Lecture 9: Maximal Tori

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 9: Maximal Tori Tori Maximal tori Conjugacy of maximal tori Lecture 9: Maximal Tori Daniel Bump May 5, 2020 Tori Maximal tori Conjugacy of maximal tori Tori In this section a torus will be a compact connected abelian Lie group T with Lie algebra t. The Lie algebra t is abelian, so if X; Y 2 t then [X; Y] = 0. This implies that eXeY = eX+Y = eY eX, the simplest case of the Campbell-Hausdorff formula; see Proposition 15.2 for a proof. Tori Maximal tori Conjugacy of maximal tori Structure of tori Proposition R A torus of dimension r is isomorphic to (R=Z) . Indeed the exponential map t ! T is a homomorphism that is a local homeomorphism. Its image is a subgroup that contains a neighborhood of the identity; since T is compact, it is generated by this neighborhood. Thus exp is surjective and T =∼ t=Λ. The subgroup Λ is discrete (since exp is a local homeomorphism) and cocompact, so it is a lattice and we may r r identify t = R , Λ = Z . Tori Maximal tori Conjugacy of maximal tori Kronecker’s Theorem A generator of T is an element t0 such that the powers of t0 are dense in T. Theorem (Kronecker) r Let (t1;:::; tr) 2 R , and let t be the image of this point in r T = (R=Z) . Then t is a generator of T if and only if 1; t1;:::; tr are linearly independent over Q. Tori Maximal tori Conjugacy of maximal tori Proof of Kronecker’s theorem Let H be the closure of the group hti generated by t in r T = (R=Z) . Then T=H is a compact Abelian group, and if it is not 1 it has a nonzero character χ. We may regard this as a character of T that is trivial on H. It has the form P 2πi kjxj (x1;:::; xr) 7! e ; P for some ki 2 Z. Since t itself is in H, this means that kjtj 2 Z, so 1; t1;:::; tr are linearly dependent. The existence of nontrivial characters of T=H is thus equivalent to the linear dependence of 1; t1;:::; tr and the Kronecker’s theorem follows. Tori Maximal tori Conjugacy of maximal tori Existence of generators Corollary Each compact torus T has a generator. Indeed, generators are dense in T. By Kronecker’s Theorem, what we must show is that r-tuples (t1;:::; tr) such that 1; t1;:::; tr are linearly independent over Q r are dense in R . If 1; t1;:::; ti−1 are linearly independent, then linear independence of 1; t1;:::; ti excludes only countably many ti, and the result follows from the uncountability of R. Tori Maximal tori Conjugacy of maximal tori The automorphism group of a torus Proposition The automorphism group of a compact torus of dimension r is isomorphic to GL(r; Z). Consider the commutative diagram exp ker(exp) t T ∼ =∼ =∼ = r r r r Z R R =Z The differential of an automorphism of T is a linear transformation of t taking ker(exp) to itself. It induces a linear r r transformation of R taking Z to itself, an element of GL(r; Z). Tori Maximal tori Conjugacy of maximal tori The automorphism group of a torus is discrete The group GL(r; Z) is discrete in its relative topology as a subgroup of GL(r; R). So we expect that T has no continuous group of automorphisms. That is, H is a connected topological space and f : H ! Aut(T) is a map such that (h; t) ! f (h)t is continuous, then the map f is constant. Tori Maximal tori Conjugacy of maximal tori A theorem of von Neumann Von Neumann proved that if G is a Lie group and H a closed subgroup, then H is a Lie subgroup. The special case where H is abelian is proved in the book as Theorem 15.2. Proofs of the general case may be found in the text of Bröcker and Tom Dieck, or in Knapp’s book Lie groups beyond an introduction. We will take this fact for granted when H is abelian. Thus a closed abelian subgroup of a compact Lie group is a torus. Tori Maximal tori Conjugacy of maximal tori The Weyl group Proposition Let G be a compact Lie group and