Trickling Filters for Upgrading Low Technology Wastewater Plants For

Total Page:16

File Type:pdf, Size:1020Kb

Trickling Filters for Upgrading Low Technology Wastewater Plants For Trickling filters for upgrading low technology wastewater Water Science and Technology plants for nitrogen removal P. Pearce Thames Water Utilities Ltd, Research and Development, Spencer House, Manor Farm Road, Reading RG2 0JN, UK (E-mail: [email protected]) Abstract Previous work through the 1990s in the Thames Water region in the UK has demonstrated the ability of the trickling filter process to produce fully nitrified effluents, reliably throughout the year. The original data used for the nitrification model derivations have been reanalysed, to investigate the degree of nitrogen Vol 49 No 11–12 pp 47–52 removal across the process. Removals of total nitrogen ranging from 0% to over 50% were observed across the trickling filter process and calculated total nitrogen removals of 26–63% were obtained when primary treatment was included. The degree of nitrogen removal and biological denitrification (excluding cellular assimilation) was found to be strongly influenced by BOD load, irrigation velocity and media size. Regression models were produced which gave good predictive relationships for the data ranges used. The models produced worked for filters used with and without a recirculation of effluent nitrate which suggests that a significant degree of nitrification occurred in areas of high heterotroph activity (BOD removal). The simplicity and energy efficiency of the trickling filter process, combined with its capacity for full © Thames Water Utilities Ltd 2004 nitrification and partial denitrification, make the process attractive as a combined process used with pond systems in developing countries where nitrogen removal may be required. Some of these synergies have already been developed with the PETRO® process in South Africa. Keywords Appropriate technology; nitrogen removal pond systems; trickling filters Introduction Trickling filters are low technology processes that have been proved to be capable of pro- ducing high quality, fully nitrified effluents. The process is robust and simple to operate and control. Due to the small number of moving parts (pump and rotary distributor) it requires minimal skilled maintenance and due to the efficiency of oxygen transfer, they are highly energy efficient. These attributes lend the process to application for developing countries. In recent years, Thames Water has undertaken substantial research which has signifi- cantly improved the understanding of the design and operating parameters consistent with maintaining full nitrification on trickling filters throughout the year. One of the key design parameters to achieve this is hydraulic loading (Pearce, 2002). To achieve complete nitrifi- cation throughout the year, effluent recirculation is usually required for single filtration plants. Single filtration is defined as effluent passing through a single trickling filter either as a single pass or with a degree of recirculation. Double filtration is defined as effluent passing through two filters in series with intermediate settlement with or without a degree of recirculation. In typical applications in the Thames basin stone media trickling filters are loaded below 0.15 kg BOD/m3/d. Filter depth is usually 1.5–1.8 m and so in the absence of effluent recirculation this volumetric load results in low wetting rates expressed as unit flow volume per unit plan area of trickling filter and hence, poor utilisation of filter media surface area. Incorporating effluent recirculation increases the wetted surface area and has been demon- strated to improve the degree and reliability of nitrification (Pearce and Williams, 1999; Pearce and Foster, 1999). In addition to the improved media wetting, recirculation also 47 introduces nitrate into the top of the filter where heterotroph activity, and therefore potential denitrification activity, is highest. For biological nitrogen removal reliable nitrification is an essential prerequisite, there- fore trickling filters can achieve the required degree of nitrification in a coupled process where additional denitrification can be achieved via the recirculation of trickling filter effluent via a denitrification step. Facultative pond systems have the potential for denitrifi- P. Pearce cation of the recycle stream and so in such systems where nitrification is limited in down- stream aerobic ponds, trickling filters represent a relatively low footprint upgrade for nitrification. The higher hydraulic loadings resulting from recirculation will improve the nitrification performance of the trickling filter providing the nitrate for denitrification in the recycled stream as well as potentially improving the performance of the facultative pond systems. The coupled use of pond systems and trickling filters has already been devel- oped in South Africa for the improvement of lagoon effluent BOD quality with the PETRO® process where many