used for lowering high cholesterol levels through Tel.: 1613 9662 7299; fax: 1613 9662 7266; their action on 3-hydroxy-3-methylglutaryl-CoA reductase, a key enzyme in the e-mail: [email protected] synthesis of cholesterol. We studied the effects of two major statins, simvastatin and atorvastatin, on five Candida species and Aspergillus fumigatus. The statins Received 10 March 2006; revised 16 May 2006; strongly inhibited the growth of all species, except Candida krusei. Supplementa- accepted 18 May 2006. tion of Candida albicans and A. fumigatus with ergosterol or cholesterol in aerobic First published online August 2006. culture led to substantial recovery from the inhibition by statins, suggesting specificity of statins for the mevalonate synthesis pathway. Our findings suggest DOI:10.1111/j.1574-6968.2006.00370.x that the statins could have utility as antifungal agents and that fungal colonization could be affected in those on statin therapy. Editor: Geoffrey Gadd Keywords antifungal; cholesterol; ergosterol; HMG-CoA reductase inhibition; simvastatin; atorvastatin. Introduction provided in the form of a lactone prodrug, it was hydrolysed in ethanolic NaOH [15% (v/v) ethanol and 0.25% (w/v) Statins are the main therapeutic agents used to decrease high NaOH] at 60 1C for 1 h (Lorenz & Parks, 1990).