T a maximal torus. Then T is the connected component in the identity of its normalizer: N(T)◦ = T. The quotient group N(T)=T is finite. We have a homomorphism N(T)◦ ! Aut(T) through the action by conjugation. Since N(T)◦ is connected and Aut(T) is discrete, this homomorphism is trivial. Therefore N(T)◦ centralizes T. Tori Maximal tori Conjugacy of maximal tori The Weyl group (proof, continued) We claim that N(T)◦ = T. If N(T)◦ is strictly larger than T, then it contains a one-parameter subgroup R 3 t ! n(t) and the closure of the group generated by T and n(t) is a closed connected abelian subgroup strictly larger than T. Hence T is not a maximal torus. This is a contradiction. Now N(T) is a closed subgroup of the compact group G, so it is compact. Since N(T)◦ = T, the quotient N(T)=T is both compact and discrete, hence finite. This completes the proof. Tori Maximal tori Conjugacy of maximal tori The Weyl group, continued The Weyl group W = N(T)=T is called the Weyl group of G. It depends on the choice of maximal torus T, but we will see soon that all maximal tori are conjugate. Example Suppose that G = U(n). A maximal torus is 80 1 9 t1 <> => B .. C T = @ . A jt1j = ··· = jtnj = 1 : > > : tn ; Its normalizer N(T) consists of all monomial matrices (matrices with a single nonzero entry in each row and column) so the ∼ quotient N(T)=T = Sn. Tori Maximal tori Conjugacy of maximal tori Surjectivity of the exponential map If G is a noncompact group, the exponential map may not be surjective. For example, if G = SL(2; R) then a −1 1 ; a−1 −1 where a < 0 are not in the image of the exponential map unless a = −1. Theorem If G is a compact connected Lie group then exp : g ! G is surjective. We will assume this now, and discuss the proof later. Tori Maximal tori Conjugacy of maximal tori Two major theorems There are now two main theorems about maximal tori for a compact connected Lie group G. Theorem (I) Let G be a compact connected Lie group, T a maximal torus. Then [ G = gTg−1: g2G Theorem (II) Let G be a compact connected Lie group, T a maximal torus. Then any maximal torus is conjugate to T. These are fundamental in representation theory. Both follow from the surjectivity of exp. Tori Maximal tori Conjugacy of maximal tori Proof of Theorem (I) We will prove that if g 2 G there exists k 2 G such that g 2 kTk−1. Let g and t be the Lie algebras of G and T, respectively. Let t0 be a generator of T. Using the surjectivity of exp, find X 2 g and X H H0 2 t such that e = g and e 0 = t0. Since G is a compact group acting by Ad on the real vector space g, there exists on g an Ad(G)-invariant inner product for which we will denote the corresponding symmetric bilinear form as h ; i. Choose k 2 G so that the real value hX; Ad(k)H0i is −1 maximal, and let H = Ad(k)H0. Thus, exp(H) = kt0k generates kTk−1. Tori Maximal tori Conjugacy of maximal tori Proof (continued) Let Y 2 g. Since X; Ad(etY )H has a maximum when t = 0 d 0 = X; Ad(etY )H = hX; ad(Y)Hi = − hX; [H; Y]i : dt t=0 Since the inner product h ; i is invariant, this means h[H; X]; Yi = 0 for all Y. And since the inner product is positive definite, it is nondegenerate, so [H; X] = 0. H tX H Therefore e commutes with e for all t 2 R. Since e generates the maximal torus kTk−1, it follows that the one-parameter subgroup fetXg is contained in the centralizer of kTk−1, and since kTk−1 is a maximal torus, it follows that fetXg ⊂ kTk−1. In particular, g = eX 2 kTk−1. Tori Maximal tori Conjugacy of maximal tori Conjugacy of maximal tori We may now prove: Theorem (II) Let G be a compact connected Lie group, T a maximal torus. Then any maximal torus is conjugate to T. Indeed, let T0 be another maximal torus, and t0 a generator of T0. Then t0 2 kTk−1 for some k. This implies that T0 ⊆ kTk−1. Both tori are maximal, so T0 = kTk−1..
