A Guide to Trickling Filter Wastewater Treatment Design and Installation of Trickling Filters

Total Page:16

File Type:pdf, Size:1020Kb

A Guide to Trickling Filter Wastewater Treatment Design and Installation of Trickling Filters A Guide to Trickling Filter Wastewater Treatment Design and Installation of Trickling Filters 2H WATER TECHNOLOGIES Water Management Professionals 2hwatertechnologies.co.uk What is your #1 wastewater • Increased demand for high quality of effluents • Insufficient capacity of the water treatment plant treatment • Energy costs • Reliability of operational and maintenance processes challenge? • Meeting tougher consents In this step-by-step Guide we take you through the most important factors you need to address to make the best buying decision and ensure the best performance from your installation. Tricking Filters have a long history of providing reliable, The more you know the more you can take advantage of ecient and cost-eective solutions to a diverse range the breadth of choice available of industrial and municipal wastewater treatment .... which is particularly important given that wastewater applications. treatment is under constant scrutiny, development and revision. Life is already tough for wastewater professionals. But everything changes It’s not going to be any easier as the legal and regulatory As Trickling Filter technology continues to evolve, the standards governing wastewater and euent treatment breadth and depth of application options available have and discharge become increasingly more demanding. expanded to provide signicant opportunity to improve operational eciency. Take a look – and find a way of using this technology to benefit your wastewater application 1 For more information: 01604 742300 Visit: 2hwatertechnologies.co.uk Trickling Filter - Evolution The BASICS The Trickling Filter process is based on the biological oxidation of pollutants contained in the wastewater. The media in the Trickling Filter provides a surface for the growth of bacteria and other micro-organisms that feed on the organic pollutants in the wastewater, and then uses oxygen in the air to convert these into harmless by-products. Trickling Filters can provide biological treatment of wastewater to reduce Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) in carbonaceous systems, BOD and ammonia in combined carbonaceous and nitrifying systems and nitrifying lters to reduce ammonia. Originally built using rock or stone media, Trickling Filters have proved simple to run, reliable, energy ecient and able to achieve successful treatment. The modern version of Trickling Filters uses the structured plastic cross-ow media. This continually splits and re-splits the applied ow at each point of contact between the opposite downward sloping corrugations of adjacent sheets in each media block to produce ecient mixing. Nitrifying Trickling Filter Ammonia Reduction Paper Mill BOD Roughing Filter (Source Glatfelter) Municipal Industrial Trickling Filters built with structured plastic media can be When a company is faced with tighter discharge consents or designed to meet the increasingly stringent standards higher industrial euent charges, high rate plastic lter required for modern wastewater treatment works. Plastic media oers an economic, simple and reliable option for media can be used to create an ’add-on’ to an existing meeting these demands. 2H oers vertical ow media with Trickling Filter and decrease the load during pre-treatment, optimised space and construction requirements compared when, for example, the capacity of an existing works has to to other processes. This type of media is more energy be increased or the consent tightened. ecient and requires less supervision. Additionally, a Trickling Filter can provide a supplementary ‘special treatment’ stage to meet new standards dictated by legislation. The versatility of plastic media enables existing assets and treatment systems to be upgraded to meet future needs with minimum cost and disruption to the treatment capacity. Every Wastewater Management Challenge is Different It is possible to meet almost any wastewater ltration requirement, and achieve great results, by using a purpose-built system that incorporates exactly the right combination of products and processes. 2H oers a comprehensive range of plastic media Trickling Filter products, with which we can build a wastewater treatment solution to deliver precisely the results you require. 