A Meta-Analysis of the Publicly Available Bacterial and Archaeal Sequence Diversity in Saline Soils

Total Page:16

File Type:pdf, Size:1020Kb

A Meta-Analysis of the Publicly Available Bacterial and Archaeal Sequence Diversity in Saline Soils World J Microbiol Biotechnol (2013) 29:2325–2334 DOI 10.1007/s11274-013-1399-9 ORIGINAL PAPER A meta-analysis of the publicly available bacterial and archaeal sequence diversity in saline soils Bin Ma • Jun Gong Received: 19 April 2013 / Accepted: 3 June 2013 / Published online: 12 June 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract An integrated view of bacterial and archaeal Halorubrum and Thermofilum were the dominant archaeal diversity in saline soil habitats is essential for understanding genera in saline soils. Rarefaction analysis indicated that less the biological and ecological processes and exploiting than 25 % of bacterial diversity, and approximately 50 % of potential of microbial resources from such environments. archaeal diversity, in saline soil habitats has been sampled. This study examined the collective bacterial and archaeal This analysis of the global bacterial and archaeal diversity in diversity in saline soils using a meta-analysis approach. All saline soil habitats can guide future studies to further available 16S rDNA sequences recovered from saline soils examine the microbial diversity of saline soils. were retrieved from publicly available databases and sub- jected to phylogenetic and statistical analyses. A total of Keywords Archaea Á Bacteria Á Halophilic Á Microbial 9,043 bacterial and 1,039 archaeal sequences, each longer diversity Á Saline soil than 250 bp, were examined. The bacterial sequences were assigned into 5,784 operational taxonomic units (OTUs, based on C97 % sequence identity), representing 24 known Introduction bacterial phyla, with Proteobacteria (44.9 %), Actinobacte- ria (12.3 %), Firmicutes (10.4 %), Acidobacteria (9.0 %), Saline soils are increasingly abundant as a consequence of Bacteroidetes (6.8 %), and Chloroflexi (5.9 %) being pre- irrigation and desertification processes (Rengasamy 2006). dominant. Lysobacter (12.8 %) was the dominant bacterial Increase in salinity greatly affects soil microbial and bio- genus in saline soils, followed by Sphingomonas (4.5 %), chemical properties, and causes shifts in the microbial Halomonas (2.5 %), and Gemmatimonas (2.5 %). Archaeal community structure towards bacteria and archaea. sequences were assigned to 602 OTUs, primarily from the According to a recent meta-analysis, the global microbial phyla Euryarchaeota (88.7 %) and Crenarchaeota (11.3 %). community composition is influenced more by salinity than by extremes of temperature, pH, or other physical and chemical factors (Lozupone and Knight 2007). Accord- ingly, the diversity of halophilic bacteria and archaea in saline soils is expected to be quite different from that in Electronic supplementary material The online version of this non-saline soils. The study of microbial diversity in saline article (doi:10.1007/s11274-013-1399-9) contains supplementary soils is significant for understanding the ecological func- material, which is available to authorized users. tions, saline adaption mechanisms and biotechnical potentials of microorganisms. B. Ma Á J. Gong (&) Laboratory of Environmental Microbiology, Yantai Institute Halophilic and halotolerant bacteria and archaea are of Coastal Zone Research, Chinese Academy of Sciences, essential for the biogeochemical processes in saline soils Yantai, China (Dendooven et al. 2010; Blum et al. 2012), hence for the e-mail: [email protected] utilization of saline soils. Halophilic bacteria and archaea B. Ma Á J. Gong thrive in saline soils because they possess enzymes Network Laboratory for Coastal Microbiology, Yantai, China endowed with unique structural features and catalytic 123 2326 World J Microbiol Biotechnol (2013) 29:2325–2334 power, enabling them to sustain metabolic and physiolog- Methods ical processes under high salt conditions (Munawar and Engel 2012). Specific enzymes from soil halophiles are Sequence data collection perceived to be potentially useful for a variety of appli- cations, including the production of important biomole- Initial sequence sets were obtained on 10 May 2012 from cules (Liszka et al. 