synergies between the two processes have been researched (Shippin et al., 1998). Work is ongoing to optimise biological nutrient removal. Results Data from the Thames trickling filters used for development of the nitrification models have been reanalysed to assess the degree of denitrification occurring. This has shown that a significant proportion of nitrogen removal can take place. Including assimilated nitrogen removal this was found to account for up to 55% total nitrogen removal from the primary effluent on the sites studied. This will reduce the amount of denitrification required on any dedicated anoxic process unit to achieve a desired effluent total nitrogen standard and so should simplify operation and control of such a sidestream process. Observed nitrogen removal in the surveyed plants is shown in Table 1 with calculated overall plant removal based on an assumed 15% removal of TKN in primary sedimentation. The operating conditions are shown in Table 2 together with calculated nitrogen removal via biological denitrification. Nitrogen loss via assimilation is based on biomass composi- tion incorporating 5% nitrogen by dry weight and a net biomass yield of 0.65 g per g BOD applied. The data are from seven sets of trickling filters on five sites and are derived from averaged 24-hour composite samples from periods of 1–6 months operation. Nitrogen removal can be seen to vary widely from zero in secondary nitrifying filters to over 50% in filters with higher BOD loadings but still achieving complete or near complete nitrification. Figure 1 shows the applied model derived from regression analysis. The analysis was Table 1 Observed and calculated nitrogen removals in trickling filters Site Effluent Effluent Effluent Observed % Calculated % N TN mg/l TON mg/l NH4-N mg/l N Removal removal from from 1o effluent inlet sewage* Arborfield Primary filters 25.3 18.6 5.5 32% Arborfield Secondary filters 24.5 23.3 0.1 3% Arborfield Overall 24.5 23.3 0.1 33% 43% Wokingham 23.6 20.1 2.3 50% 63% Wisley 23.3 21.0 1.1 37% 46% Fleet** 12–15.5 9.7–11.7 2.1–4.0 39–45% 50–53% Manor Farm Primary filters** 22–29 12–19 7.0–10.1 18–29% Manor Farm Secondary filters** 24–27 21–25 0.4–0.7 0–7% Manor Farm Overall** 24–27 21–25 0.4–0.7 12–29% 26–40% * Assumes 15% TKN removal during primary sedimentation 48 ** Ranges indicates variation of operating conditions Table 2 Operating conditions and non-assimilated N removal Site Filter Recirculation Observed % Calculated % configuration ratio r/q N Removal N removal from filter from filter feed feed via denitrification * Arborfield Primary filters Double 0 32% 28% Arborfield Secondary filters Double 0 3% 0 –1% Arborfield Overall Double 0 33% 29% P. Pearce Wokingham Single 0.47 50% 45% Wisley Single 0.42 37% 33% Fleet** Single 0–0.85 39–45% 34–40% Manor Farm Primary filters** Double 0 18–29% 25% average Manor Farm Secondary filters**Double 0 0–7% 0–1% Manor Farm Overall** Double 0 12–29% 25% average * Calculated assuming mg/l nitrogen assimilation = mg/l BOD removal × 0.0325 – see text performed on the overall averages of each data set. The results need to be interpreted with some caution, as not all of the variables are fully independent. For example TKN loading will normally increase with BOD loading, and irrigation velocity will tend to increase with recirculation ratio as will TON loading. Reasonable regressions were obtained using only truly independent variables (BOD load, irrigation velocity – including recirculation where present, and media size) and the output trends are very similar. The regressions on the larg- er data sets have therefore been presented. Several sets of loading terms were analysed and the best fit was found by the following equation: %TN removal = 0.644 + (4.3Bv)–(0.25r/q)–(0.076iv)+(4.96TONv)–(6.74TKNv)– (0.072g) where Bv = volumetric BOD load kg /m3 filter volume/day Range 0.18–0.02 r/q = recirculation flowrate/feed flowrate Range 0–0.85 iv = irrigation velocity m3total flow/m2 plan area/day Range 1.4–4.2 TONv = volumetric oxidised nitrogen loading kg TON/m3 filter Range 0–0.034 volume/day Nitrogen Removal Regression Model %TN removal = 0.644.(4.3Bv)-(0.25r/q)-(0.076iv)+(4.92TONv)-(0.0072g) 60% R2 = 0.9909 50% 40% 30% 20% Observed %TN removal 10% 0% -10% 0% 10% 20% 30% 40% 50% 60% Predicted %TN removal Figure 1 Regression for TN removal from primary effluent 49 TKNv = Total Kjeldahl nitrogen loading kg TKN/m3 filter volume/day Range 0.03–0.06 g = nominal media size, mm Range 28–63 Sensitivity analysis showed BOD loading to exert the greatest influence on the percentage removal of total nitrogen (9.35% increase in TN removal with 10% increase in BOD load), the next most sensitive parameter was media size followed by irrigation velocity (both P. Pearce inversely proportional to %TN removal). The other terms have been included as they sequentially improved the fit and reduced the residual y estimate error to 3.3%. Discussion The sensitivity analysis performed on the regression analysis helps to clarify the key mech- anisms involved.
