LECTRURE 6.BROADBAND ANTENNAS.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting Final Program 7–12 July 2019 Hilton Atlanta Atlanta, Georgia, U.S.A. Conference at a Glance Saturday, July 6 14:00-16:00 Strategic Planning Committee 16:15-17:15 AP-S Meetings Committee 17:15-18:15 JMC Meeting (Closed Session) 18:15-21:30 JMC Meeting, Dinner and Presentations 19:15-21:15 IEEE AP-S Constitution and Bylaws Committee Meeting & Dinner Sunday, July 7 08:00-10:00 Past Presidents’ Breakfast 10:00-18:00 AdCom Meeting 19:30-22:00 Welcome Dessert Reception at the Georgia Aquarium Monday, July 8 07:00-08:00 Amateur Radio Operators Breakfast 08:00-11:40 Technical Sessions 09:00-18:00 Technical Tour - “An Engineer’s Eye View” of the Mercedes Benz Stadium 12:00-13:20 Transactions on Antennas and Propagation Editorial Board Lunch Meeting 13:20-17:00 Technical Sessions 17:00-18:00 URSI Commission A Business Meeting 17:00-18:00 URSI Commission B Business Meeting 17:00-18:00 URSI Commissions C/E (combined) Business Meeting Tuesday, July 9 07:00-08:00 AP Magazine Staff Meeting 07:00-08:00 APS 2020 Committee Meeting 07:00-08:00 Industrial Initiatives 07:00-08:00 Membership Committee Meeting 07:00-08:00 Student Design Contest (Set-Up - Closed to Others) 07:00-08:00 Technical Committee on Antenna Measurement 08:00-11:40 Student Paper Competition 08:00-11:40 Technical Sessions 08:00-09:30 Student Design Contest (Demo for Judges - Closed to Others) 08:30-14:00 Standards Committee Meeting 09:30-12:00 Student Design Contest (Demo for Public) -
Various Types of Antenna with Respect to Their Applications: a Review
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016 Various Types of Antenna with Respect to their Applications: A Review Abdul Qadir Khan1, Muhammad Riaz2 and Anas Bilal3 1,2,3School of Information Technology, The University of Lahore, Islamabad Campus [email protected], [email protected], [email protected] Abstract– Antenna is the most important part in wireless point to point communication where increase gain and communication systems. Antenna transforms electrical signals lessened wave impedance are required [45]. into radio waves and vice versa. The antennas are of various As the knowledge about antennas along with its application kinds and having different characteristics according to the need is particularly less thus this review is essential for determining of signal transmission and reception. In this paper, we present various antennas and their applications in different systems. comparative analysis of various types of antennas that can be differentiated with respect to their shapes, material used, signal In this paper a detailed review of various types of antenna bandwidth, transmission range etc. Our main focus is to classify which developed to perform useful task of communication in these antennas according to their applications. As in the modern different field of communication network is presented. era antennas are the basic prerequisites for wireless communications that is required for fast and efficient II. WIRE ANTENNA communications. This paper will help the design architect to choose proper antenna for the desired application. A. Biconical Dipole Antenna Keywords– Antenna, Communications, Applications and Signal There is no restriction to the data transfer capacity of an Transmission infinite constant-impedance transmission line however any pragmatic execution of the biconical dipole has appendages of constrained extend forming an open-circuit stub in the same I. -
Here's a Quick Way to Know About Different Types of Antennas
11/28/2016 Different types of Antennas with Properties and thier Working HOME PROJECT IDEAS › POPULAR PROJECTS › ELECTRICAL › ELECTRONICS B.TECH PROJECTS Expert Outreach Communication Giveaways IC › Infographics Projects › Here’s a Quick Way to Know about Different Types of Antennas by Tarun Agarwal | at COMMUNICATION China Prototype PCB: 2 Register to get 10pcs for Free 4 days shipping. Register 10pcs Free now! In this modern era of wireless communication, many engineers are showing interest to do specialization in communication fields, but this requires basic knowledge of fundamental communication concepts such as types of antennas, electromagnetic radiation and various phenomena related to propagation, etc. In case of wireless communication systems, antennas play a prominent role as they convert the electronic signals into electromagnetic waves efficiently. Ads by Google Antenna Design Patch Antenna Types of Antennas https://www.elprocus.com/differenttypesofantennaswithpropertiesandthierworking/ 1/13 11/28/2016 Different types of Antennas with Properties and thier Working Antennas are basic components of any electrical circuit as they provide interconnecting links between transmitter and free space or between free space and receiver. Before we discuss about antenna types, there are a few properties that need to be understood. Apart from these properties, we also cover about different types of antennas used in communication system in detail. Properties of Antennas Antenna Gain Aperture Directivity and bandwidth Polarization Effective length Polar diagram Antenna Gain: The parameter that measures the degree of directivity of antenna’s radial pattern is known as gain. An antenna with a higher gain is more effective in its radiation pattern. -
