Pine Island Glacier - a 3D Full-Stokes Model Study

Total Page:16

File Type:pdf, Size:1020Kb

Pine Island Glacier - a 3D Full-Stokes Model Study Pine Island Glacier - a 3D full-Stokes model study Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften im Fachbereich Geowissenschaften der Universit¨atHamburg vorgelegt von Nina Wilkens aus Berlin Hamburg 2014 Als Dissertation angenommen vom Fachbereich Geowissenschaften der Universit¨atHamburg auf Grund der Gutachten von Prof. Dr. Angelika Humbert und Prof. Dr. J¨orn Behrens Hamburg, den 4. April 2014 Prof. Dr. Christian Betzler Leiter des Fachbereichs Geowissenschaften Contents List of Figures VII List of Tables XI Abstract XII 1 Introduction 1 1.1 TheAntarcticIceSheet ............................. 2 1.1.1 Geologic history . 2 1.1.2 Themarineicesheetinstability. 3 1.1.3 Basal properties . 5 1.2 Icesheetmodels ................................. 7 1.2.1 Approximations . 8 1.2.2 Basal motion . 9 1.2.3 Grounding line migration . 10 1.3 PineIslandGlacier................................ 11 1.3.1 Observations . 12 1.3.2 Modelstudies............................... 13 1.4 Objectivesandstructureofthisstudy . 14 2 Theory 17 2.1 Balance equations . 17 2.1.1 Mass balance - Continuity equation . 18 2.1.2 Momentum balance - Momentum equation . 19 2.1.3 Energy balance - Heat transfer equation . 20 2.2 Constitutive relation - Rheology of ice . 22 2.2.1 Glen’sflowlaw .............................. 22 2.2.2 Rate factor . 24 2.2.3 Enhancement factor . 25 2.3 Overview of equations . 26 2.4 Boundary conditions . 26 2.4.1 Ice surface . 27 2.4.2 Ice base . 28 2.4.3 Lateral boundaries - Ice divide, calving front and inflow . 30 2.5 Finiteelementmethod-FEM. 32 2.5.1 Meshing.................................. 32 2.5.2 Approximation functions - Basis functions . 33 2.5.3 Weighted-integral form . 34 2.5.4 Boundary conditions . 35 2.5.5 Assembly . 35 III Contents 2.5.6 Solution . 36 3 The 3D full-Stokes model for Pine Island Glacier 39 3.1 Data........................................ 39 3.1.1 Ice geometry . 40 3.1.2 Grounding line position . 41 3.1.3 Icerises .................................. 42 3.1.4 Surface temperature . 43 3.1.5 Geothermal heat flux . 43 3.1.6 Surfacevelocity.............................. 45 3.2 Implementation.................................. 46 3.2.1 Model geometry . 48 3.2.2 Iceflowmodel .............................. 49 3.2.3 Thermal model . 53 3.2.4 Mesh.................................... 55 3.2.5 Solver . 57 3.3 Verification and validation . 58 3.3.1 Ice shelf ramp . 58 3.3.2 MISMIP 3D . 63 4 Identification of dominant local flow mechanisms 67 4.1 No-slip simulations . 68 4.1.1 Drivingstress............................... 69 4.1.2 Heat conduction . 71 4.1.3 Strain heating . 72 4.1.4 Internal deformation . 76 4.2 Referencesimulations .............................. 78 4.2.1 Quasi-inversion technique . 79 4.2.2 Reference simulation . 81 4.2.3 Temperate layer . 84 4.2.4 Water content . 85 4.2.5 Full-Stokesvs.SIA............................ 86 4.2.6 Sensitivity to geothermal heat flux . 88 4.3 Hydraulic potential . 90 4.4 Basal roughness . 91 4.5 Discussion..................................... 92 5 Basal sliding 97 5.1 Theory - Basal sliding . 97 5.1.1 Hard beds . 98 5.1.2 Deformable beds . 101 5.2 Evaluation method of results . 102 5.3 Constant sets of sliding parameters p, q and Cb . 104 5.3.1 Simulations . 104 5.3.2 Discussion . 107 5.4 Matching of roughness measure ξ and sliding parameter Cb . 110 5.4.1 Simulations . 112 IV Contents 5.4.2 Discussion . 