2 For more information: 01604 742300 Trickling Filter - Approach Modern Trickling Filters can be adopted at each stage of wastewater treatment. With the correct design application Trickling Filters can be used to replace or compliment existing equipment at whatever stage. Available for both New and Upgraded plants Industrial Municipal Sedimentation Aerobic Aerobic Anaerobic Roughing Roughing Anaerobic Trickling Filter Trickling Filter Chemical Sedimentation Aerobic Aerobic BOD Trickling Filter BOD/Ammonia Trickling Filter Sedimentation Aerobic Aerobic Nitrifying Trickling Filter Nitrifying Trickling Filter BIOdek Clarification Clarification TUBEdek Primary Treatment Secondary Treatment Phosphorus removal Tertiary Treatment Discharged To River 3 Visit: 2hwatertechnologies.co.uk Trickling Filter – Increased Treatment Trickling Filters with plastic structured media oer a solution to increasing capacity requirement at the same time as providing enhanced reliability, at every stage of the treatment process. BIOdek media can be supplied for Roughing Filters and Secondary Filters for carbonaceous treatment to reduce BOD, for Tertiary Filters for Nitrification to further reduce the level of ammonia concentration and for Denitrification. Roughing Filters for primary Secondary Filters for reduction of high level BOD carbonaceous treatment Trickling Filters are an eective option to reduce the load The higher loading rates applied to 2H BIOdek secondary coming into the existing works as BIOdek media can be lters are typically between 0.2 kgBOD/m3/d to 1.0 produced in various congurations to achieve the required kgBOD/m³/d – depending on the required euent quality. level of treatment and for particularly heavy loaded With appropriate topographic layout, BIOdek lters can applications, vertical ow media is ideal to ensure that excess operate in gravity feed mode without the supply of sludges are expelled. additional energy. No other aerobic water treatment process oers this advantage. Case Study: Case Study: Thames Water Wheatley Yorkshire Water Roughing Filter Media Installation Secondary Filter BOD Reduction Trickling Filter ventilation Rotary Distributor Since going live in 2017, a purpose-built BIOdek trickling A 2H BIOdek solution improved treatment at an existing lter solution has continued to exceed expectations by works for Yorkshire Water. 2H supplied and installed ensuring Thames Water’s SWT plant in Wheatley, 3030m3 of BIOdek 19mm plastic cross ow structured Oxfordshire: media (150m2/m3 specic surface area) in three • hits the company’s 100% compliance target secondary Trickling Filters. Each tank was 16.5 metres in by removing over 75% BOD and achieving ammonia diameter with a media packed depth of 4.8m. levels of 1mg/l in the nal euent • meets Thames Water’s commitment to safeguarding The lters were designed to treat 767 kg/day settled BOD the local water environment and 168 kg/day of Ammonia and achieve a nal euent • has a resilient, sustainable future compliance of 50:35:15mg/l SS: BOD: Ammonia. 2H designed, manufactured and supplied the components The media was installed into concrete tanks protected by for a new glass coated, steel tank Trickling Filter measuring tall sidewalls which ensure safe access across the top of 3 16.25m in diameter with 443m BIOdek KFP619 structured the lter and provide wind protection for the distributor PP (Polypropylene) plastic media with a specic surface to prevent spray being blown o the lter. Ventilation 2 3 area (SSA) of 150m /m . The 2H solution also includes a slots were built into the tank periphery to serve the Shallow Bed media support system constructed from media and plenum area under the pack. The vents have highly-resilient, erosion resistant, moulded concrete tiles doors that can be closed in cold weather. and a customised Equio rotary distributor. 4 For more information: 01604 742300 Trickling Filter – Increased Treatment Tertiary Nitrification Water Treatment Case Study: Trickling Filters used in tertiary nitrication are designed to Severn Trent Water meet tighter ammonia discharge consents. The nature and type of biomass that establishes itself within tertiary Nitrifying Trickling Filter Distributor nitrication lters produces negligible amounts of solids. As such media with higher specic surface areas can be used to optimise the overall volume of media and, therefore, the lter footprint. Provided the works is within its suspended Nitrifying Tricking Filter solids consent, no additional capital expenditure is required for post lter settlement. BIOdek plastic media is particularly eective for use in a nitrication plant; its long retention times, smaller passage crossow structure, and high specic surface area all combine to produce a very high specic nitrication rate with the lowest levels of ammonia concentrations in the euent. Within 3 months of adding BIOdek modular plastic media lters from 2H to an existing rock-based nitrifying Trickling For extremely low ammonia discharge contents, Nitrifying Filter, Severn Trent Water (STW) recorded a drop-in Tricking Filters can be congured in their operation to ensure ammonia from approximately 4 mg/l to 0.2 mg/l. that healthy nitrifying biomass is maintained throughout the media to maintain a robust process. The original rock media Trickling
Recommended publications
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Introduction to Trickling Filters and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]
  • The Biological Treatment Method for Landfill Leachate
    E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1].