Recommended publications
  • Landfill Leachate Pretreatment Process Evaluation and Pilot Study
    Landfill Leachate Pretreatment Process Evaluation and Pilot Study Richard Claus – Hazen and Sawyer, P.C. John Butler – Rumpke Consolidated Companies, Inc. Dan Miklos – Hazen and Sawyer, P.C. Presentation Overview Part 1 – Overview of Study, Piloting, and Design Introduction Timeline of Study, Evaluation, & Disposal Wastewater Characterization & Pretreatment Study Timeline of Piloting and Design Pretreatment Design Presentation Overview Part 2 – Pilot Treatment Sessil Media Trickling Filter Pilot Chemical Treatment Jar Testing and Pilot Considered ElectroCell Piloting Next Steps Introduction Rumpke Sanitary Landfill Cincinnati, OH, Colerain Township, Northwest Hamilton County Rumpke Consolidated Companies, Inc. Family Owned, Operated since 1945 One of the largest landfills in the nation, largest in Ohio Rumpke Colerain Township Landfill Introduction Northwest Area Landfill Portion of landfill undergoing a reaction since August, 2009 Source of extremely strong leachate Averaging 120-degrees Fahrenheit Average Volumes of 120,000 GPD (2010-2011) to 200,000 GPD (2012) Northwest Lift Station Lift Station No. 2 Pilot and Tanker Loadout Locations Northwest Area Landfill Introduction – NW Area Leachate Current Characteristics COD 30,000 to 50,000 mg/L BOD5 20,000 to 30,000 mg/L TSS 1,000 – 2,000 mg/L TKN 1,500 – 2,500 mg/L Fe 250 – 700 mg/L Ca 1,500 – 3,700 mg/L Temperature 120 degrees F Introduction – NW Area Leachate On –Going Issues Pipe scaling/clogging during conveyance Odors during handling/disposal Costs for disposal Study, Evaluation, and Disposal Timeline August, 2009 – Increasing leachate strength from Northwest Area August, 2010 to May, 2011 – Wastewater Characterization & Pretreatment Study August, 2011 to June, 2012 – Treatment Piloting and Pretreatment Design Study, Evaluation, and Disposal Timeline - Continued Historically until October 7, 2011 – “Blended” Flow Sewer Discharge into MSDGC Collection System NW Area Leachate (Approx.
    [Show full text]
  • Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Introduction to Trickling Filters and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Introduction to Trickling Filters and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]
  • The Biological Treatment Method for Landfill Leachate
    E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1].
    [Show full text]
  • Trickling Filters English , PDF, 1.29MB
    FS-BIO-003 TECHNOLOGY FACT SHEETS FOR EFFLUENT TREATMENT PLANTS OF TEXTILE INDUSTRY TRICKLING FILTERS SERIES: SECONDARY TREATMENTS TITLE TRICKLING FILTERS (FS-BIO-003) Last update September 2015 Last revised TRICKLING FILTERS FS-BIO-003 TRICKLING FILTERS (FS-BIO-003) Date September 2015 Authors Alfredo Jácome Burgos Joaquín Suárez López Pablo Ures Rodríguez Revised by Last update Date Done by: Update main topics TRICKLING FILTERS FS-BIO-003 Page 1 of 17 INDEX 1. - INTRODUCTION 1.1.- Trickling filter classifications 1.1.1.- Standard Rate Filter 1.1.2.- Intermediate Rate Filter 1.1.3.- High Rate Filter 1.1.4.- Roughing Filter 1.1.5.- Super High Rate Filter 2.- DESCRIPTION 2.1.- Filling media characteristics 2.2.- Wastewater distribution characteristics 2.3.- Aeration characteristics 3.- DESIGN 3.1.- Design parameters 3.2.- Sizing criteria 3.2.1.- Low and medium load beds 3.2.2.- Roughing filter 3.3.- Application intensity (SK) 3.4.- Forced aeration 3.5.- Sludge production 4.- SECONDARY CLARIFIER 4.1.- Design variables 4.2.- Summary of design values 5.- SPECIFIC TECHNICAL CONDITIONS 6.- SPECIFICATIONS IN THE TREATMENT OF WASTEWATER OF TEXTILE INDUSTRY 7.- PARAMETERS AND CONTROL STRATEGIES 8.- OPERATION TROUBLESHOOTING BIBLIOGRAPHY ANNEX 1 REQUIRED SURFACE ESTIMATION ANNEX 2 GRAPHIC DESCRIPTION OF PROCESSING UNITS TRICKLING FILTERS FS-BIO-003 Page 2 of 17 1. - INTRODUCTION The operating principle of a trickling filter consists on a pre-treated or settled wastewater, flowing through a filtering bed where a bacterial culture, called biofilm, has been adhered and developed. The wastewater, thus irrigated on the filter material (or filling material), contacts with the biomass achieving pollution degradation.