116 5.5 Li-sliding .....................................117 5.5.1 The two parameter roughness index - ξ2 and η2 . 118 5.5.2 Assumptions - Controlling obstacle size - Constant CL . 119 5.5.3 Simulations . 120 5.5.4 Discussion . 123 5.6 Discussion.....................................123 6 Conclusions and outlook 127 A 131 A.1 Integration theorems . 131 A.1.1 Reynold’s transport theorem . 131 A.1.2 Integral formula of Gauss - Divergence theorem . 131 A.1.3 Integration by parts - Green-Gauss theorem . 131 Bibliography 133 Acknowledgements 147 V List of Figures 1.1 Bedrock topography of Antarctica . 3 1.2 Schematic of a marine ice sheet on a retrograde bed . 4 1.3 Bed roughness distribution below the Antarctic Ice Sheet . 6 1.4 Surface velocity and grounding line positions at Pine Island Glacier . 13 2.1 Stress-strainrelationships . 23 2.2 Theory - Boundary conditions - Ice surface . 27 2.3 Theory - Boundary conditions - Ice base - floating . 28 2.4 Theory - Boundary conditions - Ice base - grounded . 29 2.5 Theory - Boundary conditions - Ice divide . 30 2.6 Theory - Boundary conditions - Calving front . 31 2.7 Example of a non-uniform FEM mesh on a complex geometry . 33 2.8 Linear basis functions . 34 2.9 Quadratic basis functions . 34 3.1 Model region on Antarctica . 39 3.2 Model domain of Pine Island Glacier on a mosaic of satellite images . 40 3.3 Surface elevation of Pine Island Glacier . 41 3.4 Bed topography of Pine Island Glacier . 41 3.5 Different grounding line and ice rise positions at Pine Island Glacier . 42 3.6 Surface temperature of Pine Island Glacier . 43 3.7 Geothermal heat flux from Shapiro 2004 of Pine Island Glacier . 44 3.8 Geothermal heat flux from Fox Maule 2005 of Pine Island Glacier . 44 3.9 Geothermal heat flux from Purucker 2012 of Pine Island Glacier . 44 3.10 Location of volcanic center at Pine Island Glacier . 44 3.11 Observed surface velocity field of Pine Island Glacier . 46 3.12 Screenshot of the COMSOL GUI . 47 3.13 Difference between interpolated data and geometry object at surface . 49 3.14 Difference between interpolated data and geometry object at base . 49 3.15 Model - Boundary conditions - Ice surface . 51 3.16 Model - Boundary conditions - Ice base . 51 3.17 Model - Boundary conditions - Ice divide . 52 3.18 Model - Boundary conditions - Calving front . 52 3.19 Model - Boundary conditions - Inflow . 53 3.20 Function for implementation of the thermal basal boundary condition . 55 3.21 FEM mesh on the 3D Pine Island Glacier model geometry . 56 3.22 Mesh quality on the 3D Pine Island Glacier model geometry . 56 3.23 Ice shelf ramp - 3D geometry with the flow field . 60 3.24 Ice shelf ramp - Horizontal velocities . 61 3.25 Iceshelframp-Verticalvelocities . 62 VII List of Figures 3.26 Ice shelf ramp - Mass balance . 63 3.27 MISMIP 3D - Perturbed basal friction parameter . 64 3.28 MISMIP3D-Geometrywithvelocityfield . 65 3.29 MISMIP 3D - Horizontal surface velocity u at grounding line . 65 3.30 MISMIP 3D - Horizontal surface velocity v at grounding line . 65 3.31 MISMIP 3D - Horizontal surface velocity field u . 66 3.32 MISMIP 3D - Horizontal surface velocity field v . 66 3.33 MISMIP 3D - Vertical surface velocity field w . 66 4.1 Numbering of tributaries on observed surface flow field . 67 4.2 SIA basal drag on Pine Island Glacier . 70 4.3 Simulated basal drag on Pine Island Glacier . 70 4.4 Homologous basal temperature due to heat conduction . 71 4.5 Homologous basal temperature - Without strain heating term . 72 4.6 Homologous basal temperature - With strain heating term . 72 4.7 Source term at base . 73 4.8 Viscosity at base . 74 4.9 Effective strain rate at base . ..
