Isolation, Characterization and Phylogenetic Analysis of Halophilic Archaea from a Salt Mine in Central Anatolia (Turkey)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Genome Sequence of the Antarctic Halorubrum Lacusprofundi Type Strain ACAM 34 Iain J
Anderson et al. Standards in Genomic Sciences (2016) 11:70 DOI 10.1186/s40793-016-0194-2 SHORT GENOME REPORT Open Access Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34 Iain J. Anderson1, Priya DasSarma2*, Susan Lucas1, Alex Copeland1, Alla Lapidus1, Tijana Glavina Del Rio1, Hope Tice1, Eileen Dalin1, David C. Bruce3, Lynne Goodwin3, Sam Pitluck1, David Sims3, Thomas S. Brettin3, John C. Detter3, Cliff S. Han3, Frank Larimer1,4, Loren Hauser1,4, Miriam Land1,4, Natalia Ivanova1, Paul Richardson1, Ricardo Cavicchioli5, Shiladitya DasSarma2, Carl R. Woese6 and Nikos C. Kyrpides1 Abstract Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. WereportherethecompletegenomesequenceofH. lacusprofundi type strain ACAM 34 and its annotation. This genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea. Keywords: Archaea, Halophile, Halorubrum, Extremophile, Cold adaptation, Tree of life Abbreviations: TE, Tris-EDTA buffer; CRITICA, Coding region identification tool invoking comparative analysis; PRIAM, PRofils pour l’Identification Automatique du Métabolisme; KEGG, Kyoto Encyclopedia of Genes and Genomes; COG, Clusters of Orthologous Groups; TMHMM, Transmembrane hidden Markov model; CRISPR, Clustered regularly interspaced short palindromic repeats Introduction 2006 Joint Genome Institute Community Sequencing Halorubrum lacusprofundi is an extremely halophilic Program project because of its ability to grow at low archaeon belonging to the class Halobacteria within the temperature and its phylogenetic distance from other phylum Euryarchaeota. -
Microbial Community Responses to Modern Environmental
Originally published as: Genderjahn, S., Alawi, M., Wagner, D., Schüller, I., Wanke, A., Mangelsdorf, K. (2018): Microbial Community Responses to Modern Environmental and Past Climatic Conditions in Omongwa Pan, Western Kalahari: A Paired 16S rRNA Gene Profiling and Lipid Biomarker Approach. - Journal of Geophysical Research, 123, 4, pp. 1333—1351. DOI: http://doi.org/10.1002/2017JG004098 Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Microbial Community Responses to Modern Environmental 10.1002/2017JG004098 and Past Climatic Conditions in Omongwa Pan, Western Key Points: Kalahari: A Paired 16S rRNA Gene Profiling • Kalahari pan structures possess high potential to act as geoarchives for and Lipid Biomarker Approach preserved biomolecules in arid to semiarid regions S. Genderjahn1 , M. Alawi1 , D. Wagner1,2 , I. Schüller3, A. Wanke4, and K. Mangelsdorf1 • Past microbial biomarker suggests changing climatic conditions during 1GFZ German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany, 2Institute of Earth and the Late Glacial to Holocene transition 3 in the western Kalahari Environmental Science, University of Potsdam, Potsdam, Germany, Marine Research Department, Senckenberg am Meer, 4 • Based on taxonomic investigations, Wilhelmshaven, Germany, Department of Geology, University of Namibia, Windhoek, Namibia the abundance and diversity of the microbial community in the pan is related to near-surface processes Abstract Due to a lack of well-preserved terrestrial climate archives, paleoclimate studies are sparse in southwestern Africa. Because there are no perennial lacustrine systems in this region, this study relies on a Supporting Information: saline pan as an archive for climate information in the western Kalahari (Namibia). Molecular biological and • Supporting Information S1 biogeochemical analyses were combined to examine the response of indigenous microbial communities to modern and past climate-induced environmental conditions. -
Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2*
J. Microbiol. Biotechnol. (2013), 23(12), 1645–1653 http://dx.doi.org/10.4014/jmb.1308.08015 Research Article Minireview jmb Diversity of Halophilic Archaea in Fermented Foods and Human Intestines and Their Application Han-Seung Lee1,2* 1Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University, Busan 617-736, Republic of Korea 2Research Center for Extremophiles, Silla University, Busan 617-736, Republic of Korea Received: August 8, 2013 Revised: September 6, 2013 Archaea are prokaryotic organisms distinct from bacteria in the structural and molecular Accepted: September 9, 2013 biological sense, and these microorganisms are known to thrive mostly at extreme environments. In particular, most studies on halophilic archaea have been focused on environmental and ecological researches. However, new species of