    [Show full text]
  • Trickling Filters English , PDF, 1.29MB
    FS-BIO-003 TECHNOLOGY FACT SHEETS FOR EFFLUENT TREATMENT PLANTS OF TEXTILE INDUSTRY TRICKLING FILTERS SERIES: SECONDARY TREATMENTS TITLE TRICKLING FILTERS (FS-BIO-003) Last update September 2015 Last revised TRICKLING FILTERS FS-BIO-003 TRICKLING FILTERS (FS-BIO-003) Date September 2015 Authors Alfredo Jácome Burgos Joaquín Suárez López Pablo Ures Rodríguez Revised by Last update Date Done by: Update main topics TRICKLING FILTERS FS-BIO-003 Page 1 of 17 INDEX 1. - INTRODUCTION 1.1.- Trickling filter classifications 1.1.1.- Standard Rate Filter 1.1.2.- Intermediate Rate Filter 1.1.3.- High Rate Filter 1.1.4.- Roughing Filter 1.1.5.- Super High Rate Filter 2.- DESCRIPTION 2.1.- Filling media characteristics 2.2.- Wastewater distribution characteristics 2.3.- Aeration characteristics 3.- DESIGN 3.1.- Design parameters 3.2.- Sizing criteria 3.2.1.- Low and medium load beds 3.2.2.- Roughing filter 3.3.- Application intensity (SK) 3.4.- Forced aeration 3.5.- Sludge production 4.- SECONDARY CLARIFIER 4.1.- Design variables 4.2.- Summary of design values 5.- SPECIFIC TECHNICAL CONDITIONS 6.- SPECIFICATIONS IN THE TREATMENT OF WASTEWATER OF TEXTILE INDUSTRY 7.- PARAMETERS AND CONTROL STRATEGIES 8.- OPERATION TROUBLESHOOTING BIBLIOGRAPHY ANNEX 1 REQUIRED SURFACE ESTIMATION ANNEX 2 GRAPHIC DESCRIPTION OF PROCESSING UNITS TRICKLING FILTERS FS-BIO-003 Page 2 of 17 1. - INTRODUCTION The operating principle of a trickling filter consists on a pre-treated or settled wastewater, flowing through a filtering bed where a bacterial culture, called biofilm, has been adhered and developed. The wastewater, thus irrigated on the filter material (or filling material), contacts with the biomass achieving pollution degradation.
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filters
    United States Office of Water EPA 832-F-00-014 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filters DESCRIPTION ADVANTAGES AND DISADVANTAGES Trickling filters (TFs) are used to remove organic Some advantages and disadvantages of TFs are matter from wastewater. The TF is an aerobic listed below. treatment system that utilizes microorganisms attached to a medium to remove organic matter Advantages from wastewater. This type of system is common to a number of technologies such as rotating C Simple, reliable, biological process. biological contactors and packed bed reactors (bio- towers). These systems are known as C Suitable in areas where large tracts of land attached-growth processes. In contrast, systems in are not available for land intensive treatment which microorganisms are sustained in a liquid are systems. known as suspended-growth processes. C May qualify for equivalent secondary APPLICABILITY discharge standards. TFs enable organic material in the wastewater to be C Effective in treating high concentrations of adsorbed by a population of microorganisms organics depending on the type of medium (aerobic, anaerobic, and facultative bacteria; fungi; used. algae; and protozoa) attached to the medium as a biological film or slime layer (approximately 0.1 to C Appropriate for small- to medium-sized 0.2 mm thick). As the wastewater flows over the communities. medium, microorganisms already in the water gradually attach themselves to the rock, slag, or C Rapidly reduce soluble BOD5 in applied plastic surface and form a film. The organic wastewater. material is then degraded by the aerobic microorganisms in the outer part of the slime layer.