Recommended publications
  • Air and Shipborne Magnetic Surveys of the Antarctic Into the 21St Century
    TECTO-125389; No of Pages 10 Tectonophysics xxx (2012) xxx–xxx Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Air and shipborne magnetic surveys of the Antarctic into the 21st century A. Golynsky a,⁎,R.Bellb,1, D. Blankenship c,2,D.Damasked,3,F.Ferracciolie,4,C.Finnf,5,D.Golynskya,6, S. Ivanov g,7,W.Jokath,8,V.Masolovg,6,S.Riedelh,7,R.vonFresei,9,D.Youngc,2 and ADMAP Working Group a VNIIOkeangeologia, 1, Angliysky Avenue, St.-Petersburg, 190121, Russia b LDEO of Columbia University, 61, Route 9W, PO Box 1000, Palisades, NY 10964-8000, USA c University of Texas, Institute for Geophysics, 4412 Spicewood Springs Rd., Bldg. 600, Austin, Texas 78759-4445, USA d BGR, Stilleweg 2 D-30655, Hannover, Germany e BAS, High Cross, Madingley Road, Cambridge, CB3 OET, UK f USGS, Denver Federal Center, Box 25046 Denver, CO 80255, USA g PMGE, 24, Pobeda St., Lomonosov, 189510, Russia h AWI, Columbusstrasse, 27568, Bremerhaven, Germany i School of Earth Sciences, The Ohio State University, 125 S. Oval Mall, Columbus, OH, 43210, USA article info abstract Article history: The Antarctic geomagnetics' community remains very active in crustal anomaly mapping. More than 1.5 million Received 1 August 2011 line-km of new air- and shipborne data have been acquired over the past decade by the international community Received in revised form 27 January 2012 in Antarctica. These new data together with surveys that previously were not in the public domain significantly Accepted 13 February 2012 upgrade the ADMAP compilation.
    [Show full text]
  • Previously Unsuspected Volcanic Activity Confirmed Under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM
    Previously unsuspected volcanic activity confirmed under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM Home (/) › News (/news/) News Release 18-044 Previously unsuspected volcanic activity confirmed under West Antarctic Ice Sheet at Pine Island Glacier Potential effects of volcanic warming on ice-sheet melting and sea level rise still to be determined The Pine Island Glacier meets the ocean. Credit and Larger Version (/news/news_images.jsp?cntn_id=295861&org=NSF) June 27, 2018 This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts (/staff/sub_div.jsp? org=olpa&orgId=85). https://www.nsf.gov/news/news_summ.jsp?cntn_id=295861 Page 1 of 4 Previously unsuspected volcanic activity confirmed under West Antarc…Ice Sheet at Pine Island Glacier | NSF - National Science Foundation 1/30/20, 908 AM Tracing a chemical signature of helium in seawater, an international team of scientists funded by the National Science Foundation (NSF) and the United Kingdom's (U.K.) Natural Environment Research Council (NERC) has discovered a previously unknown volcanic hotspot beneath the massive West Antarctic Ice Sheet (WAIS). Researchers say the newly discovered heat source could contribute in ways yet unknown to the potential collapse of the ice sheet. The scientific consensus is that the rapidly melting Pine Island Glacier, the focal point of the study, would be a significant source of global sea level rise should the melting there continue or accelerate. Glaciers such as Pine Island act as plugs that regulate the speed at which the ice sheet flows into the sea.
    [Show full text]
  • A Review of Ice-Sheet Dynamics in the Pine Island Glacier Basin, West Antarctica: Hypotheses of Instability Vs
    Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 A review of ice-sheet dynamics in the Pine Island Glacier basin, West Antarctica: hypotheses of instability vs. observations of change. David G. Vaughan, Hugh F. J. Corr, Andrew M. Smith, Adrian Jenkins British Antarctic Survey, Natural Environment Research Council Charles R. Bentley, Mark D. Stenoien University of Wisconsin Stanley S. Jacobs Lamont-Doherty Earth Observatory of Columbia University Thomas B. Kellogg University of Maine Eric Rignot Jet Propulsion Laboratories, National Aeronautical and Space Administration Baerbel K. Lucchitta U.S. Geological Survey 1 Pine Island Glacier Review 5 July 1999 N:\PIGars-13.wp6 Abstract The Pine Island Glacier ice-drainage basin has often been cited as the part of the West Antarctic ice sheet most prone to substantial retreat on human time-scales. Here we review the literature and present new analyses showing that this ice-drainage basin is glaciologically unusual, in particular; due to high precipitation rates near the coast Pine Island Glacier basin has the second highest balance flux of any extant ice stream or glacier; tributary ice streams flow at intermediate velocities through the interior of the basin and have no clear onset regions; the tributaries coalesce to form Pine Island Glacier which has characteristics of outlet glaciers (e.g. high driving stress) and of ice streams (e.g. shear margins bordering slow-moving ice); the glacier flows across a complex grounding zone into an ice shelf coming into contact with warm Circumpolar Deep Water which fuels the highest basal melt-rates yet measured beneath an ice shelf; the ice front position may have retreated within the past few millennia but during the last few decades it appears to have shifted around a mean position.