2012) and the remediation of pollutants the GenBank (http://www.ncbi.nlm.nih.gov) and RDP in saline conditions (Dastgheib et al. 2011). Soil halophiles (Release 10, http://rdp.cme.msu.edu) databases using the are an excellent source for exploring novel enzymes pos- search terms ‘saline’ OR ‘hypersaline’ AND ‘soil’ AND sessing the inherent ability to function in high salt condi- ‘16S’. Non-16S rRNA sequences from GenBank were tions (Singh et al. 2012). removed by checking the names of the sequences. All 16S Bacteria and archaea have been widely studied with rRNA gene sequences from the two databases were merged respect to their biodiversity in saline soils. Initial studies and duplicate sequences, identified based on accession employed traditional culture-dependent methods and numbers, were removed. Sequences with vector nucleo- resulted in the discovery of a large number of new bacterial tides or chimeras were checked by Mallard (http://www.cf. and archaeal taxa (Lefebvre et al. 2006). The primary ac.uk/biosi/research/biosoft/). The 16S rRNA gene sequen- methods in current use are DNA-based molecular biology ces of Escherichia coli (accession number: U00096) and approaches such as cloning and sequencing of 16S rRNA Methanothermobacter thermoautotrophicus (accession genes, denaturing gradient gel electrophoresis (DGGE), number: AE000666) were selected as reference sequences terminal restriction fragment length polymorphism (T- for bacteria and archaea, respectively. Sequences shorter RFLP) and quantitative PCR (Lefebvre et al. 2006; Cui than 250 bp were removed from the dataset in order to et al. 2009; Blum et al. 2012). Cloning and sequencing of avoid uncertainties when comparing and classifying short 16S rRNA genes has been generally favored over other sequences that have little or no sequence overlap. The methods because it allows the detection both of known and remaining sequences comprised the redacted composite unknown microbes present in saline soils. dataset used in this study. Our knowledge of the diversity of bacteria and archaea in saline and hypersaline soils is, however, still limited and Phylogenetic analysis fragmented. In most cases only a few soil samples of a single specific saline system, or a small number of cloned Sequences were sorted by length and aligned with Kalign sequences or DGGE bands, have been investigated and (Lassmann and Sonnhammer 2005). The sequences were analyzed. Some studies have focused only one particular classified into taxonomic ranks using the RDP Classifier microbial group such as Archaea (Valenzuela-Encinas with default settings (Cole et al. 2005). Treemaps based on et al. 2009; Youssef et al. 2012) or Actinobacteria (Singh the output classifications from the RDP Classier were et al. 2012). Numerous sequences recovered from saline constructed using the treemap packages in R. Based on the soils are available from the GenBank, but many of these classifications, the dataset was divided into the following are largely overlooked because they are not published in groups: Archaea, Bacteria, Proteobacteria, Actinobacteria, the literature. Recently developed high-throughput Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, and sequencing technologies produces large datasets of the collected ‘‘minor phyla’’ of bacteria that comprised sequence reads. However, unlike the longer sequences sequences not assigned to any of the aforementioned phyla. generated with Sanger sequencing, the length of these reads Distances matrices of aligned sequences were computed is too short to classify the sequences to genus level (Nelson within ARB using Jukes-Cantor correction (Cohen and et al. 2011). Currently, there is no consensus on the size or Townsend 2009). Individual distance matrices were ana- nature of the microbial diversity generally found in saline lyzed using Mothur (Schloss et al. 2009) to cluster OTUs, soils. generate rarefaction curves, and determine the nonpara- In this study, we performed a meta-analysis of all pub- metric ACE and Chao1 richness estimates. The genetic licly available 16S rRNA gene sequences identified from distance B0.03 was used to define species-level OTUs. The saline and hypersaline soils in order to provide an updated distance cut-offs were set at 0.05, 0.10, 0.15, and 0.2, overview of the bacterial and archaeal diversity in saline which were assumed for taxonomic ranks genus, family, soil environments. Estimates of the current coverage of the class/order and phylum, respectively. All the estimated halophilic bacterial and archaeal diversity already identi- asymptotes of the rarefaction curves were determined fied in saline soils were made, and particular gaps in the through R package monomol (https://github.com/binma/ knowledge and understanding of the microbial populations monomol). The coverage percentages were calculated as present in saline soil habitats were identified. described by Nelson et al. (2011). 