halophilic archaea are First published online being isolated and identified from high salt-fermented foods consumed by humans, and it has September 10, 2013 been found that various types of halophilic archaea exist in food products by culture- *Corresponding author independent molecular biological methods. In addition, even if the numbers are not quite Phone: +82-51-999-6308; high, DNAs of various halophilic archaea are being detected in human intestines and much Fax: +82-51-999-5458; interest is given to their possible roles. This review aims to summarize the types and E-mail: [email protected] characteristics of halophilic archaea reported to be present in foods and human intestines and pISSN 1017-7825, eISSN 1738-8872 to discuss their application as well. Copyright© 2013 by The Korean Society for Microbiology Keywords: Halophilic archaea, fermented foods, microbiome, human intestine, Halorubrum and Biotechnology Introduction Depending on the optimal salt concentration needed for the growth of strains, halophilic microorganisms can be Archaea refer to prokaryotes that used to be categorized classified as halotolerant (~0.3 M), halophilic (0.2~2.0 M), as archaeabacteria, a type of bacteria, in the past. -
Archaeology of Eukaryotic DNA Replication
Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Archaeology of Eukaryotic DNA Replication Kira S. Makarova and Eugene V. Koonin National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894 Correspondence: [email protected] Recent advances in the characterization of the archaeal DNA replication system together with comparative genomic analysis have led to the identification of several previously un- characterized archaeal proteins involved in replication and currently reveal a nearly com- plete correspondence between the components of the archaeal and eukaryotic replication machineries. It can be inferred that the archaeal ancestor of eukaryotes and even the last common ancestor of all extant archaea possessed replication machineries that were compa- rable in complexity to the eukaryotic replication system. The eukaryotic replication system encompasses multiple paralogs of ancestral components such that heteromeric complexes in eukaryotes replace archaeal homomeric complexes, apparently along with subfunctionali- zation of the eukaryotic complex subunits. In the archaea, parallel, lineage-specific dupli- cations of many genes encoding replication machinery components are detectable as well; most of these archaeal paralogs remain to be functionally characterized. The archaeal rep- lication system shows remarkable plasticity whereby even some essential components such as DNA polymerase and single-stranded DNA-binding protein are displaced by unrelated proteins with analogous activities in some lineages. ouble-stranded DNA is the molecule that Okazaki fragments (Kornberg and Baker 2005; Dcarries genetic information in all cellular Barry and Bell 2006; Hamdan and Richardson life-forms; thus, replication of this genetic ma- 2009; Hamdan and van Oijen 2010). -
Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus Dombrowskii and Other Extremely Halophilic Archaebacteria
ASTROBIOLOGY Volume 9, Number 1, 2009 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2007.0234 Special Paper Investigating the Effects of Simulated Martian Ultraviolet Radiation on Halococcus dombrowskii and Other Extremely Halophilic Archaebacteria Sergiu Fendrihan,1 Attila Bérces,2 Helmut Lammer,3 Maurizio Musso,4 György Rontó,2 Tatjana K. Polacsek,1 Anita Holzinger,1 Christoph Kolb,3,5 and Helga Stan-Lotter1 Abstract The isolation of viable extremely halophilic archaea from 250-million-year-old rock salt suggests the possibil- ity of their long-term survival under desiccation. Since halite has been found on Mars and in meteorites, haloar- chaeal survival of martian surface conditions is being explored. Halococcus dombrowskii H4 DSM 14522T was ex- posed to UV doses over a wavelength range of 200–400 nm to simulate martian UV flux. Cells embedded in a thin layer of laboratory-grown halite were found to accumulate preferentially within fluid inclusions. Survival was assessed by staining with the LIVE/DEAD kit dyes, determining colony-forming units, and using growth tests. Halite-embedded cells showed no loss of viability after exposure to about 21 kJ/m2, and they resumed growth in liquid medium with lag phases of 12 days or more after exposure up to 148 kJ/m2. The estimated Ն 2 D37 (dose of 37 % survival) for Hcc. dombrowskii was 400 kJ/m . However, exposure of cells to UV flux while 2 in liquid culture reduced D37 by 2 orders of magnitude (to about 1 kJ/m ); similar results were obtained with Halobacterium salinarum NRC-1 and Haloarcula japonica. -