    [Show full text]
  • Nudlerical Dlodelling of a Fast-Flowing Outlet Glacier: Experidlents with Different Basal Conditions
    .1n/lal.r oJ GlaciologJ' 23 1996 (' Internatio na l G laciological Society NUDlerical Dlodelling of a fast-flowing outlet glacier: experiDlents with different basal conditions FR:-\;'-JK P ,\TTYi\ De/Jar/lllen / of G eograjJ/~) I . "rije ['"il'eni/eil Brum/, B-1050 Bumel, BelgiulII A BSTRACT, R ecent o iJse J'\'ati o ns in Shirase Dra in age Basin, Enderb\' L a nd, Anta rcti ca, sholl' tha t the ice sheet is thinning a t the consid(: ra ble ra te of 0,5 (,0 m ai, S urface \'clocities in the stream a rea read; m ore tha n 2000 m ai, making S hirasc G lacier one of the fas test-fl o\l'ing glaciers in East Anta rcti ca, .\ numeri cal im'esti ga ti on of the pITSe nt stress fi eld in S hirase G lacier sholl's the existence of a large tra nsition zone 200 km in leng th w here bOlh shea ring a nd stretching a rc of equal im porta nce, fo ll owed b y a slI Tam zone 0(' a pproxima tely 50 km , \I'here stretchill g is the m ajor deform a ti o n process, In o rder to imprO\ 'e insig ht into the preselll tra nsient beha\'iour of the ice-sheet sys tem , a t\\'o-dimensiona ltime-dependent fl o\l'line model has been d e\'e loped, taking into account the ice-stream m echa ni cs, Bo th bedrock adj ustment a n cl ice tempera ture a re ta ken into ac('oulll a nd the templ'I'a lU re field is full y coupled to the ice-shcet \'C locit)' fiel d, Experiments were carried o ut \\'ith dilTerent basal m o ti o n conditio ns in order to understa nd their influen ce o n the cl\'na mic beha\'io ur of th e ice sheet a nd the stream a rea in pa rticul a r.
    [Show full text]
  • Basal Crevasses on the Larsen C Ice Shelf, Antarctica
    GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L16504, doi:10.1029/2012GL052413, 2012 Basal crevasses on the Larsen C Ice Shelf, Antarctica: Implications for meltwater ponding and hydrofracture Daniel McGrath,1 Konrad Steffen,1 Harihar Rajaram,2 Ted Scambos,3 Waleed Abdalati,1,4 and Eric Rignot5,6 Received 1 June 2012; revised 20 July 2012; accepted 23 July 2012; published 29 August 2012. [1] A key mechanism for the rapid collapse of both the Lar- thickness (due to the density difference between water and sen A and B Ice Shelves was meltwater-driven crevasse ice), fracturing the ice shelf into numerous elongate icebergs propagation. Basal crevasses, large-scale structural features [van der Veen, 1998, 2007; Scambos et al., 2003, 2009; within ice shelves, may have contributed to this mechanism in Weertman, 1973]. The narrow along-flow width and elon- three important ways: i) the shelf surface deforms due to gated across-flow length of these icebergs distinguishes them modified buoyancy and gravitational forces above the basal from tabular icebergs, and likely facilitates a positive feed- crevasse, creating >10 m deep compressional surface depres- back during the disintegration process, as elongate icebergs sions where meltwater can collect, ii) bending stresses from overturn and initiate further ice shelf calving [MacAyeal the modified shape drive surface crevassing, with crevasses et al., 2003; Guttenberg et al., 2011; Burton et al., 2012]. reaching 40 m in width, on the flanks of the basal-crevasse- [3] Dramatic atmospheric warming over the past five dec- induced trough and iii) the ice thickness is substantially ades has increased surface meltwater production along the reduced, thereby minimizing the propagation distance before a Antarctic Peninsula (AP) [Vaughan et al.,2003;van den full-thickness rift is created.