123 World J Microbiol Biotechnol (2013) 29:2325–2334 2327 Fig. 1 Treemap of observed bacterial and archaeal taxa shown in their hierarchical order. Treemap showing taxonomic ranking of all taxa for all retrieved sequences. The Firmicutes Acidobacteria size of each box is proportional to the number of sequences assigned to that taxon with respect to the entire dataset. The Proteobacteria placement of boxes is arbitrary Euryarchaeota with respect to boxes within the Bacteria Archaea same taxonomic rank and does not correspond to any form of Bacteroidetes Chloroflexi
Recommended publications
  • Complete Genome Sequence of the Antarctic Halorubrum Lacusprofundi Type Strain ACAM 34 Iain J
    Anderson et al. Standards in Genomic Sciences (2016) 11:70 DOI 10.1186/s40793-016-0194-2 SHORT GENOME REPORT Open Access Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34 Iain J. Anderson1, Priya DasSarma2*, Susan Lucas1, Alex Copeland1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Eileen Dalin1, David C. Bruce3, Lynne Goodwin3, Sam Pitluck1, David Sims3, Thomas S. Brettin3, John C. Detter3, Cliff S. Han3, Frank Larimer1,4, Loren Hauser1,4, Miriam Land1,4, Natalia Ivanova1, Paul Richardson1, Ricardo Cavicchioli5, Shiladitya DasSarma2, Carl R. Woese6 and Nikos C. Kyrpides1 Abstract Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. WereportherethecompletegenomesequenceofH. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. Keywords: Archaea, Halophile, Halorubrum, Extremophile, Cold adaptation, Tree of life Abbreviations: TE, Tris-EDTA buffer; CRITICA, Coding region identification tool invoking comparative analysis; PRIAM, PRofils pour l’Identification Automatique du Métabolisme; KEGG, Kyoto Encyclopedia of Genes and Genomes; COG, Clusters of Orthologous Groups; TMHMM, Transmembrane hidden Markov model; CRISPR, Clustered regularly interspaced short palindromic repeats Introduction 2006 Joint Genome Institute Community Sequencing Halorubrum lacusprofundi is an extremely halophilic Program project because of its ability to grow at low archaeon belonging to the class Halobacteria within the temperature and its phylogenetic distance from other phylum Euryarchaeota.
    [Show full text]
  • Diversity of Understudied Archaeal and Bacterial Populations of Yellowstone National Park: from Genes to Genomes Daniel Colman
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations 7-1-2015 Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes Daniel Colman Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Recommended Citation Colman, Daniel. "Diversity of understudied archaeal and bacterial populations of Yellowstone National Park: from genes to genomes." (2015). https://digitalrepository.unm.edu/biol_etds/18 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Daniel Robert Colman Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Cristina Takacs-Vesbach , Chairperson Robert Sinsabaugh Laura Crossey Diana Northup i Diversity of understudied archaeal and bacterial populations from Yellowstone National Park: from genes to genomes by Daniel Robert Colman B.S. Biology, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biology The University of New Mexico Albuquerque, New Mexico July 2015 ii DEDICATION I would like to dedicate this dissertation to my late grandfather, Kenneth Leo Colman, associate professor of Animal Science in the Wool laboratory at Montana State University, who even very near the end of his earthly tenure, thought it pertinent to quiz my knowledge of oxidized nitrogen compounds. He was a man of great curiosity about the natural world, and to whom I owe an acknowledgement for his legacy of intellectual (and actual) wanderlust.