Lecture 28 Different Types of Antennas–Heuristics
Lecture 28 Different Types of Antennas{Heuristics 28.1 Types of Antennas There are different types of antennas for different applications [128]. We will discuss their functions heuristically in the following discussions. 28.1.1 Resonance Tunneling in Antenna A simple antenna like a short dipole behaves like a Hertzian dipole with an effective length. A short dipole has an input impedance resembling that of a capacitor. Hence, it is difficult to drive current into the antenna unless other elements are added. Hertz used two metallic spheres to increase the current flow. When a large current flows on the stem of the Hertzian dipole, the stem starts to act like inductor. Thus, the end cap capacitances and the stem inductance together can act like a resonator enhancing the current flow on the antenna. Some antennas are deliberately built to resonate with its structure to enhance its radiation. A half-wave dipole is such an antenna as shown in Figure 28.1 [124]. One can think that these antennas are using resonance tunneling to enhance their radiation efficiencies. A half-wave dipole can also be thought of as a flared open transmission line in order to make it radiate. It can be gradually morphed from a quarter-wavelength transmission line as shown in Figure 28.1. A transmission is a poor radiator, because the electromagnetic energy is trapped between two pieces of metal. But a flared transmission line can radiate its field to free space. The dipole antenna, though a simple device, has been extensively studied by King [129]. He has reputed to have produced over 100 PhD students studying the dipole antenna. -
All About the Discone Antenna: Antenna of Mysterious Origin And
All About the Discone Antenna: Antenna of Mysterious Origin and Superb Broadband Performance Learn about the development, history and some applications of a discone antenna. Steve Stearns, K6OIK he frequency bandwidths as extensions of it.1 The discone antenna ent on the discone antenna. Kandoian’s novel “ demanded by high-definition (Figure 1) is one such extension, in which the or inventive element was apparently that the T television have considerable biconical dipole is asymmetric, one cone’s antenna could be encased in a radome, making range…” With these prescient words, Philip angle being 90°, which gives a flat disk of ra- it suitable for aircraft, not that it used a cone or S. Carter of RCA opened a 1939 paper that dius equal to the cone length. Two years later, disk per se, those ideas being obvious in view compared a variety of antennas for the emerg- in 1943, Armig Kandoian at the Federal Tele- of Schelkunoff’s prior work. The patent was ing field of “high-definition” television. Carter phone and Radio Corporation applied for a pat- granted in 1945, whereupon Kandoian and his showed conclusively that conical antennas colleagues, Sichak, Felsenheld, and Nail, at held distinct advantages over dipoles and fold- 1Notes appear on page 43. the newly renamed Federal Telecommunica- ed dipoles when it comes to broadband perfor- mance. Today, conical antennas are making a comeback for broadband applications such as digital television and UWB (ultra-wideband) or impulse radio. Stacked arrays of bowties and biconical dipoles are gradually displacing traditional mainstay antennas such as Yagis and log-periodics for the rooftop reception of digital television (DTV). -
Medium Power, Compact Periodic Spiral Antenna Jonathan O'brien University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2013 Medium Power, Compact Periodic Spiral Antenna Jonathan O'brien University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Electrical and Computer Engineering Commons Scholar Commons Citation O'brien, Jonathan, "Medium Power, Compact Periodic Spiral Antenna" (2013). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4926 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Medium Power, Compact Periodic Spiral Antenna by Jonathan M. O’Brien A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Thomas M. Weller, Ph.D. Gokhan Mumcu, Ph.D. Huseyin Arslan, Ph.D. John Grandfield, B.S.E.E. Date of Approval: November 8, 2013 Keywords: Three Dimensional Miniaturization, Ultra-Wideband Antennas, Thermal Modeling, Miniaturization Techniques, Loop Antenna Copyright © 2013, Jonathan M. O’Brien Dedication To my family My mother who never let me quit at anything My father who taught me that life isn’t a destination Joey who made me understand more about life than I could ever explain My brother for being my best competitor in school My best sister who can always make me laugh Acknowledgments Words cannot express the gratitude and respect I have for my advisor, Prof. -
Highlights of Antenna History