    [Show full text]
  • The Ministry for the Future / Kim Stanley Robinson
    This book is a work of fiction. Names, characters, places, and incidents are the product of the author’s imagination or are used fictitiously. Any resemblance to actual events, locales, or persons, living or dead, is coincidental. Copyright © 2020 Kim Stanley Robinson Cover design by Lauren Panepinto Cover images by Trevillion and Shutterstock Cover copyright © 2020 by Hachette Book Group, Inc. Hachette Book Group supports the right to free expression and the value of copyright. The purpose of copyright is to encourage writers and artists to produce the creative works that enrich our culture. The scanning, uploading, and distribution of this book without permission is a theft of the author’s intellectual property. If you would like permission to use material from the book (other than for review purposes), please contact [email protected]. Thank you for your support of the author’s rights. Orbit Hachette Book Group 1290 Avenue of the Americas New York, NY 10104 www.orbitbooks.net First Edition: October 2020 Simultaneously published in Great Britain by Orbit Orbit is an imprint of Hachette Book Group. The Orbit name and logo are trademarks of Little, Brown Book Group Limited. The publisher is not responsible for websites (or their content) that are not owned by the publisher. The Hachette Speakers Bureau provides a wide range of authors for speaking events. To find out more, go to www.hachettespeakersbureau.com or call (866) 376-6591. Library of Congress Cataloging-in-Publication Data Names: Robinson, Kim Stanley, author. Title: The ministry for the future / Kim Stanley Robinson. Description: First edition.
    [Show full text]
  • Page 1 0° 10° 10° 110° 110° 20° 20° 120° 120° 30° 30° 130° 130° 40
    Bouvet I 50° 40° 30° 20° 10° 0° (Norway) 10° 20° 30° 40° 50° Marion I Prince Edward I e PRINCE EDWARD ISLANDS ea Ic (South Africa) t of S exten ) aximum 973-82 M rage 1 60° ar ave (10 ye SOUTH 60° SOUTH GEORGIA (UK) SANDWICH Crozet Is ISLANDS (France) (UK) R N 60° E H O T C U Antarctic Circle E H A A K O N A G V I O EO I S A N D T H E S O U T H E R N O C E A N R a Laurie I G ( t E V S T k A Powell I J . r u 70° ORCADAS (ARGENTINA) O E A S o b N A l L F lt d Stanley N B u a Coronation I R N r A N Rawson SIGNY (UK) E A I n Y ( U C A g g A G M R n K E E A E a i S S K R A T n V a Edition 6 SOUTH ORKNEY ST M Y I ) e E y FALKLAND ISLANDS (UK) R E S 70° N L R ø ISLANDS O A R E E A v M N N S Z a l Y I A k a IS ) L L i h EN BU VO ) v n ) IA id e A IM A O S e rs I L MAITRI N S r F L a a S QUARISEN E U B n J k L S F R i - e S ( r ) U (INDIA) v Kapp Norvegia P t e m s a N R U s i t ( u R i k A Puerto Deseado Selbukta a D e R u P A r V Y t R b A BORGMASSIVET s E A l N m (J A V FIMBULHEIME E l N y Comodoro Rivadavia u S N o r t IS A H o RIISER LARSENISEN u H t Clarence I J N K Z n E w W E o R Elephant I W E G E T IN o O D m d N E S T SØR-RONDANE z n R I V nH t Y O ro a y 70° t S E R E e O u S L P sl a P N A R e RS L I B y A r H O e e G See Inset d VESTFJELLA LL C G b AV g it en o E H n NH M n s o J N e n EIA a h d E C s e NE T W E M F S e S n I R n r u T h King George I t a b i N m N O d i E H r r N a Joinville I A O B .