    [Show full text]
  • Trickling Filter Technology for Treating Abattoir Wastewater
    Trickling Filter Technology for Treating Abattoir Wastewater Project code: 2014 /1016 Prepared by: GHD Pty Ltd Date Published: April 2015 Published by: Australian Meat Processor Corporation Disclaimer: The information contained within this publication has been prepared by a third party commissioned by Australian Meat Processor Corporation Ltd (AMPC). It does not necessarily reflect the opinion or position of AMPC. Care is taken to ensure the accuracy of the information contained in this publication. However, AMPC cannot accept responsibility for the accuracy or completeness of the information or opinions contained in this publication, nor does it endorse or adopt the information contained in this report. No part of this work may be reproduced, copied, published, communicated or adapted in any form or by any means (electronic or otherwise) without the express written permission of Australian Meat Processor Corporation Ltd. All rights are expressly reserved. Requests for further authorisation should be directed to the Chief Executive Officer, AMPC, Suite 1, Level 5, 110 Walker Street Sydney NSW. Table of Contents Executive Summary 4 1. Introduction 6 1.1 Project Background 6 1.2 Objectives 6 1.3 Workscope and Basis 6 1.4 Overview 7 2. Treatment of Abattoir Wastewater 11 2.1 Characterisation of Wastewater 11 2.2 Typical Treatment Train 11 2.3 Treatment 12 3. Trickling Filtration 15 3.1 General 15 3.2 Description 15 3.3 Trickling Filter Media 17 3.4 Construction 18 3.5 Recirculation 19 3.6 Air Access / Circulation 19 3.7 Broad Design 19 3.8 Activated Sludge Versus Trickling Filters 22 4.
    [Show full text]
  • Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Advanced Trickling Filtration and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]
  • 048E Pre-Treated Trickling Filter System
    Japan Platform for Redesign: Sustainable Infrastructure (JPRSI) – Environmental Technology List Registration Form Item Content Technology Pre-treated Trickling Filter(PTF)System Category Water supply / Sewerage Entity Name METAWATER Co.,Ltd. Summary The PTF method was developed to be suitable for wastewater treatment in developing countries featured by low energy consumption and the system flow is composed of three proprietary technologies with respective characteristics (high efficiency solid-liquid separator, new type trickling filter, final solid-liquid separator) by making our endeavors to improve a conventional trickling filter process. Details 【Application】Wastewater Treatment 【Characteristics】 The characteristics of the system are as follows. 1)Low energy consumption:the system is designed to achieve energy- saving in comparison with Conventional Activated Sludge Treatment Process, since the system has no aeration process which consumes substantial energy. 2 ) Stable treatment performance on effluent quality : the system can perform stable treatment in removing pollutants such as BOD, SS by adopting efficient filtration process (final solid-liquid separator). 3)Easy O&M: the system doesn’t require skilled engineers, who need to control supplied air flow (volume) as well as sludge concentration to be monitored under Conventional Activated Sludge Treatment Process. 4)Minimum footprint:Each tank is designed to be compact by adopting high rate (speed) trickling filter as well as filtration equipment instead of sedimentation basin. 【Effect】 The system can perform treatment as competitive as other technologies such as Conventional Activated Sludge Treatment Process, Oxidation Ditch Process and Sequencing Batch Reactor Process, and on top of that, it will provide users (clients) with substantial benefit of lower life-cycle cost (LCC).
    [Show full text]
  • Performance Evaluation of Integrated Treatment Plant of Trickling Filter and Constructed Wetland
    P.M Maheesan et al. / International Journal of Engineering Science and Technology (IJEST) Performance evaluation of integrated treatment plant of trickling filter and constructed wetland P.M Maheesan1, G Srinikethan2 and Harikumar, P.S3 1 Principal, Swami Nithyananda Polytechnic College Kanhangad 671315 India 2 Professor, Chemical Engineering Department National Institute of Technology Karnataka 575025 India 3 Scientist, Centre for Water Resources Development and Management Calicut 673571 India; ABSTRACT A system consisting of trickling filter followed by a vertical intermittent flow constructed wetland system under laboratory condition was evaluated for the treatment of domestic wastewater. The system was able to produce final effluents with low concentrations of both organic and nutrients. Mean effluent concentrations were, respectively: BOD: 22.22mg/L;COD:64.58mg/L;SS:27.63mg/L;NH4-N:0.62mg/L;P:1.72mg/L. The study shows that the integrated treatment system of trickling filter and vertical intermittent flow constructed wetlands can be effectively used a treatment option for a treatment with positive attributes of conceptual simplicity and lesser energy consumption. INTRODUCTION The trickling filter reactors are widely recognized as an appropriate option for the treatment of domestic wastewater in tropical developing countries. The main advantages include simplicity, no mechanization, low sludge production and less energy consumption. However, trickling filters show lower removal efficiencies compared with other secondary processes, which brings about the need for a post treatment of their effluents, especially in terms of organic matter and nutrients. In order to improve water pollution control, removal of nutrients is of great importance. This fact has obviously influenced the water legislation in this field in many parts of the world (Haberl, 1999).