Recommended publications
  • Notes 9: Eli Cartan's Theorem on Maximal Tori
    Notes 9: Eli Cartan’s theorem on maximal tori. Version 1.00 — still with misprints, hopefully fewer Tori Let T be a torus of dimension n. This means that there is an isomorphism T S1 S1 ... S1. Recall that the Lie algebra Lie T is trivial and that the exponential × map× is× a group homomorphism, so there is an exact sequence of Lie groups exp 0 N Lie T T T 1 where the kernel NT of expT is a discrete subgroup Lie T called the integral lattice of T . The isomorphism T S1 S1 ... S1 induces an isomorphism Lie T Rn under which the exponential map× takes× the× form 2πit1 2πit2 2πitn exp(t1,...,tn)=(e ,e ,...,e ). Irreducible characters. Any irreducible representation V of T is one dimensio- nal and hence it is given by a multiplicative character; that is a group homomorphism 1 χ: T Aut(V )=C∗. It takes values in the unit circle S — the circle being the → only compact and connected subgroup of C∗ — hence we may regard χ as a Lie group map χ: T S1. → The character χ has a derivative at the unit which is a map θ = d χ :LieT e → Lie S1 of Lie algebras. The two Lie algebras being trivial and Lie S1 being of di- 1 mension one, this is just a linear functional on Lie T . The tangent space TeS TeC∗ = ⊆ C equals the imaginary axis iR, which we often will identify with R. The derivative θ fits into the commutative diagram exp 0 NT Lie T T 1 θ N θ χ | T exp 1 1 0 NS1 Lie S S 1 The linear functional θ is not any linear functional, the values it takes on the discrete 1 subgroup NT are all in N 1 .
    [Show full text]
  • An Overview of Topological Groups: Yesterday, Today, Tomorrow
    axioms Editorial An Overview of Topological Groups: Yesterday, Today, Tomorrow Sidney A. Morris 1,2 1 Faculty of Science and Technology, Federation University Australia, Victoria 3353, Australia; [email protected]; Tel.: +61-41-7771178 2 Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia Academic Editor: Humberto Bustince Received: 18 April 2016; Accepted: 20 April 2016; Published: 5 May 2016 It was in 1969 that I began my graduate studies on topological group theory and I often dived into one of the following five books. My favourite book “Abstract Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups and the structure theory of locally compact abelian groups. Walter Rudin’s book “Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van Kampen Duality Theorem. Much gentler than these is “Introduction to Topological Groups” [3] by Taqdir Husain which has an introduction to topological group theory, Haar measure, the Peter-Weyl Theorem and Duality Theory. Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book belongs to that rare category of mathematical works that can truly be called classical - books which retain their significance for decades and exert a formative influence on the scientific outlook of whole generations of mathematicians”. The final book I mention from my graduate studies days is “Topological Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a solution of Hilbert’s fifth problem as well as a structure theory for locally compact non-abelian groups.