    [Show full text]
  • Net Retreat of Antarctic Glacier Grounding Lines
    1 Net retreat of Antarctic glacier grounding lines 2 Hannes Konrad1,2, Andrew Shepherd1, Lin Gilbert3, Anna E. Hogg1, 3 Malcolm McMillan1, Alan Muir3, Thomas Slater1 4 5 Affilitations 6 1Centre for Polar Observation and Modelling, University of Leeds, United Kingdom 7 2Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 8 Germany 9 3Centre for Polar Observation and Modelling, University College London, United Kingdom 10 11 Grounding lines are a key indicator of ice-sheet instability, because changes in their 12 position reflect imbalance with the surrounding ocean and impact on the flow of inland 13 ice. Although the grounding lines of several Antarctic glaciers have retreated rapidly 14 due to ocean-driven melting, records are too scarce to assess the scale of the imbalance. 15 Here, we combine satellite altimeter observations of ice-elevation change and 16 measurements of ice geometry to track grounding-line movement around the entire 17 continent, tripling the coverage of previous surveys. Between 2010 and 2016, 22%, 3%, 18 and 10% of surveyed grounding lines in West Antarctica, East Antarctica, and at the 19 Antarctic Peninsula retreated at rates faster than 25 m/yr – the typical pace since the 20 last glacial maximum – and the continent has lost 1463 km2 ± 791 km2 of grounded-ice 21 area. Although by far the fastest rates of retreat occurred in the Amundsen Sea Sector, 22 we show that the Pine Island Glacier grounding line has stabilized - likely as a 1 23 consequence of abated ocean forcing. On average, Antarctica’s fast-flowing ice streams 24 retreat by 110 meters per meter of ice thinning.
    [Show full text]
  • A Recent Volcanic Eruption in West Antarctica
    A recent volcanic eruption in West Antarctica Hugh F. J. Corr and David G. Vaughan There has long been speculation that volcanism may influence the ice-flow in West Antarctica, but ice obscures most of the crust in this area, and has generally limited mapping of volcanoes to those protrude through the ice sheet. Radar sounding and ice cores do show a wealth of internal horizons originating volcanic eruptions but these arise as chemical signatures usually from far distant sources and say little about local conditions. To date, there is no clear evidence for Holocene volcanic activity beneath the West Antarctic ice sheet. Here we analyze radar data from the Hudson Mountains, West Antarctica, which show an extraordinarily strong reflecting horizon, that is not the result of a chemical signature, but is a tephra layer from a recent eruption within the ice sheet. This tephra layer exists only within a radius of 80 km of an identifiable subglacial topographic high, which we call Hudson Mountains Subglacial Volcano (HMSV). The layer was previously misidentified as the ice-sheet bed; now, its depth in the ice column dates the eruption at 207 ± 240 years BC. This age matches previously un-attributed strong conductivity signals in several Antarctic ice cores. Today, there is no exposed rock around the eruptive centre, suggesting the eruption was from a volcanic centre beneath the ice. We estimate the volume of tephra in the layer to be >0.025 km3, which implies a Volcanic Eruption Index of 3, the same as the largest identified Holocene Antarctic eruption. HMSV lies on the margin of the glaciological and subglacial-hydrological catchment for Pine Island Glacier.
    [Show full text]
  • Preliminary Science Flight Report Operation Icebridge Antarctica 2011
    Preliminary Science Flight Report Operation IceBridge Antarctica 2011 Flight: F07 Mission: Slessor 1 Flight Report Summary Aircraft DC-8 (N817NA) Flight Number 120111 Flight Request 128008 Date Friday, October 21, 2011 (Z), Day of Year 294 Purpose of Flight Operation IceBridge Mission Slessor 1 Take off time 12:00:12 Zulu from Punta Arenas (SCCI) Landing time 23:23:40 Zulu at Punta Arenas (SCCI) Flight Hours 11.5 hours Aircraft Status Airworthy. Sensor Status All installed sensors operational. Significant Issues None Accomplishments Low-altitude survey (1,500 ft AGL) Bailey IceStream, Slessor Glacier and Recovery Glacier. Completed entire mission as planned. Collected data over an ice core site on Berkner Island. ATM, MCoRDS, snow and Ku-band radars, gravimeter, and DMS were operated on the survey lines. Conducted two ramp passes (2000 ft AGL) at Punta Arenas airport for ATM and DMS instrument calibration. Geographic Keywords Bailey Ice Stream, Slessor Glacier, Recovery Glacier, Berkner Island, Thyssen Höhe, Shackleton Range, Theron Mountains, Antarctica ICESat Tracks 0404 Repeat Mission None. Page | 1 Science Data Report Summary Instrument Instrument Operational Data Volume Instrument Issues Survey Entire High-alt. Area Flight Transit ATM 42 GB None MCoRDS 1.5 TB None Snow Radar 200 GB None Ku-band Radar 200 GB None DMS 98 GB None Gravimeter 2 GB None DC-8 Onboard Data 40 MB None Mission Report (Michael Studinger, Mission Scientist) Today’s mission is a new design. The intention is to sample the grounding line and lower part of Slessor Glacier and Bailey Ice Stream using all IceBridge low-altitude sensors.