    [Show full text]
  • Marsarchaeota Are an Aerobic Archaeal Lineage Abundant in Geothermal Iron Oxide Microbial Mats
    Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Authors: Zackary J. Jay, Jacob P. Beam, Mansur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep This is a postprint of an article that originally appeared in Nature Microbiology on May 14, 2018. The final version can be found at https://dx.doi.org/10.1038/s41564-018-0163-1. Jay, Zackary J. , Jacob P. Beam, Mensur Dlakic, Douglas B. Rusch, Mark A. Kozubal, and William P. Inskeep. "Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats." Nature Microbiology 3, no. 6 (May 2018): 732-740. DOI: 10.1038/ s41564-018-0163-1. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Marsarchaeota are an aerobic archaeal lineage abundant in geothermal iron oxide microbial mats Zackary J. Jay1,4,7, Jacob P. Beam1,5,7, Mensur Dlakić2, Douglas B. Rusch3, Mark A. Kozubal1,6 and William P. Inskeep 1* The discovery of archaeal lineages is critical to our understanding of the universal tree of life and evolutionary history of the Earth. Geochemically diverse thermal environments in Yellowstone National Park provide unprecedented opportunities for studying archaea in habitats that may represent analogues of early Earth. Here, we report the discovery and character- ization of a phylum-level archaeal lineage proposed and herein referred to as the ‘Marsarchaeota’, after the red planet. The Marsarchaeota contains at least two major subgroups prevalent in acidic, microaerobic geothermal Fe(III) oxide microbial mats across a temperature range from ~50–80 °C. Metagenomics, single-cell sequencing, enrichment culturing and in situ transcrip- tional analyses reveal their biogeochemical role as facultative aerobic chemoorganotrophs that may also mediate the reduction of Fe(III).
    [Show full text]
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • Archaeology of Eukaryotic DNA Replication
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010).
    [Show full text]
  • Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide
    bioRxiv preprint doi: https://doi.org/10.1101/262600; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Complex evolutionary history of translation Elongation Factor 2 and diphthamide 2 biosynthesis in Archaea and parabasalids 3 4 Adrienne B. Narrowe1,†, Anja Spang2,3,†, Courtney W. Stairs2, Eva F. Caceres2, Brett J. Baker4, 5 Christopher S. Miller1,‡,* and Thijs J. G. Ettema2,‡ 6 7 † These authors contributed equally to this work. 8 ‡These authors contributed equally to this work. 9 *Author for correspondence: Christopher S. Miller, Department of Integrative Biology, 10 University of Colorado Denver, Denver, CO, USA, 303-315-7665, [email protected] 11 12 1 Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA 13 2 Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 14 Uppsala, Sweden 15 3 NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and 16 Biogeochemistry, and Utrecht University, AB Den Burg, The Netherlands 17 4 Department of Marine Science, Marine Science Institute, University of Texas Austin, Port 18 Aransas, TX, USA 19 20 21 Running title: EF-2 and diphthamide in archaea and eukaryotes 22 1 bioRxiv preprint doi: https://doi.org/10.1101/262600; this version posted February 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Establishment and Analysis of Microbial Communities Capable of Producing Methane from Grass Waste at Extremely High C/N Ratio
    International Journal of New Technology and Research (IJNTR) ISSN:2454-4116, Volume-2, Issue-9, September 2016 Pages 81-86 Establishment and Analysis of Microbial Communities Capable of Producing Methane from Grass Waste at Extremely High C/N Ratio S. Matsuda, T. Ohtsuki* Anaerobic digestion is a conventional method for biomass Abstract— Acclimation of microbial communities, aiming to utilization [8]. Despite the fact that a great deal of research methane production from grass as a sole substrate at extremely for methane production from grass has been conducted high carbon-to-nitrogen (C/N) ratio, was conducted. In a series especially in recent years, almost processes need supply of of experiments with various sizes of added grass, two microbial communities showing high methane production were obtained abundant sludge source such as sewage and manure [9, 10]. with powdered grass. In the two microbial communities Many studies indicated that the optimal carbon-to-nitrogen designated NR and RP, Bacteroidia including genera (C/N) ratio in methane fermentation were 25-30, and the C/N Bacteroides, Dysgonomonas, Proteiniphilum, and Alistipes were ratio higher than 40 are not generally suitable [11]. The C/N detected as dominant members in eubacteria. It was also shown ration of raw grass shows a wide range; wild grassy weed is at that Methanomicrobia and Methanobacteria including genera relatively high (>59) while lawn grass is at low (<29) [12]. Methanomassiliicoccus and Methanobacterium were found as dominant members in methanogen. It is noteworthy that Therefore, it is difficult to conduct methane fermentation nitrogen fixation were observed both in NR and RP, suggesting with wild grass-only, also being due to less degradability of that insufficiency of nitrogen sources would be complemented lignocellulose [13].