    [Show full text]
  • Math 210C. Simple Factors 1. Introduction Let G Be a Nontrivial Connected Compact Lie Group, and Let T ⊂ G Be a Maximal Torus
    Math 210C. Simple factors 1. Introduction Let G be a nontrivial connected compact Lie group, and let T ⊂ G be a maximal torus. 0 Assume ZG is finite (so G = G , and the converse holds by Exercise 4(ii) in HW9). Define Φ = Φ(G; T ) and V = X(T )Q, so (V; Φ) is a nonzero root system. By the handout \Irreducible components of root systems", (V; Φ) is uniquely a direct sum of irreducible components f(Vi; Φi)g in the following sense. There exists a unique collection of nonzero Q-subspaces Vi ⊂ V such that for Φi := Φ \ Vi the following hold: each pair ` (Vi; Φi) is an irreducible root system, ⊕Vi = V , and Φi = Φ. Our aim is to use the unique irreducible decomposition of the root system (which involves the choice of T , unique up to G-conjugation) and some Exercises in HW9 to prove: Theorem 1.1. Let fGjgj2J be the set of minimal non-trivial connected closed normal sub- groups of G. (i) The set J is finite, the Gj's pairwise commute, and the multiplication homomorphism Y Gj ! G is an isogeny. Q (ii) If ZG = 1 or π1(G) = 1 then Gi ! G is an isomorphism (so ZGj = 1 for all j or π1(Gj) = 1 for all j respectively). 0 (iii) Each connected closed normal subgroup N ⊂ G has finite center, and J 7! GJ0 = hGjij2J0 is a bijection between the set of subsets of J and the set of connected closed normal subgroups of G. (iv) The set fGjg is in natural bijection with the set fΦig via j 7! i(j) defined by the condition T \ Gj = Ti(j).
    [Show full text]
  • Loop Groups and Twisted K-Theory III
    Annals of Mathematics 174 (2011), 947{1007 http://dx.doi.org/10.4007/annals.2011.174.2.5 Loop groups and twisted K-theory III By Daniel S. Freed, Michael J. Hopkins, and Constantin Teleman Abstract In this paper, we identify the Ad-equivariant twisted K-theory of a compact Lie group G with the \Verlinde group" of isomorphism classes of admissible representations of its loop groups. Our identification pre- serves natural module structures over the representation ring R(G) and a natural duality pairing. Two earlier papers in the series covered founda- tions of twisted equivariant K-theory, introduced distinguished families of Dirac operators and discussed the special case of connected groups with free π1. Here, we recall the earlier material as needed to make the paper self-contained. Going further, we discuss the relation to semi-infinite co- homology, the fusion product of conformal field theory, the r^oleof energy and a topological Peter-Weyl theorem. Introduction Let G be a compact Lie group and LG the space of smooth maps S1 !G, the loop group of G. The latter has a distinguished class of irreducible pro- jective unitary representations, the integrable lowest-weight representations. They are rigid; in fact, if we fix the central extension LGτ of LG there is a finite number of isomorphism classes. Our main theorem identifies the free abelian group Rτ (LG) they generate with a twisted version of the equivari- ant topological K-theory group KG(G), where G acts on itself by conjugation. The twisting is constructed from the central extension of the loop group.
    [Show full text]
  • Covering Group Theory for Compact Groups 
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 161 (2001) 255–267 www.elsevier.com/locate/jpaa Covering group theory for compact groups Valera Berestovskiia, Conrad Plautb;∗ aDepartment of Mathematics, Omsk State University, Pr. Mira 55A, Omsk 77, 644077, Russia bDepartment of Mathematics, University of Tennessee, Knoxville, TN 37919, USA Received 27 May 1999; received in revised form 27 March 2000 Communicated by A. Carboni Abstract We present a covering group theory (with a generalized notion of cover) for the category of compact connected topological groups. Every such group G has a universal covering epimorphism 2 K : G → G in this category. The abelian topological group 1 (G):=ker is a new invariant for compact connected groups distinct from the traditional fundamental group. The paper also describes a more general categorial framework for covering group theory, and includes some examples and open problems. c 2001 Elsevier Science B.V. All rights reserved. MSC: Primary: 22C05; 22B05; secondary: 22KXX 1. Introduction and main results In [1] we developed a covering group theory and generalized notion of fundamental group that discards such traditional notions as local arcwise connectivity and local simple connectivity. The theory applies to a large category of “coverable” topological groups that includes, for example, all metrizable, connected, locally connected groups and even some totally disconnected groups. However, for locally compact groups, being coverable is equivalent to being arcwise connected [2]. Therefore, many connected compact groups (e.g. solenoids or the character group of ZN ) are not coverable.