Genome Size Evolution in the Archaea
Kellner, S., Spang, A., Offre, P., Szollosi, G. J., Petitjean, C., & Williams, T. (2018). Genome size evolution in the Archaea. Emerging Topics in Life Sciences. https://doi.org/10.1042/ETLS20180021 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1042/ETLS20180021 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Portland Press at http://www.emergtoplifesci.org/content/early/2018/11/13/ETLS20180021 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Emerging Topics in Life Sciences (2018) https://doi.org/10.1042/ETLS20180021 Review Article Genome size evolution in the Archaea Siri Kellner1, Anja Spang2,3, Pierre Offre2, Gergely J. Szöllo˝si4,5, Celine Petitjean6 and Tom A. Williams6 1School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, U.K.; 2NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands; 3Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden; 4MTA-ELTE Lendület Evolutionary Genomics Research Group, 1117 Budapest, Hungary; 5Department of Biological Physics, Eötvös Loránd University, 1117 Budapest, Hungary; 6School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, U.K. -
Bacterial Succession Within an Ephemeral Hypereutrophic Mojave Desert Playa Lake
Microb Ecol (2009) 57:307–320 DOI 10.1007/s00248-008-9426-3 MICROBIOLOGY OF AQUATIC SYSTEMS Bacterial Succession within an Ephemeral Hypereutrophic Mojave Desert Playa Lake Jason B. Navarro & Duane P. Moser & Andrea Flores & Christian Ross & Michael R. Rosen & Hailiang Dong & Gengxin Zhang & Brian P. Hedlund Received: 4 February 2008 /Accepted: 3 July 2008 /Published online: 30 August 2008 # Springer Science + Business Media, LLC 2008 Abstract Ephemerally wet playas are conspicuous features RNA gene sequencing of bacterial isolates and uncultivated of arid landscapes worldwide; however, they have not been clones. Isolates from the early-phase flooded playa were well studied as habitats for microorganisms. We tracked the primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet geochemistry and microbial community in Silver Lake clone libraries were dominated by Betaproteobacteria and yet playa, California, over one flooding/desiccation cycle uncultivated Actinobacteria. Isolates from the late-flooded following the unusually wet winter of 2004–2005. Over phase ecosystem were predominantly Proteobacteria, partic- the course of the study, total dissolved solids increased by ularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, ∽10-fold and pH increased by nearly one unit. As the lake Hydrogenophaga, Alishwenella, and relatives of Thauera; contracted and temperatures increased over the summer, a however, clone libraries were composed almost entirely of moderately dense planktonic population of ∽1×106 cells ml−1 Synechococcus (Cyanobacteria). A sample taken after the of culturable heterotrophs was replaced by a dense popula- playa surface was completely desiccated contained diverse tion of more than 1×109 cells ml−1, which appears to be the culturable Actinobacteria typically isolated from soils. -
Emended Descriptions of Genera of the Family Halobacteriaceae
International Journal of Systematic and Evolutionary Microbiology (2009), 59, 637–642 DOI 10.1099/ijs.0.008904-0 Taxonomic Emended descriptions of genera of the family Note Halobacteriaceae Aharon Oren,1 David R. Arahal2 and Antonio Ventosa3 Correspondence 1Institute of Life Sciences, and the Moshe Shilo Minerva Center for Marine Biogeochemistry, Aharon Oren The Hebrew University of Jerusalem, Jerusalem 91904, Israel [email protected] 2Departamento de Microbiologı´a y Ecologı´a and Coleccio´n Espan˜ola de Cultivos Tipo (CECT), Universidad de Valencia, 46100 Burjassot, Valencia, Spain 3Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain The family Halobacteriaceae currently contains 96 species whose names have been validly published, classified in 27 genera (as of September 2008). In recent years, many novel species have been added to the established genera but, in many cases, one or more properties of the novel species do not agree with the published descriptions of the genera. Authors have often failed to provide emended genus descriptions when necessary. Following discussions of the International Committee on Systematics of Prokaryotes Subcommittee on the Taxonomy of Halobacteriaceae, we here propose emended descriptions of the genera Halobacterium, Haloarcula, Halococcus, Haloferax, Halorubrum, Haloterrigena, Natrialba, Halobiforma and Natronorubrum. The family Halobacteriaceae was established by Gibbons rRNA gene sequence-based phylogenetic trees rather than (1974) to accommodate the genera Halobacterium and on true polyphasic taxonomy such as recommended for the Halococcus. At the time of writing (September 2008), the family (Oren et al., 1997). As a result, there are often few, if family contained 96 species whose names have been validly any, phenotypic properties that enable the discrimination published, classified in 27 genera. -
