A Short History of Greek Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

A Short History of Greek Mathematics Dear Reader, This book was referenced in one of the 185 issues of 'The Builder' Magazine which was published between January 1915 and May 1930. To celebrate the centennial of this publication, the Pictoumasons website presents a complete set of indexed issues of the magazine. As far as the editor was able to, books which were suggested to the reader have been searched for on the internet and included in 'The Builder' library.' This is a book that was preserved for generations on library shelves before it was carefully scanned by one of several organizations as part of a project to make the world's books discoverable online. Wherever possible, the source and original scanner identification has been retained. Only blank pages have been removed and this header- page added. The original book has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books belong to the public and 'pictoumasons' makes no claim of ownership to any of the books in this library; we are merely their custodians. Often, marks, notations and other marginalia present in the original volume will appear in these files – a reminder of this book's long journey from the publisher to a library and finally to you. Since you are reading this book now, you can probably also keep a copy of it on your computer, so we ask you to Keep it legal. Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book to be in the public domain for users in Canada, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country. Please do not assume that a book's appearance in 'The Builder' library means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe. The Webmaster fllTES SCI ENTIA VEfllTAS - A SHORT HISTORY OF GREEK MATHEMATICS. l1onbon: C. J. CLAY AND SON, CAMBRIDGE UNIVERSITY PRESS WABEHOUSE, AVE MARIA LANE• ClmlJribgt: DEIGHTON, BELL, AND CO. J,tip)ig:• F. A. BROCKHAUS. A SHORT HISTORY OF GREEK MATHEMATICS BY JAMES GOW, M.A. FELLOW OF TRINITY COLLEGE, CAMBRIDGE. IIClp' EVK~dB11 T&f d,p~d,P.f"OS 'YftIJp.n-peW, WS TO rpWTO" (JEwfY1IJLCIIp.Cl8E", .qpeTO TO" EVK~Elm,,,· T£ aI P.O& 'Ir~~O" 'tTTCI& TClVrCl p4J1(Ja",OJ1T&; /CCll 0 Eti/C~dB'71S TO" 'lrCliBCI /CCI~~(TClS· Bos, ItP'71, CliJTri TP'WfJO~O", nmB.q BE;: ClVrtl, i~ w" p.fUl8UE&, ICEpBa.(",e,,,. STOBABUS, FWr. IV. p. 205. EDITED FOR THE SYNDICS OF THE UNIVERSITY PRESS. CAMBRIDGE: AT THE UNIVERSITY PRESS. 1884 €amlJdbp: PRINTED BY C. J. CLAY, M.A. AND SON, AT THE UNIVERSITY PRESS. Q .-_1.1 ifc.?,'/·,~·· l r ... t PREFACE. THE history of Greek mathematics is, for the most part, only the history of such mathematics as are learnt daily in all our public schools. And very singular it is that, though England is the only European country which still retains Euclid as its teacher of elementary geometry, and though Cambridge, at least, has, for more than a century, required from all candidates for any degree as much Greek and mathe- matics together as should make this book intelligible and interesting, yet no Englishman has been at the pains of writing, or even of translating, such a treatise. If it was not wanted, as it ought to have been, by our classical professors and our mathematicians, it would have served at any rate to quicken, with some human interest, the melancholy labours of our schoolboys. The work, as usual, has been left to Germany and even to France, and it has been done there with more than usual excellence. It demanded a combination of learning, scholarship and common sense which we used, absurdly enough, to regard as peculiarly English. If anyone still cherishes this patriotic delusion, I would advise him to look at the works of Nessel- mann, Bretschneider, Hankel, Hultsch, Heiberg and Cantor, Of, again, of Montucla, Delambre and Chasles, which are so frequently cited in the following pages. To match them we can show only an ill-arranged treatise of Dean Peacock, many brilliant but scattered articles of Prof. De Morgan, and three essays by Dr Allman. I have treated all these writers with VI PREFACE. freedom and have myself added matter which is not to be found in any of them, but they strike me still with humiliation such as a classical scholar feels when he edits a text which Bentley has edited before him. My own book represents part of a collection of notes which I have for many years been making with a view to a general history of. the great city of Alexandria. The fact that the history of Alexandrian mathematics begins