    [Show full text]
  • Exceptional Groups of Lie Type: Subgroup Structure and Unipotent Elements
    Exceptional groups of Lie type: subgroup structure and unipotent elements Donna Testerman EPF Lausanne 17 December 2012 Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unip17 Decemberotent elements 2012 1 / 110 Outline: I. Maximal subgroups of exceptional groups, finite and algebraic II. Lifting results III. Overgroups of unipotent elements Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unip17 Decemberotent elements 2012 2 / 110 Maximal subgroups of exceptional algebraic groups Let G be a simple algebraic group of exceptional type, defined over an algebraically closed field k of characteristic p ≥ 0. Let M ⊂ G be a maximal positive-dimensional closed subgroup. By the Borel-Tits theorem, if M◦ is not reductive, then M is a maximal parabolic subgroup of G. Now if M◦ is reductive, it is possible that M◦ contains a maximal torus of G. It is straightforward to describe subgroups containing maximal tori of G via the Borel-de Siebenthal algorithm. Then M is the full normalizer of such a group, and finding such M which are maximal is again straightfoward. Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unip17 Decemberotent elements 2012 3 / 110 So finally, one is left to consider the subgroups M such that M◦ is reductive, and M does not contain a maximal torus of G. A classification of the positive-dimensional maximal closed subgroups of G was completed in 2004 by Liebeck and Seitz. (Earlier work of Seitz had reduced this problem to those cases where char(k) is ‘small’.) Donna Testerman (EPF Lausanne) Exceptional groups of Lie type: subgroup structure and unip17 Decemberotent elements 2012 4 / 110 We may assume the exceptional group G to be an adjoint type group, as maximal subgroups of an arbitrary simple algebraic group G˜ must contain Z(G˜ ) and hence will have an image which is a maximal subgroup of the adjoint group.
    [Show full text]
  • Representation Theory
    M392C NOTES: REPRESENTATION THEORY ARUN DEBRAY MAY 14, 2017 These notes were taken in UT Austin's M392C (Representation Theory) class in Spring 2017, taught by Sam Gunningham. I live-TEXed them using vim, so there may be typos; please send questions, comments, complaints, and corrections to [email protected]. Thanks to Kartik Chitturi, Adrian Clough, Tom Gannon, Nathan Guermond, Sam Gunningham, Jay Hathaway, and Surya Raghavendran for correcting a few errors. Contents 1. Lie groups and smooth actions: 1/18/172 2. Representation theory of compact groups: 1/20/174 3. Operations on representations: 1/23/176 4. Complete reducibility: 1/25/178 5. Some examples: 1/27/17 10 6. Matrix coefficients and characters: 1/30/17 12 7. The Peter-Weyl theorem: 2/1/17 13 8. Character tables: 2/3/17 15 9. The character theory of SU(2): 2/6/17 17 10. Representation theory of Lie groups: 2/8/17 19 11. Lie algebras: 2/10/17 20 12. The adjoint representations: 2/13/17 22 13. Representations of Lie algebras: 2/15/17 24 14. The representation theory of sl2(C): 2/17/17 25 15. Solvable and nilpotent Lie algebras: 2/20/17 27 16. Semisimple Lie algebras: 2/22/17 29 17. Invariant bilinear forms on Lie algebras: 2/24/17 31 18. Classical Lie groups and Lie algebras: 2/27/17 32 19. Roots and root spaces: 3/1/17 34 20. Properties of roots: 3/3/17 36 21. Root systems: 3/6/17 37 22. Dynkin diagrams: 3/8/17 39 23.