~~ IEEE COMMUNICATIONS MAGAZINE HlOHLlOHTS OF ANTENNA HISTORY JACK RAMSAY A look at the major events in the development of antennas. wires. Antenna systems similar to Edison’s were used by A. E. Dolbear in 1882 when he successfully and somewhat mysteriously succeeded in transmitting code and even speech to significant ranges, allegedly by groundconduction. NINETEENTH CENTURY WIRE ANTENNAS However, in one experiment he actually flew the first kite T is not surprising that wire antennas were inaugurated antenna.About the same time, the Irish professor, in 1842 by theinventor of wire telegraphy,Joseph C. F. Fitzgerald, calculated that a loop would radiate and that Henry, Professor’ of Natural Philosophy at Princeton, a capacitance connected to a resistor would radiate at VHF NJ. By “throwing a spark” to a circuit of wire in an (undoubtedly due to radiation from the wire connecting leads). Iupper room,Henry found that thecurrent received in a In Hertz launched,processed, and received radio 1887 H. parallel circuit in a cellar 30 ft below codd.magnetize needies. waves systematically. He used a balanced or dipole antenna With a vertical wire from his study to the roof of his house, he attachedto ’ an induction coilas a transmitter, and a detected lightning flashes 7-8 mi distant. Henry also sparked one-turn loop (rectangular) containing a sparkgap as a to a telegraph wire running from his laboratory to his house, receiver. He obtained “sympathetic resonance” by tuning the and magnetized needles in a coil attached to a parailel wire dipole with sliding spheres, and the loop by adding series 220 ft away. -
New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission
Hindawi Publishing Corporation Advances in Materials Science and Engineering Volume 2014, Article ID 252879, 10 pages http://dx.doi.org/10.1155/2014/252879 Review Article New Trends in Energy Harvesting from Earth Long-Wave Infrared Emission Luciano Mescia1 and Alessandro Massaro2 1 Dipartimento di Ingegneria Elettrica e dell’Informazione (DEI), Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy 2 Istituto Italiano di Tecnologia (IIT), Center for Biomolecurar Nanotechnologies (CBN), Via Barsanti, 73010 Arnesano, Italy Correspondence should be addressed to Luciano Mescia; [email protected] Received 12 June 2014; Accepted 18 July 2014; Published 11 August 2014 Academic Editor: Andrea Chiappini Copyright © 2014 L. Mescia and A. Massaro. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A review, even if not exhaustive, on the current technologies able to harvest energy from Earth’s thermal infrared emission is reported. In particular, we discuss the role of the rectenna system on transforming the thermal energy, provided by the Sun and reemitted from the Earth, in electricity. The operating principles, efficiency limits, system design considerations, and possible technological implementations are illustrated. Peculiar features of THz and IR antennas, such as physical properties and antenna parameters, are provided. Moreover, some design guidelines for isolated antenna, rectifying diode, and antenna coupled to rectifying diode are exploited. 1. Introduction power generation without increasing environmental pollu- tion [3]. Duringthelast20years,theworldwideenergydemandshave Photovoltaic (PV) conversion is the direct conversion of been strongly increased and as a consequence the deleterious sunlight into electricity without any heat engine to interfere. -
Size Reduction of an Uwb Low-Profile Spiral Antenna
SIZE REDUCTION OF AN UWB LOW-PROFILE SPIRAL ANTENNA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Brad A. Kramer, M.S., B.S. ***** The Ohio State University 2007 Dissertation Committee: Approved by Professor John L. Volakis, Adviser Adjunct Professor Chi-Chih Chen Adviser Associate Professor Fernando L. Teixeira Graduate Program in Electrical and Computer Engineering c Copyright by Brad A. Kramer 2007 ABSTRACT Fundamental physical limitations restrict antenna performance based on its elec- trical size alone. These fundamental limitations are of the utmost importance since the minimum size needed to achieve a particular figure of merit can be determined from them. In this dissertation, the physical limitations on the size reduction of a broadband antenna is examined theoretically and experimentally. This is in contrast to previous research that focused on narrowband antennas. Specifically, size reduction using antenna miniaturization techniques is considered and explored through the ap- plication of high-contrast material and reactive loading. A particular example is the miniaturization of a broadband spiral using readily available high-contrast dielectrics and a novel inductive loading technique. Using either dielectric or inductive loading, it is shown that the size can be reduced by more than a factor of two which is close to the observed theoretical limit. To enable the realization of a conformal antenna without the loss of the antenna’s broadband characteristics, a novel ground plane is introduced. The proposed ground plane consists of a traditional metallic ground plane coated with a layer of ferrite material. -
Rapid Prototyping of Bio-Inspired Dielectric Resonator Antennas for Sub-6 Ghz Applications