with the Elements of Euclid and closes with the Algebra of Diophantus, both of which are founded on the discoveries of several pre- ceding centuries, made it necessary that I should extend my inquiries over the whole field of Greek mathematics. In this way, the materials for an account of the Alexandrian Mathematical School grew to exceed the reasonable limits of a chapter, and I have thought it desirable to publish them as a separate essay. I shall treat the Literary School with the same fulness. As a history of Alexandria ought to be interesting to most people, I took especial. pains that my treatment of the Mathematical School, which was the oldest, the most con- spicuous and the longest-lived of them all, should not be excessively technical. I have tried to put my account of it generally in such a form as should be useful and attractive to readers of various tastes. As a matter of fact, mathematicians will here find some account of every extant Greek mathe- matical book and a great number of pretty proofs translated from the ipsissima verba of the ancients. Greek scholars will find nomenclature and all manner of arithmetical symbols more fully treated than in any other work. A student of history, who cares little for Greek or mathematics in par- ticular, but who likes to watch how things grow, will be able to extract from these pages a notion of the whole history of mathematical science down to Newton's time, and will find PREFACE. Vll some very curious questions raised which it is his especial duty to answer. It was impossible to satisfy the requirements of all readers, but eacb will perhaps be willing to concede something to the claims of the others, and wherever a subject is introduced but inadequately treated, I have at least given references to sources of fuller information, if any such exist to my knowledge. As the whole book is an endeavour to compromise between conflicting claims, I have allowed myself, with the same intent, some inconsistency in two details. In the first place, I have not drawn a strict line between pure and mixed mathematics, but have given an account of the Phaenomena and Optics of Euclid and the mechanical books of Aristotle and Archimedes, while I have omitted any summary of Ptolemy's astronomical theories. The former are books which are little known, which are short, whicb came in my way and which are almost purely deductive. A com- plete history of Greek astronomy is tolerably common, is long, is founded for the most part on non-mathematical writers and would consist largely of a history of astronomical observations. In the second place, I have tried to write proper names (following indeed Smith's Dictionary of Greek and Boman Biography) in a way which should generally indicate the Greek form and pronunciation without offending the ordinary eye. I have always -written c for" and final -us for -oe, I have generally not Latinized names ending in -to», because it is sometimes inconvenient and the Latin usage was inconsistent with itself; for instance, it retained Conon but altered Plaion. I have left in their English form, the names of well-known writers. Thus the reader will find Plato, Aristotle and Euclid side by side with Heron, Nicoteles and N eocleides. If I must offend somebody, I would soonest offend a pedant. The complete MS. of this book left my hands last January and the whole edition has been printed off, sheet by sheet, viii at various intervals" since that time. I have therefore been unable to correct any errors or omissions which I observed too late or to incorporate new matter which appeared after the sheet to which it was relevant had gone to press. The chief notices which I wish to insert are given in the Addenda which immediately follow this preface. My work, dreary as it has often been, has been enlivened by one constant pleasure, the interest and unselfish assistance of many friends. Two of them, in particular, deserve recogni- tion very near the title-page. The first is Mr F. T. Swanwick, late scholar of Trinity College, Cambridge, and now Mathemati- cal Lecturer in the Owens College. He has, with incredible care and patience, read through the whole book from page 66, has made a hundred valuable suggestions and has saved me a hundred times from myself. The other is Mr Joseph Jacobs, late scholar of St John's College, Cambridge, whose' wide intellectual interests and unsurpassed knowledge of bibliography have made the book far more useful and entertaining than it otherwise would have been.