    [Show full text]
  • SPACES with a COMPACT LIE GROUP of TRANSFORMATIONS A
    SPACES WITH A COMPACT LIE GROUP OF TRANSFORMATIONS a. m. gleason Introduction. A topological group © is said to act on a topological space 1{ if the elements of © are homeomorphisms of 'R. onto itself and if the mapping (<r, p)^>a{p) of ©X^ onto %_ is continuous. Familiar examples include the rotation group acting on the Car- tesian plane and the Euclidean group acting on Euclidean space. The set ®(p) (that is, the set of all <r(p) where <r(E®) is called the orbit of p. If p and q are two points of fx, then ®(J>) and ©(g) are either identical or disjoint, hence 'R. is partitioned by the orbits. The topological structure of the partition becomes an interesting question. In the case of the rotations of the Cartesian plane we find that, excising the singularity at the origin, the remainder of space is fibered as a direct product. A similar result is easily established for a compact Lie group acting analytically on an analytic manifold. In this paper we make use of Haar measure to extend this result to the case of a compact Lie group acting on any completely regular space. The exact theorem is given in §3. §§1 and 2 are preliminaries, while in §4 we apply the main result to the study of the structure of topo- logical groups. These applications form the principal motivation of the entire study,1 and the author hopes to develop them in greater detail in a subsequent paper. 1. An extension theorem. In this section we shall prove an exten- sion theorem which is an elementary generalization of the well known theorem of Tietze.
    [Show full text]
  • On the Borel Transgression in the Fibration $ G\Rightarrow G/T$
    On the Borel transgression in the fibration G → G/T Haibao Duan∗ Institute of Mathematics, Chinese Academy of Sciences; School of Mathematical Sciences, University of the Chinese Academy of Sciences [email protected] September 16, 2018 Abstract Let G be a semisimple Lie group with a maximal torus T . We present 1 2 an explicit formula for the Borel transgression τ : H (T ) → H (G/T ) of the fibration G → G/T . This formula corrects an error in the paper [9], and has been applied to construct the integral cohomology rings of compact Lie groups in the sequel works [4, 7]. 2010 Mathematical Subject Classification: 55T10, 57T10 Key words and phrases: Lie groups; Cohomology, Leray–Serre spec- tral sequence 1 Introduction A Lie group is called semisimple if its center is finite; is called adjoint if its center is trivial. In this paper the Lie groups G under consideration are compact, connected and semisimple. The homology and cohomology are over the ring of integers, unless otherwise stated. For a Lie group G with a maximal torus T let π : G → G/T be the quotient fibration. Consider the diagram with top row the cohomology exact sequence of the pair (G, T ) arXiv:1710.03014v1 [math.AT] 9 Oct 2017 ∗ i∗ δ j 0 → H1(G) → H1(T ) → H2(G, T ) → H2(G) → · · · ∗ ց τ =∼↑ π H2(G/T ) where, since the pair (G, T ) is 1–connected, the induced map π∗ is an isomor- phism. The Borel transgression [11, p.185] in the fibration π is the composition τ = (π∗)−1 ◦ δ : H1(T ) → H2(G/T ).
    [Show full text]
  • Representation Theory of Compact Groups - Lecture Notes up to 08 Mar 2017
    Representation theory of compact groups - Lecture notes up to 08 Mar 2017 Alexander Yom Din March 9, 2017 These notes are not polished yet; They are not very organized, and might contain mistakes. 1 Introduction 1 ∼ ∼ × Consider the circle group S = R=Z = C1 - it is a compact group. One studies the space L2(S1) of square-integrable complex-valued fucntions on the circle. We have an action of S1 on L2(S1) given by (gf)(x) = f(g−1x): We can suggestively write ^ Z 2 1 L (S ) = C · δx; x2S1 where gδx = δgx: Thus, the "basis" of delta functions is "permutation", or "geometric". Fourier theory describes another, "spectral" basis. Namely, we consider the functions 2πinx χn : x (mod 1) 7! e where n 2 Z. The main claim is that these functions form a Hilbert basis for L2(S1), hence we can write ^ 2 1 M L (S ) = C · χn; n2Z where −1 gχn = χn (g)χn: In other words, we found a basis of eigenfunctions for the translation operators. 1 What we would like to do in the course is to generalize the above picture to more general compact groups. For a compact group G, one considers L2(G) with the action of G × G by translation on the left and on the right: −1 ((g1; g2)f)(x) = f(g1 xg2): When the group is no longer abelian, we will not be able to find enough eigen- functions for the translation operators to form a Hilbert basis. Eigenfunctions can be considered as spanning one-dimensional invariant subspaces, and what we will be able to find is "enough" finite-dimensional "irreducible" invariant sub- spaces (which can not be decomposed into smaller invariant subspaces).