    [Show full text]
  • 1 Compiled by Mike Wing New Zealand Antarctic Society (Inc
    ANTARCTIC 1 Compiled by Mike Wing US bulldozer, 1: 202, 340, 12: 54, New Zealand Antarctic Society (Inc) ACECRC, see Antarctic Climate & Ecosystems Cooperation Research Centre Volume 1-26: June 2009 Acevedo, Capitan. A.O. 4: 36, Ackerman, Piers, 21: 16, Vessel names are shown viz: “Aconcagua” Ackroyd, Lieut. F: 1: 307, All book reviews are shown under ‘Book Reviews’ Ackroyd-Kelly, J. W., 10: 279, All Universities are shown under ‘Universities’ “Aconcagua”, 1: 261 Aircraft types appear under Aircraft. Acta Palaeontolegica Polonica, 25: 64, Obituaries & Tributes are shown under 'Obituaries', ACZP, see Antarctic Convergence Zone Project see also individual names. Adam, Dieter, 13: 6, 287, Adam, Dr James, 1: 227, 241, 280, Vol 20 page numbers 27-36 are shared by both Adams, Chris, 11: 198, 274, 12: 331, 396, double issues 1&2 and 3&4. Those in double issue Adams, Dieter, 12: 294, 3&4 are marked accordingly. Adams, Ian, 1: 71, 99, 167, 229, 263, 330, 2: 23, Adams, J.B., 26: 22, Adams, Lt. R.D., 2: 127, 159, 208, Adams, Sir Jameson Obituary, 3: 76, A Adams Cape, 1: 248, Adams Glacier, 2: 425, Adams Island, 4: 201, 302, “101 In Sung”, f/v, 21: 36, Adamson, R.G. 3: 474-45, 4: 6, 62, 116, 166, 224, ‘A’ Hut restorations, 12: 175, 220, 25: 16, 277, Aaron, Edwin, 11: 55, Adare, Cape - see Hallett Station Abbiss, Jane, 20: 8, Addison, Vicki, 24: 33, Aboa Station, (Finland) 12: 227, 13: 114, Adelaide Island (Base T), see Bases F.I.D.S. Abbott, Dr N.D.
    [Show full text]
  • An Inventory of Subglacial Volcanoes in West Antarctica
    Downloaded from http://sp.lyellcollection.org/ by guest on September 24, 2021 A new volcanic province: an inventory of subglacial volcanoes in West Antarctica MAXIMILLIAN VAN WYK DE VRIES*, ROBERT G. BINGHAM & ANDREW S. HEIN School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK *Correspondence: [email protected] Abstract: The West Antarctic Ice Sheet overlies the West Antarctic Rift System about which, due to the comprehensive ice cover, we have only limited and sporadic knowledge of volcanic activity and its extent. Improving our understanding of subglacial volcanic activity across the province is important both for helping to constrain how volcanism and rifting may have influenced ice-sheet growth and decay over previous glacial cycles, and in light of concerns over whether enhanced geo- thermal heat fluxes and subglacial melting may contribute to instability of the West Antarctic Ice Sheet. Here, we use ice-sheet bed-elevation data to locate individual conical edifices protruding upwards into the ice across West Antarctica, and we propose that these edifices represent subglacial volcanoes. We used aeromagnetic, aerogravity, satellite imagery and databases of confirmed volca- noes to support this interpretation. The overall result presented here constitutes a first inventory of West Antarctica’s subglacial volcanism. We identified 138 volcanoes, 91 of which have not previ- ously been identified, and which are widely distributed throughout the deep basins of West Antarc- tica, but are especially concentrated and orientated along the >3000 km central axis of the West Antarctic Rift System. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license.
    [Show full text]