Recommended publications
  • MATH 15, CLS 15 — Spring 2020 Problem Set 1, Due 24 January 2020
    MATH 15, CLS 15 — Spring 2020 Problem set 1, due 24 January 2020 General instructions for the semester: You may use any references you like for these assignments, though you should not need anything beyond the books on the syllabus and the specified web sites. You may work with your classmates provided you all come to your own conclusions and write up your own solutions separately: discussing a problem is a really good idea, but letting somebody else solve it for you misses the point. When a question just asks for a calculation, that’s all you need to write — make sure to show your work! But if there’s a “why” or “how” question, your answer should be in the form of coherent paragraphs, giving evidence for the statements you make and the conclusions you reach. Papers should be typed (double sided is fine) and handed in at the start of class on the due date. 1. What is mathematics? Early in the video you watched, du Sautoy says the fundamental ideas of mathematics are “space and quantity”; later he says that “proof is what gives mathematics its strength.” English Wikipedia tells us “mathematics includes the study of such topics as quantity, structure, space, and change,” while Simple English Wikipedia says “mathematics is the study of numbers, shapes, and patterns.” In French Wikipedia´ we read “mathematics is a collection of abstract knowledge based on logical reasoning applied to such things as numbers, forms, structures, and transformations”; in German, “mathematics is a science that started with the study of geometric figures and calculations with numbers”; and in Spanish, “mathematics is a formal science with, beginning with axioms and continuing with logical reasoning, studies the properties of and relations between abstract objects like numbers, geometric figures, or symbols” (all translations mine).
    [Show full text]
  • Lesson 3: Rectangles Inscribed in Circles
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 3 M5 GEOMETRY Lesson 3: Rectangles Inscribed in Circles Student Outcomes . Inscribe a rectangle in a circle. Understand the symmetries of inscribed rectangles across a diameter. Lesson Notes Have students use a compass and straightedge to locate the center of the circle provided. If necessary, remind students of their work in Module 1 on constructing a perpendicular to a segment and of their work in Lesson 1 in this module on Thales’ theorem. Standards addressed with this lesson are G-C.A.2 and G-C.A.3. Students should be made aware that figures are not drawn to scale. Classwork Scaffolding: Opening Exercise (9 minutes) Display steps to construct a perpendicular line at a point. Students follow the steps provided and use a compass and straightedge to find the center of a circle. This exercise reminds students about constructions previously . Draw a segment through the studied that are needed in this lesson and later in this module. point, and, using a compass, mark a point equidistant on Opening Exercise each side of the point. Using only a compass and straightedge, find the location of the center of the circle below. Label the endpoints of the Follow the steps provided. segment 퐴 and 퐵. Draw chord 푨푩̅̅̅̅. Draw circle 퐴 with center 퐴 . Construct a chord perpendicular to 푨푩̅̅̅̅ at and radius ̅퐴퐵̅̅̅. endpoint 푩. Draw circle 퐵 with center 퐵 . Mark the point of intersection of the perpendicular chord and the circle as point and radius ̅퐵퐴̅̅̅. 푪. Label the points of intersection .
    [Show full text]
  • Three Points on the Plane
    THREE POINTS ON THE PLANE ALEXANDER GIVENTAL UC BERKELEY In this lecture, we examine some properties of a geometric figure formed by three points on the plane. Any three points not lying on the same line determine a triangle. Namely, the points are the vertices of the triangle, and the segments connecting them are the sides of it. We expect the reader to be familiar with a few basic notions and facts of geometry of triangles. References like “[K], §140” will point to specific sections in: Kiselev’s Geometry. Book I: Planimetry, Sumizdat, 2006, 248 pages. Everything we assume known, as well as the initial part of the present exposition, is contained in the first half of this textbook. Circumcenter. One says a circle is circumscribed about a triangle (or shorter, is the circumcircle of it), if the circle passes through all vertices of the triangle. Theorem 1. About every triangle, a circle can be circum- scribed, and such a circle is unique. Let △ABC be a triangle with vertices A, B, C (Figure 1). A point O equidistant from1 all the three vertices is the center of a circumcircle of radius OA = OB = OC. Thus we need to show that a point equidistant from the vertices exists and is unique. Indeed, the geometric locus 2 of points equidistant from A and B is the perpendicular bisector to the segment AB, i.e. it is the line (denoted by MN in Figure 1) perpendicular to the segment AB at its midpoint (see [K], §56). Likewise, the geometric locus of points equidistant from B and C is the perpendicular bisector P Q to the segment BC.