micromachines Article Rapid Prototyping of Bio-Inspired Dielectric Resonator Antennas for Sub-6 GHz Applications Valeria Marrocco 1,* , Vito Basile 1 , Ilaria Marasco 2,3 , Giovanni Niro 2,3, Luigi Melchiorre 2 , Antonella D’Orazio 2, Marco Grande 2 and Irene Fassi 4 1 STIIMA CNR, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Via P. Lembo, 38/F, 70124 Bari, Italy; [email protected] 2 Politecnico di Bari, Dipartimento di Ingegneria Elettrica e dell’Informazione, Via E. Orabona 4, 70125 Bari, Italy; [email protected] (I.M.); [email protected] (G.N.); [email protected] (L.M.); [email protected] (A.D.); [email protected] (M.G.) 3 Center for Biomolecular Nanotechnolgies, Istituto Italiano di Tecnologia (IIT), Via E. Barsanti 14, 73010 Arnesano, Italy 4 STIIMA CNR, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council, Via A. Corti, 12, 20133 Milan, Italy; [email protected] * Correspondence: [email protected] Abstract: Bio-inspired Dielectric Resonator Antennas (DRAs) are engaging more and more attention from the scientific community due to their exceptional wideband characteristic, which is especially desirable for the implementation of 5G communications. Nonetheless, since these antennas exhibit peculiar geometries in their micro-features, high dimensional accuracy must be accomplished via the selection of the most suitable fabrication process. In this study, the challenges to the manufacturing process presented by the wideband Spiral shell Dielectric Resonator Antenna (SsDRA), based on Citation: Marrocco, V.; Basile, V.; the Gielis superformula, are addressed. -
Biconical Antenna
Biconical Antenna AB-900A Features • Frequency Range 25 MHz to 300 MHz • Transmit & Receive Capabilities emissions/immunity applications • Individual Calibration Included per ANSI C63.5 or SAE ARP958 with NIST traceability • Three-year Standard Warranty Description Application The AB-900A is a broadband, linearly polarized Biconical The AB-900A Biconical Antenna is intended for use as Dipole Antenna, operating over the frequency range of an EMI test antenna for qualification-level regulatory 25 MHz to 300 MHz. It can be used as either a receiving compliance measurements (FCC, CE, MIL-STD-461, RTCA antenna (for EMI measurements) or as a transmitting DO-160, FDA, SAE Automotive, etc.). antenna (for immunity tests) for power levels up to 50 The AB-900A can also be used in conjunction with an RF watts. power amplifier (up to 50 watts) to generate RF fields associated with radiated immunity testing. Construction In addition, a pair of AB-900A Biconical Antennas can The antenna elements are constructed using a also be used for Normalized Site Attenuation (NSA) corrosion resistant aluminum, which is powder coated calibrations of Open Area Test Sites (OATS) or Semi- for additional durability. Implemented in the element Anechoic Chambers (SAC) using the Geometry Specific design is a “gamma match” rod, which connects the Correction Factors (GSCF) given in Tables G.1 through element’s center rod to one of the outer elements at G.3 of ANSI C63.5, as its physical dimensions conform to the inside edge of the 90 degree bend. The gamma the minimum and maximum values given in Figure G.1 match is necessary in order to avoid a significant “dip” in of ANSI C63.5 (Dimensions of biconical dipole antennas the antenna’s performance which would otherwise be evaluated for numerical correction). -
A Study on a Miniaturized Planar Spiral Antenna for Partial Discharge Detection in GIS
MATEC Web of Conferences 22, 02015 (2015) DOI: 10.1051/matecconf/20152202015 C Owned by the authors, published by EDP Sciences, 2015 A Study on a Miniaturized Planar Spiral Antenna for Partial Discharge Detection in GIS Yongqiang Wang, Jianfang Li, Changyuan Li, Baolong Ouyang & Zhihong Zheng Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense, North China Electric Power University, Baoding, Hebei, China ABSTRACT: Ultra-high frequency (UHF) detection method can effectively detect the signals of partial dis- charge (PD) in electrical equipment. Hence the authors designed a sensor of miniaturized planar spiral antenna for detecting PD in gas insulated substations (GISs), which is sine-wave meandered based on the traditional Ar- chimedean spiral antenna in order to reduce the antenna’s size. The test results indicate that this antenna has a wide-frequency band of 0.92~3GHz in terms of the voltage standing wave ratio (VSWR) which is smaller than 2. The antenna is smaller and its structure is simpler, its diameter is 97mm and its height is 51mm˗Besides, this antenna has an ultra-wideband, great directivity and the feature of omnidirectional radiation. Therefore, the pro- posed antenna is quite promising for PD on-line detection applications. Keywords: ultra-high frequency; GIS; miniaturized planar spiral antenna; sine-wave meander; ultra-wideband 1 INTRODUCTION antennas, the external micro-strip patch antenna (MPA), quasi-TEM horn antenna and fractal antennas In recent years, gas insulated substation (GIS) has and so on. However, as the UHF antennas’ center been widely used in many large and important power frequency is low, it is hard to have antennas miniatur- plants.