    [Show full text]
  • Comparative Analysis of Grey Water Treatment Using Vermifilter Through Various Filter Depth Level
    Special Issue - 2019 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICONEEEA - 2k19 Conference Proceedings Comparative Analysis of Grey Water Treatment using Vermifilter Through Various Filter Depth Level 1* 2 T. Janani , Dr. S. Evany Nithya 1 2 Student, Asst.professor/HOD, Department of Civil Engineering, University college of engineering (BIT campus), Tiruchirappalli, Tamilnadu, India. Abstract:- Wastewater contains high number of organic solids consists of low number of organic solids and inorganic and harmful contaminants. Due to these harmful substance solids comparatively low than wastewater but these grey wastewater treatments is essential but many developed and waters is one of the major parts of wastewater so developing countries like India cannot construct and maintain treatment of grey water in house itself reduce the volume the conventional centralized sewage treatment plants due to of wastewater production. untreated grey water consists of high cost of treatment and high amount of wastewater production. So, cost effective and eco-friendly decentralized high amount of microorganism. These pathogens make sewage treatment system is needed in small areas. Hence grey water as harmful. So, treatment is essential before vermifilteration can be very effective for small villages and usage. According to United States Environmental colonies. In this system filter bed is inoculated with Protection agency, grey water can be treated to varying earthworms (Eisenia fetida). these earthworms body works as degrees U (victor G.Ngnaga et. al,2012) It can be treated a “biofilter” and it has high efficiency to remove BOD, using various secondary treatment. Mainly we have used COD.TSS by the general mechanism of biodegradation and Activates sludge process, waste stabilization pond, adsorption of organic wastes.
    [Show full text]
  • Performance Evaluation of Partially Saturated Vertical-Flow Constructed Wetland with Trickling Filter and Chemical Precipitation
    Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment B Kim, M Gautier, S Prost-Boucle, Pascal Molle, Philippe Michel, R Gourdon To cite this version: B Kim, M Gautier, S Prost-Boucle, Pascal Molle, Philippe Michel, et al.. Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering, Elsevier, 2014, 71, pp.41-47. 10.1016/j.ecoleng.2014.07.045. hal-01078368 HAL Id: hal-01078368 https://hal.archives-ouvertes.fr/hal-01078368 Submitted on 28 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitationfor domestic and winery wastewaters treatment B. Kima,b, M. Gautiera,*, S. Prost-Bouclec, P. Mollec, P. Michelb and R. Gourdona a University of Lyon, INSA Lyon, LGCIE,Team DEEP, 20 av. Albert Einstein, 69621 Villeurbanne cedex, France b SCIRPE, 5 Allée Alban Vistel, 69110 Sainte-Foy-Lès-Lyon, France c IRSTEA, UR MALY, 5 rue de la Doua, 69100 Villeurbanne, France * Corresponding author.
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filter Nitrification
    United States Office of Water EPA 832-F-00-015 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filter Nitrification DESCRIPTION domestic sewage is approximately 60 percent ammonia nitrogen, 40 percent organic nitrogen, and Nitrogen is one of the principal nutrients found in small quantities of nitrates. wastewater. Discharges containing nitrogen can severely damage a water resource and it’s Treated domestic sewage has varying levels of associated ecosystem. As a result, several nitrogen, depending on the method of treatment chemical, physical and biological processes have used. Most treatment plants decrease the level of been used to promote the removal of nitrogen. total nitrogen via cell synthesis and solids removal. Nitrification and denitrification are two suggested However, unless there is a specific treatment processes that significantly reduce nitrogen levels in provision for nitrification, most ammonia nitrogen wastewater. This fact sheet will primarily focus on passes through the system and is discharged as part the nitrification process using a trickling filter of the plant effluent. system. TFs are designed as aerobic attached growth reactors and have been proven to be suitable The presence of ammonia-nitrogen in discharges for the removal of ammonia nitrogen. from wastewater facilities can result in ammonia toxicity to aquatic life, additional oxygen demand Nitrogen Content in Wastewater on receiving waters, adverse public health effects, and decreased suitability for reuse. Nitrogen exists in many forms in the environment and can enter aquatic systems from either natural or Biological Nitrification human-generated sources. Some of the primary direct sources or transport mechanisms of nitrogen Nitrification is a process carried out by a series of from sewage include: bacterial populations that sequentially oxidize ammonium to nitrate with intermediate formation C Untreated sewage—direct discharge.
    [Show full text]