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filters
    United States Office of Water EPA 832-F-00-014 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filters DESCRIPTION ADVANTAGES AND DISADVANTAGES Trickling filters (TFs) are used to remove organic Some advantages and disadvantages of TFs are matter from wastewater. The TF is an aerobic listed below. treatment system that utilizes microorganisms attached to a medium to remove organic matter Advantages from wastewater. This type of system is common to a number of technologies such as rotating C Simple, reliable, biological process. biological contactors and packed bed reactors (bio- towers). These systems are known as C Suitable in areas where large tracts of land attached-growth processes. In contrast, systems in are not available for land intensive treatment which microorganisms are sustained in a liquid are systems. known as suspended-growth processes. C May qualify for equivalent secondary APPLICABILITY discharge standards. TFs enable organic material in the wastewater to be C Effective in treating high concentrations of adsorbed by a population of microorganisms organics depending on the type of medium (aerobic, anaerobic, and facultative bacteria; fungi; used. algae; and protozoa) attached to the medium as a biological film or slime layer (approximately 0.1 to C Appropriate for small- to medium-sized 0.2 mm thick). As the wastewater flows over the communities. medium, microorganisms already in the water gradually attach themselves to the rock, slag, or C Rapidly reduce soluble BOD5 in applied plastic surface and form a film. The organic wastewater. material is then degraded by the aerobic microorganisms in the outer part of the slime layer.
    [Show full text]
  • Trickling Filter Technology for Treating Abattoir Wastewater
    Trickling Filter Technology for Treating Abattoir Wastewater Project code: 2014 /1016 Prepared by: GHD Pty Ltd Date Published: April 2015 Published by: Australian Meat Processor Corporation Disclaimer: The information contained within this publication has been prepared by a third party commissioned by Australian Meat Processor Corporation Ltd (AMPC). It does not necessarily reflect the opinion or position of AMPC. Care is taken to ensure the accuracy of the information contained in this publication. However, AMPC cannot accept responsibility for the accuracy or completeness of the information or opinions contained in this publication, nor does it endorse or adopt the information contained in this report. No part of this work may be reproduced, copied, published, communicated or adapted in any form or by any means (electronic or otherwise) without the express written permission of Australian Meat Processor Corporation Ltd. All rights are expressly reserved. Requests for further authorisation should be directed to the Chief Executive Officer, AMPC, Suite 1, Level 5, 110 Walker Street Sydney NSW. Table of Contents Executive Summary 4 1. Introduction 6 1.1 Project Background 6 1.2 Objectives 6 1.3 Workscope and Basis 6 1.4 Overview 7 2. Treatment of Abattoir Wastewater 11 2.1 Characterisation of Wastewater 11 2.2 Typical Treatment Train 11 2.3 Treatment 12 3. Trickling Filtration 15 3.1 General 15 3.2 Description 15 3.3 Trickling Filter Media 17 3.4 Construction 18 3.5 Recirculation 19 3.6 Air Access / Circulation 19 3.7 Broad Design 19 3.8 Activated Sludge Versus Trickling Filters 22 4.