    [Show full text]
  • Math2 Unit6.Pdf
    Student Resource Book Unit 6 1 2 3 4 5 6 7 8 9 10 ISBN 978-0-8251-7340-0 Copyright © 2013 J. Weston Walch, Publisher Portland, ME 04103 www.walch.com Printed in the United States of America WALCH EDUCATION Table of Contents Introduction. v Unit 6: Circles With and Without Coordinates Lesson 1: Introducing Circles . U6-1 Lesson 2: Inscribed Polygons and Circumscribed Triangles. U6-43 Lesson 3: Constructing Tangent Lines . U6-85 Lesson 4: Finding Arc Lengths and Areas of Sectors . U6-106 Lesson 5: Explaining and Applying Area and Volume Formulas. U6-121 Lesson 6: Deriving Equations . U6-154 Lesson 7: Using Coordinates to Prove Geometric Theorems About Circles and Parabolas . U6-196 Answer Key. AK-1 iii Table of Contents Introduction Welcome to the CCSS Integrated Pathway: Mathematics II Student Resource Book. This book will help you learn how to use algebra, geometry, data analysis, and probability to solve problems. Each lesson builds on what you have already learned. As you participate in classroom activities and use this book, you will master important concepts that will help to prepare you for mathematics assessments and other mathematics courses. This book is your resource as you work your way through the Math II course. It includes explanations of the concepts you will learn in class; math vocabulary and definitions; formulas and rules; and exercises so you can practice the math you are learning. Most of your assignments will come from your teacher, but this book will allow you to review what was covered in class, including terms, formulas, and procedures.
    [Show full text]
  • A.C. Myshrall
    CHAPTER 9. AN INTRODUCTION TO LECTIONARY 299 (A.C. MYSHRALL) Codex Zacynthius, as it is currently bound, is a near-complete Greek gospel lectionary dating to the late twelfth century. Very little work has been done on this lectionary because of the intense interest in the text written underneath. Indeed, New Testament scholars have generally neglected most lectionaries in favour of working on continuous text manuscripts.1 This is largely down to the late date of most of the available lectionaries as well as the assumption that they form a separate, secondary, textual tradition. However, the study of Byzantine lectionaries is vital to understand the development of the use of the New Testament text. Nearly half of the catalogued New Testament manuscripts are lectionaries.2 These manuscripts show us how, in the words of Krueger and Nelson, ‘Christianity is not so much the religion of the New Testament as the religion of its use’.3 These lectionaries were how the Byzantine faithful heard the Bible throughout the Church year, how they interacted with the Scriptures, and they open a window for us to see the worship of a particular community in a particular time and place. THE LECTIONARY A lectionary is a book containing selected scripture readings for use in Christian worship on a given day. The biblical text is thus arranged not in the traditional order of the Bible, but in the order of how the readings appear throughout the year of worship. So, not all of the Bible is included (the Book of Revelation never appears in a Greek lectionary) and the 1 Exceptions to this include the Chicago Lectionary Project (for an overview of the project see Carroll Osburn, ‘The Greek Lectionaries of the New Testament,’ in The Text of the New Testament.