Pan-Genome Analysis and Ancestral State Reconstruction Of
www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea. -
The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts
biomolecules Review The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts Laura Matarredona ,Mónica Camacho, Basilio Zafrilla , María-José Bonete and Julia Esclapez * Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; [email protected] (L.M.); [email protected] (M.C.); [email protected] (B.Z.); [email protected] (M.-J.B.) * Correspondence: [email protected]; Tel.: +34-965-903-880 Received: 31 July 2020; Accepted: 24 September 2020; Published: 29 September 2020 Abstract: Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. -
Mesohaline Responses to Cycles of “Famine Or Feast” in Layered Brines
Int. Assoc. Sedimentol. Spec. Publ. (2011) 43, 315–392 Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines JOHN K. WARREN International Master Program in Petroleum Geoscience, Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. Formerly: Shell Professor in Carbonate Studies, Oil and Gas Research Centre, Sultan Qaboos University, Muscat, Oman (E-mail: [email protected]) ABSTRACT Organic matter in modern saline systems tends to accumulate in bottom sediments beneath a density-stratified mass of saline water where layered hydrologies are subject to oscillations in salinity and brine level. Organic matter is not produced at a constant rate in such systems; rather, it is generated in pulses by a halotolerant community in response to relatively short times of less stressful conditions (brackish to mesohaline) that occur in the upper part of the layered hydrology. Accumulations of organic matter can occur in any layered brine lake or epeiric seaway when an upper less-saline water mass forms on top of nutrient-rich brines, or in wet mudflats wherever waters freshen in and above the uppermost few millimetres of a microbial mat. A flourishing community of halotolerant algae, bacteria and archaeal photosynthesizers drives the resulting biomass bloom. Brine freshening is a time of “feast” characterized by very high levels of organic productivity. In a stratified brine column (oligotrophic and meromictic) the typical producers are planktonic algal or cyanobacterial communities inhabiting the upper mesohaline portion of the stratified water mass. In mesohaline holomictic waters, where light penetrates to the water bottom, the organic-producing layer is typically the upper algal and bacterial portion of a benthic laminated microbialite characterized by elevated numbers of cyanobacteria. -
Salinity Drives Archaeal Distribution Patterns in High Altitude Lake Sediments on the Tibetan Plateau Yongqin Liu 1,2,∗, John C
FEMS Microbiology Ecology, 92, 2016, fiw033 doi: 10.1093/femsec/fiw033 Advance Access Publication Date: 16 February 2016 Research Article RESEARCH ARTICLE Salinity drives archaeal distribution patterns in high altitude lake sediments on the Tibetan Plateau Yongqin Liu 1,2,∗, John C. Priscu3, Jinbo Xiong4, Ralf Conrad5, Trista Vick-Majors3, Haiyan Chu6 and Juzhi Hou1 Downloaded from 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Beijing 100101, China, 2CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China, 3Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA, 4Faculty of Marine Sciences, Ningbo University, Ningbo http://femsec.oxfordjournals.org/ 315211, China, 5Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany and 6State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China ∗Corresponding author: Institute of Tibetan Plateau, Chinese Academy of Science, No. 16, Lincuo Rd., Beijing 100101, China. Tel: 86-10-84097122; E-mail: [email protected] One sentence summary: We represent a comprehensive investigation of archaeal diversity in the pristine lake sediments across the Tibetan Plateau, and found salinity is the key factor controlling archaeal community diversity and composition. Editor: Dirk Wagner by guest on April 5, 2016 ABSTRACT Archaeal communities and the factors regulating their diversity in high altitude lakes are poorly understood. Here, we provide the first high-throughput sequencing study of Archaea from Tibetan Plateau lake sediments. We analyzed twenty lake sediments from the world’s highest and largest plateau and found diverse archaeal assemblages that clustered into groups dominated by methanogenic Euryarchaeota, Crenarchaeota and Halobacteria/mixed euryarchaeal phylotypes.