    [Show full text]
  • COMPACT LIE GROUPS Contents 1. Smooth Manifolds and Maps 1 2
    COMPACT LIE GROUPS NICHOLAS ROUSE Abstract. The first half of the paper presents the basic definitions and results necessary for investigating Lie groups. The primary examples come from the matrix groups. The second half deals with representation theory of groups, particularly compact groups. The end result is the Peter-Weyl theorem. Contents 1. Smooth Manifolds and Maps 1 2. Tangents, Differentials, and Submersions 3 3. Lie Groups 5 4. Group Representations 8 5. Haar Measure and Applications 9 6. The Peter-Weyl Theorem and Consequences 10 Acknowledgments 14 References 14 1. Smooth Manifolds and Maps Manifolds are spaces that, in a certain technical sense defined below, look like Euclidean space. Definition 1.1. A topological manifold of dimension n is a topological space X satisfying: (1) X is second-countable. That is, for the space's topology T , there exists a countable base, which is a countable collection of open sets fBαg in X such that every set in T is the union of a subcollection of fBαg. (2) X is a Hausdorff space. That is, for every pair of points x; y 2 X, there exist open subsets U; V ⊆ X such that x 2 U, y 2 V , and U \ V = ?. (3) X is locally homeomorphic to open subsets of Rn. That is, for every point x 2 X, there exists a neighborhood U ⊆ X of x such that there exists a continuous bijection with a continuous inverse (i.e. a homeomorphism) from U to an open subset of Rn. The first two conditions preclude pathological spaces that happen to have a homeomorphism into Euclidean space, and force a topological manifold to share more properties with Euclidean space.
    [Show full text]
  • Chapter 1 Compact Groups
    Chapter 1 Compact Groups Most infinite groups, in practice, come dressed in a natural topology, with re- spect to which the group operations are continuous. All the familiar groups— in particular, all matrix groups—are locally compact; and this marks the natural boundary of representation theory. A topological group G is a topological space with a group structure defined on it, such that the group operations 1 (x; y) xy; x x− 7! 7! of multiplication and inversion are both continuous. Examples: 1. The real numbers R form a topological group under addition, with the usual topology defined by the metric d(x; y) = x y : j − j 2. The non-zero reals R× = R 0 form a topological group under multipli- cation, under the same metric.n f g 3. The strictly-positive reals R+ = x R : x > 0 form a closed subgroup f 2 g of R×, and so constitute a topological group in their own right. Remarks: (a) Note that in the theory of topological groups, we are only concerned with closed subgroups. When we speak of a subgroup of a topological group, it is understood that we mean a closed subgroup, unless the contrary is explicitly stated. 424–II 1–1 424–II 1–2 (b) Note too that if a subgroup H G is open then it is also closed. For the cosets gH are all open; and⊂ so H, as the complement of the union of all other cosets, is closed. + So for example, the subgroup R R× is both open and closed. ⊂ Recall that a space X is said to be compact if it is hausdorff and every open covering X = U [ i ı I 2 has a finite subcovering: X = Ui Ui : 1 [···[ r (The space X is hausdorff if given any 2 points x; y X there exist open sets U; V X such that 2 ⊂ x U; y VU V = : 2 2 \ ; All the spaces we meet will be hausdorff; and we will use the term ‘space’ or ‘topological space’ henceforth to mean hausdorff space.) In fact all the groups and other spaces we meet will be subspaces of euclidean space En.
    [Show full text]