    [Show full text]
  • INFINITE PROCESSES in GREEK MATHEMATICS by George
    INFINITE PROCESSES IN GREEK MATHEMATICS by George Clarence Vedova Thesis submitted to the Faculty of the Graduate School of the University of Maryland in partial fulfillment of the requirements for the degree of Doctor of Philosophy 1943 UMI Number: DP70209 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI DP70209 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 PREFACE The thesis is a historico-philosophic survey of infinite processes in Greek mathematics* Beginning with the first emergence, in Ionian speculative cosmogony, of the tinder lying concepts of infinity, continuity, infinitesimal and limit, the survey follows the development of infinite processes through the ages as these concepts gain in clarity, -it notes the positive contributions of various schools of thought, the negative and corrective influences of others and, in a broad way, establishes the causal chain that finally led to the more abstract processes of the mathematical schools of Cnidus (Eudoxus) and Syracuse
    [Show full text]
  • A Handbook of Greek and Roman Coins
    CORNELL UNIVERSITY LIBRARY BOUGHT WITH THE INCOME OF THE SAGE ENDOWMENT FUND GIVEN IN 1891 BY HENRY WILLIAMS SAGE Cornell University Library CJ 237.H64 A handbook of Greek and Roman coins. 3 1924 021 438 399 Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924021438399 f^antilioofcs of glrcfjaeologj) anU Antiquities A HANDBOOK OF GREEK AND ROMAN COINS A HANDBOOK OF GREEK AND ROMAN COINS G. F. HILL, M.A. OF THE DEPARTMENT OF COINS AND MEDALS IN' THE bRITISH MUSEUM WITH FIFTEEN COLLOTYPE PLATES Hon&on MACMILLAN AND CO., Limited NEW YORK: THE MACMILLAN COMPANY l8 99 \_All rights reserved'] ©jcforb HORACE HART, PRINTER TO THE UNIVERSITY PREFACE The attempt has often been made to condense into a small volume all that is necessary for a beginner in numismatics or a young collector of coins. But success has been less frequent, because the knowledge of coins is essentially a knowledge of details, and small treatises are apt to be un- readable when they contain too many references to particular coins, and unprofltably vague when such references are avoided. I cannot hope that I have passed safely between these two dangers ; indeed, my desire has been to avoid the second at all risk of encountering the former. At the same time it may be said that this book is not meant for the collector who desires only to identify the coins which he happens to possess, while caring little for the wider problems of history, art, mythology, and religion, to which coins sometimes furnish the only key.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • Welcome to the Complete Pythagoras
    Welcome to The Complete Pythagoras A full-text, public domain edition for the generalist & specialist Edited by Patrick Rousell for the World Wide Web. I first came across Kenneth Sylvan Guthrie’s edition of the Complete Pythagoras while researching a book on Leonardo. I had been surfing these deep waters for a while and so the value of Guthrie’s publication was immediately apparent. As Guthrie explains in his own introduction, which is at the beginning of the second book (p 168), he was initially prompted to publish these writings in the 1920’s for fear that this information would become lost. As it is, much of this information has since been published in fairly good modern editions. However, these are still hard to access and there is no current complete collection as presented by Guthrie. The advantage here is that we have a fairly comprehensive collection of works on Pythagoras and the Pythagoreans, translated from the origin- al Greek into English, and presented as a unified, albeit electronic edition. The Complete Pythagoras is a compilation of two books. The first is entitled The Life Of Py- thagoras and contains the four biographies of Pythagoras that have survived from antiquity: that of Iamblichus (280-333 A.D.), Porphry (233-306 A.D.), Photius (ca 820- ca 891 A.D.) and Diogenes Laertius (180 A.D.). The second is entitled Pythagorean Library and is a complete collection of the surviving fragments from the Pythagoreans. The first book was published in 1920, the second a year later, and released together as a bound edition.
    [Show full text]
  • 92 Some Early Greek Attempts to Square the Circle A. WASSERSTEIN
    Some Greek to the circle early attempts square A. WASSERSTEIN HE quadrature of the circle, one of the most famous mathematical problems of antiquity no less than of more modern times, appears comparatively early in the history of Greek mathematics. In the Sth century it had an established position as one of the three traditional problems, viz. quadrature or rectification of the circle, duplication of the cube and trisection of a given angle. Thinkers as different from each I 2 other as Hippocrates of Chios Anaxagoras the philosopher and 3 Antiphon the Sophist worked on it; and by 414 B.C. the endeavour "to square the circle" had become the recognized sign of the crank.4 In what follows I shall (a) examine the evidence that we have for some of the reported attempts to square the circle, and (b) attempt to reconstruct the historical relation that subsists between these attempts. Aristotle mentions an attempt by Antiphon the Sophist to square the circle.s - "No man of science is bound to solve every kind of difficulty that may be raised, but only as many as are drawn falsely from the principles of the science: it is not our business to refute those that do not arise in this way: just as it is the duty of the geometer to refute the squaring of the circle by means of segments, but it is not his duty to refute Antiphon's proof." (Translation by R. P. Hardie in the Oxford translation of Aristotle.) We owe our knowledge, such as it is, of Antiphon's method to the commentators on the Physics.6 92 Themistius, in Phys.