    [Show full text]
  • A Survey of Carbon Fixation Pathways Through a Quantitative Lens
    Journal of Experimental Botany, Vol. 63, No. 6, pp. 2325–2342, 2012 doi:10.1093/jxb/err417 Advance Access publication 26 December, 2011 REVIEW PAPER A survey of carbon fixation pathways through a quantitative lens Arren Bar-Even, Elad Noor and Ron Milo* Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel * To whom correspondence should be addressed. E-mail: [email protected] Received 15 August 2011; Revised 4 November 2011; Accepted 8 November 2011 Downloaded from Abstract While the reductive pentose phosphate cycle is responsible for the fixation of most of the carbon in the biosphere, it http://jxb.oxfordjournals.org/ has several natural substitutes. In fact, due to the characterization of three new carbon fixation pathways in the last decade, the diversity of known metabolic solutions for autotrophic growth has doubled. In this review, the different pathways are analysed and compared according to various criteria, trying to connect each of the different metabolic alternatives to suitable environments or metabolic goals. The different roles of carbon fixation are discussed; in addition to sustaining autotrophic growth it can also be used for energy conservation and as an electron sink for the recycling of reduced electron carriers. Our main focus in this review is on thermodynamic and kinetic aspects, including thermodynamically challenging reactions, the ATP requirement of each pathway, energetic constraints on carbon fixation, and factors that are expected to limit the rate of the pathways. Finally, possible metabolic structures at Weizmann Institute of Science on July 3, 2016 of yet unknown carbon fixation pathways are suggested and discussed.
    [Show full text]
  • Title Genomic Analysis of the Marine Hyperthermophilic Archaeon
    Genomic analysis of the marine hyperthermophilic archaeon Title Aeropyrum( Dissertation_全文 ) Author(s) Daifuku, Takashi Citation 京都大学 Issue Date 2015-03-23 URL https://doi.org/10.14989/doctor.k19034 学位規則第9条第2項により要約公開; 許諾条件により本文 Right は2019-08-01に公開 Type Thesis or Dissertation Textversion ETD Kyoto University 1. General introduction Chapter 1 General introduction Gene repertoires and genome organizations differ between closely related microbial organisms depending on the ecological characteristics of each habitat (Cohan and Koeppel 2008). The cyanobacterial Prochlorococcus spp. account for a significant fraction of primary production in the ocean (Goericke and Welschmeyer 1993) and show physiological features relevant to the different ecological niches within a stratified oceanic water column (Moore et al. 1998; West et al. 2001). The whole-genomic comparisons of the Prochlorococcus spp. strains show gross signatures according to this niche differentiation (Rocap et al. 2003). Alpha-proteobacterium Pelagibacter ubique which belongs to the SAR11 clade in the phylogenetic tree based on the 16S rRNA gene is the most abundant microorganism in the ocean (Morris et al. 2002). The genomes of the SAR11 isolates are highly conserved in the core genes that are common to all strains (Medini et al. 2005) and show synteny (the conservation of DNA sequence and gene order) (Bentley and Parkhill 2004). However, variations exist among genes for phosphorus metabolism, glycolysis, and C1 metabolism, suggesting that adaptive specialization in nutrient resource utilization is important for niche partitioning (Grote et al. 2012). This adaptation at the genomic level was also observed in archaea. The members of the genus Pyrococcus are anaerobic and hyperthermophilic archaea (Fiala and Stetter 1 1.