    [Show full text]
  • Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition
    Wisconsin Department of Natural Resources Wastewater Operator Certification Advanced Trickling Filtration and RBC's Study Guide September 1995 Edition Subclass B Wisconsin Department of Natural Resources Bureau of Science Services Operator Certification Program P.O. Box 7921, Madison, WI 53707 http://dnr.wi.gov The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of Interior, Washington, D.C. 20240. This publication is available in alternative format (large print, Braille, audio tape. etc.) upon request. Please call (608) 266-0531 for more information. Printed on 12/07/12 Advanced Trickling Filtration and RBC's Study Guide - September 1995 Edition Preface This operator's study guide represents the results of an ambitious program. Operators of wastewater facilities, regulators, educators and local officials, jointly prepared the objectives and exam questions for this subclass. How to use this study guide with references In preparation for the exams you should: 1. Read all of the key knowledges for each objective. 2. Use the resources listed at the end of the study guide for additional information. 3. Review all key knowledges until you fully understand them and know them by memory. It is advisable that the operator take classroom or online training in this process before attempting the certification exam. Choosing A Test Date Before you choose a test date, consider the training opportunities available in your area. A listing of training opportunities and exam dates is available on the internet at http://dnr.wi.gov, keyword search "operator certification".
    [Show full text]
  • 048E Pre-Treated Trickling Filter System
    Japan Platform for Redesign: Sustainable Infrastructure (JPRSI) – Environmental Technology List Registration Form Item Content Technology Pre-treated Trickling Filter(PTF)System Category Water supply / Sewerage Entity Name METAWATER Co.,Ltd. Summary The PTF method was developed to be suitable for wastewater treatment in developing countries featured by low energy consumption and the system flow is composed of three proprietary technologies with respective characteristics (high efficiency solid-liquid separator, new type trickling filter, final solid-liquid separator) by making our endeavors to improve a conventional trickling filter process. Details 【Application】Wastewater Treatment 【Characteristics】 The characteristics of the system are as follows. 1)Low energy consumption:the system is designed to achieve energy- saving in comparison with Conventional Activated Sludge Treatment Process, since the system has no aeration process which consumes substantial energy. 2 ) Stable treatment performance on effluent quality : the system can perform stable treatment in removing pollutants such as BOD, SS by adopting efficient filtration process (final solid-liquid separator). 3)Easy O&M: the system doesn’t require skilled engineers, who need to control supplied air flow (volume) as well as sludge concentration to be monitored under Conventional Activated Sludge Treatment Process. 4)Minimum footprint:Each tank is designed to be compact by adopting high rate (speed) trickling filter as well as filtration equipment instead of sedimentation basin. 【Effect】 The system can perform treatment as competitive as other technologies such as Conventional Activated Sludge Treatment Process, Oxidation Ditch Process and Sequencing Batch Reactor Process, and on top of that, it will provide users (clients) with substantial benefit of lower life-cycle cost (LCC).
    [Show full text]
  • Performance Evaluation of Integrated Treatment Plant of Trickling Filter and Constructed Wetland
    P.M Maheesan et al. / International Journal of Engineering Science and Technology (IJEST) Performance evaluation of integrated treatment plant of trickling filter and constructed wetland P.M Maheesan1, G Srinikethan2 and Harikumar, P.S3 1 Principal, Swami Nithyananda Polytechnic College Kanhangad 671315 India 2 Professor, Chemical Engineering Department National Institute of Technology Karnataka 575025 India 3 Scientist, Centre for Water Resources Development and Management Calicut 673571 India; ABSTRACT A system consisting of trickling filter followed by a vertical intermittent flow constructed wetland system under laboratory condition was evaluated for the treatment of domestic wastewater. The system was able to produce final effluents with low concentrations of both organic and nutrients. Mean effluent concentrations were, respectively: BOD: 22.22mg/L;COD:64.58mg/L;SS:27.63mg/L;NH4-N:0.62mg/L;P:1.72mg/L. The study shows that the integrated treatment system of trickling filter and vertical intermittent flow constructed wetlands can be effectively used a treatment option for a treatment with positive attributes of conceptual simplicity and lesser energy consumption. INTRODUCTION The trickling filter reactors are widely recognized as an appropriate option for the treatment of domestic wastewater in tropical developing countries. The main advantages include simplicity, no mechanization, low sludge production and less energy consumption. However, trickling filters show lower removal efficiencies compared with other secondary processes, which brings about the need for a post treatment of their effluents, especially in terms of organic matter and nutrients. In order to improve water pollution control, removal of nutrients is of great importance. This fact has obviously influenced the water legislation in this field in many parts of the world (Haberl, 1999).