    [Show full text]
  • Pythagoras and the Pythagoreans1
    Pythagoras and the Pythagoreans1 Historically, the name Pythagoras meansmuchmorethanthe familiar namesake of the famous theorem about right triangles. The philosophy of Pythagoras and his school has become a part of the very fiber of mathematics, physics, and even the western tradition of liberal education, no matter what the discipline. The stamp above depicts a coin issued by Greece on August 20, 1955, to commemorate the 2500th anniversary of the founding of the first school of philosophy by Pythagoras. Pythagorean philosophy was the prime source of inspiration for Plato and Aristotle whose influence on western thought is without question and is immeasurable. 1 c G. Donald Allen, 1999 ° Pythagoras and the Pythagoreans 2 1 Pythagoras and the Pythagoreans Of his life, little is known. Pythagoras (fl 580-500, BC) was born in Samos on the western coast of what is now Turkey. He was reportedly the son of a substantial citizen, Mnesarchos. He met Thales, likely as a young man, who recommended he travel to Egypt. It seems certain that he gained much of his knowledge from the Egyptians, as had Thales before him. He had a reputation of having a wide range of knowledge over many subjects, though to one author as having little wisdom (Her- aclitus) and to another as profoundly wise (Empedocles). Like Thales, there are no extant written works by Pythagoras or the Pythagoreans. Our knowledge about the Pythagoreans comes from others, including Aristotle, Theon of Smyrna, Plato, Herodotus, Philolaus of Tarentum, and others. Samos Miletus Cnidus Pythagoras lived on Samos for many years under the rule of the tyrant Polycrates, who had a tendency to switch alliances in times of conflict — which were frequent.
    [Show full text]
  • Too Many Metrodoruses? the Compiler of the Ἀριθμητικά from AP XIV
    Grillo, F. (2019) Too many Metrodoruses? The compiler of the ἀριθμητικά from AP XIV. Eikasmós, 30, pp. 249-264. There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it. http://eprints.gla.ac.uk/204331/ Deposited on: 29 November 2019 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk This is the author’s accepted manuscript. Please refer to the published journal article as follows: Grillo, F. (2019) ‘Too many Metrodoruses? The compiler of the ἀριθμητικά from AP XIV’, Eikasmós 30: 249-264. For the published version, see http://www2.classics.unibo.it/eikasmos/index.php?page=schedasingola&schedavis=1572 1 Too many Metrodoruses? The compiler of the ἀριθμητικά from AP XIV* In book fourteen of the Palatine Anthology we find a number of arithmetic problems (1-4, 6f., 11-13, 48-51, 116-147), the vast majority provided with mathematical scholia1. Most of the poems are attributed to a certain Metrodorus (116-146; cf. lemma to 116 Μητροδώρου ἐπιγράμματα ἀριθμητικά)2, a shadowy figure whose original collection comprised also problems 2f., 6f. and possibly 11-133. The identity of Metrodorus has received some attention, especially in late eighteenth- and nineteenth-century scholarship, but some crucial evidence has been repeatedly overlooked or misconstrued. Moreover, despite recent discussions, the question still remains unsettled, and it is unclear whether Metrodorus limited himself to compiling his collection or whether he also authored some poems4. Either way, a broad terminus post quem (or, less probably, ad quem) for his activity is provided by the epigram about the life-span of Diophantus (AP XIV 126), whose date is uncertain, but who is traditionally supposed to have lived in the mid- to late third century AD5.
    [Show full text]