    [Show full text]
  • Supplementary Information
    Retroconversion of estrogens into androgens by bacteria via a cobalamin-mediated methylation Po-Hsiang Wang, Yi-Lung Chen, Sean Ting-Shyang Wei, Kan Wu, Tzong-Huei Lee, Tien-Yu Wu, and Yin-Ru Chiang Supplementary Information Table of Contents Dataset Dataset S1. Genome annotation of strain DHT3 and transcriptomic analysis (RNA-Seq) of bacterial cells grown anaerobically with testosterone or estradiol. SI Tables Table S1. Oligonucleotides used in this study. Table S2. Selection of housekeeping genes of strain DHT3 used for constructing the linear regression line in the global gene expression profiles (RNA-Seq). Table S3. Selection of the cobalamin-dependent methyltransferases used for the un-rooted maximum likelihood tree construction. Table S4. UPLC–APCI–HRMS data of the intermediates involved in anaerobic estrone catabolism by strain DHT3. Table S5. 1H- (600 MHz) and 13C-NMR (150 MHz) spectral data of the HPLC-purified metabolite (AND2) and the authentic standard 5-androstan-3,17-diol Table S6. Selection of the bacteria used for comparative analysis of the gene organization for HIP degradation. SI Figures Fig. S1 Scanning electron micrographs of strain DHT3 cells. Fig. S2 Cobalamin as an essential vitamin during the anaerobic growth of strain DHT3 on estradiol. Fig. S3 Arrangement and expression analysis of the emt genes in strain DHT3. Fig. S4 The anaerobic growth of the wild type (A) and the emtA-disrupted mutant (B) of strain DHT3 with testosterone and estradiol. Fig. S5 APCI–HRMS spectrum of the HIP produced by estrone-fed strain DHT3. 1 Fig. S6 UPLC–APCI–HRMS spectra of two TLC-purified androgen metabolites, 17β-hydroxyandrostan-3-one (A) and 3β,17β-dihydroxyandrostane (B).
    [Show full text]
  • Lifestyle Preferences Drive the Structure and Diversity of Bacterial and Archaeal Communities in a Small Riverine Reservoir
    www.nature.com/scientificreports OPEN Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir Carles Borrego1,2, Sergi Sabater1,3* & Lorenzo Proia1,4 Spatial heterogeneity along river networks is interrupted by dams, afecting the transport, processing, and storage of organic matter, as well as the distribution of biota. We here investigated the structure of planktonic (free-living, FL), particle-attached (PA) and sediment-associated (SD) bacterial and archaeal communities within a small reservoir. We combined targeted-amplicon sequencing of bacterial and archaeal 16S rRNA genes in the DNA and RNA community fractions from FL, PA and SD, followed by imputed functional metagenomics, in order to unveil diferences in their potential metabolic capabilities within the reservoir (tail, mid, and dam sections) and lifestyles (FL, PA, SD). Both bacterial and archaeal communities were structured according to their life-style preferences rather than to their location in the reservoir. Bacterial communities were richer and more diverse when attached to particles or inhabiting the sediment, while Archaea showed an opposing trend. Diferences between PA and FL bacterial communities were consistent at functional level, the PA community showing higher potential capacity to degrade complex carbohydrates, aromatic compounds, and proteinaceous materials. Our results stressed that particle-attached prokaryotes were phylogenetically and metabolically distinct from their free-living counterparts, and that performed as hotspots for organic matter processing within the small reservoir. Spatial heterogeneity of river networks results from the sequence of lotic segments—which promote the transport and quick transformation of materials—and lentic segments such as large pools and wetlands—which mostly contribute to the process and storage of organic matter 1,2.
    [Show full text]