    [Show full text]
  • Comparative Analysis of Grey Water Treatment Using Vermifilter Through Various Filter Depth Level
    Special Issue - 2019 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICONEEEA - 2k19 Conference Proceedings Comparative Analysis of Grey Water Treatment using Vermifilter Through Various Filter Depth Level 1* 2 T. Janani , Dr. S. Evany Nithya 1 2 Student, Asst.professor/HOD, Department of Civil Engineering, University college of engineering (BIT campus), Tiruchirappalli, Tamilnadu, India. Abstract:- Wastewater contains high number of organic solids consists of low number of organic solids and inorganic and harmful contaminants. Due to these harmful substance solids comparatively low than wastewater but these grey wastewater treatments is essential but many developed and waters is one of the major parts of wastewater so developing countries like India cannot construct and maintain treatment of grey water in house itself reduce the volume the conventional centralized sewage treatment plants due to of wastewater production. untreated grey water consists of high cost of treatment and high amount of wastewater production. So, cost effective and eco-friendly decentralized high amount of microorganism. These pathogens make sewage treatment system is needed in small areas. Hence grey water as harmful. So, treatment is essential before vermifilteration can be very effective for small villages and usage. According to United States Environmental colonies. In this system filter bed is inoculated with Protection agency, grey water can be treated to varying earthworms (Eisenia fetida). these earthworms body works as degrees U (victor G.Ngnaga et. al,2012) It can be treated a “biofilter” and it has high efficiency to remove BOD, using various secondary treatment. Mainly we have used COD.TSS by the general mechanism of biodegradation and Activates sludge process, waste stabilization pond, adsorption of organic wastes.
    [Show full text]
  • Performance Evaluation of Partially Saturated Vertical-Flow Constructed Wetland with Trickling Filter and Chemical Precipitation
    Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment B Kim, M Gautier, S Prost-Boucle, Pascal Molle, Philippe Michel, R Gourdon To cite this version: B Kim, M Gautier, S Prost-Boucle, Pascal Molle, Philippe Michel, et al.. Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitation for domestic and winery wastewaters treatment. Ecological Engineering, Elsevier, 2014, 71, pp.41-47. 10.1016/j.ecoleng.2014.07.045. hal-01078368 HAL Id: hal-01078368 https://hal.archives-ouvertes.fr/hal-01078368 Submitted on 28 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Performance evaluation of partially saturated vertical-flow constructed wetland with trickling filter and chemical precipitationfor domestic and winery wastewaters treatment B. Kima,b, M. Gautiera,*, S. Prost-Bouclec, P. Mollec, P. Michelb and R. Gourdona a University of Lyon, INSA Lyon, LGCIE,Team DEEP, 20 av. Albert Einstein, 69621 Villeurbanne cedex, France b SCIRPE, 5 Allée Alban Vistel, 69110 Sainte-Foy-Lès-Lyon, France c IRSTEA, UR MALY, 5 rue de la Doua, 69100 Villeurbanne, France * Corresponding author.
    [Show full text]
  • Wastewater Technology Fact Sheet: Trickling Filter Nitrification
    United States Office of Water EPA 832-F-00-015 Environmental Protection Washington, D.C. September 2000 Agency Wastewater Technology Fact Sheet Trickling Filter Nitrification DESCRIPTION domestic sewage is approximately 60 percent ammonia nitrogen, 40 percent organic nitrogen, and Nitrogen is one of the principal nutrients found in small quantities of nitrates. wastewater. Discharges containing nitrogen can severely damage a water resource and it’s Treated domestic sewage has varying levels of associated ecosystem. As a result, several nitrogen, depending on the method of treatment chemical, physical and biological processes have used. Most treatment plants decrease the level of been used to promote the removal of nitrogen. total nitrogen via cell synthesis and solids removal. Nitrification and denitrification are two suggested However, unless there is a specific treatment processes that significantly reduce nitrogen levels in provision for nitrification, most ammonia nitrogen wastewater. This fact sheet will primarily focus on passes through the system and is discharged as part the nitrification process using a trickling filter of the plant effluent. system. TFs are designed as aerobic attached growth reactors and have been proven to be suitable The presence of ammonia-nitrogen in discharges for the removal of ammonia nitrogen. from wastewater facilities can result in ammonia toxicity to aquatic life, additional oxygen demand Nitrogen Content in Wastewater on receiving waters, adverse public health effects, and decreased suitability for reuse. Nitrogen exists in many forms in the environment and can enter aquatic systems from either natural or Biological Nitrification human-generated sources. Some of the primary direct sources or transport mechanisms of nitrogen Nitrification is a process carried out by a series of from sewage include: bacterial populations that sequentially oxidize ammonium to nitrate with intermediate formation C Untreated sewage—direct discharge.
    [Show full text]