A Comparison of Different Methods of Orbital Determination

Total Page:16

File Type:pdf, Size:1020Kb

A Comparison of Different Methods of Orbital Determination CALIFORNIA STATE SCIENCE FAIR 2017 PROJECT SUMMARY Name(s) Project Number Jae Yoon Kim S1815 Project Title Saving the World, One Asteroid at a Time: A Comparison of Different Methods of Orbital Determination Abstract Objectives/Goals Near-Earth Asteroids are of great interest to the astronomical community due to their large sizes and proximity, as well as giving great insight of how the solar system was formed. Asteroid 1866 Sisyphus is the largest member of the Apollo-class of asteroids, and, with a minimum orbit intersection distance of 0.1 AU, could plausibly be perturbed into an Earth-crossing orbit at some point in the distant future. Thus, it is imperative that the orbits of Near-Earth Asteroids be determined very precisely to allow accurate integration of the orbit into the future. Methods/Materials The orbital elements of 1866 Sisyphus (also known by its provisional designation, 1972 XA) was determined by using the Gaussian, Laplacian, and Lambertian methods. An artificial Neural Network was also trained using JPL's data to test the validity of these methods.Positions were selected from a series of observations performed at the Sommers-Bausch Observatory in Boulder, Colorado, with the 16 and 18-inch reflectors over the month of July 2016. A Python program was then written to determine the orbital elements with each method, and jackknifing was utilized to combine the calculated values. Values calculated by the Jet Propulsion Laboratories will be compared to the calculated values from each method to check its validity. Results Summary Statement I showed that the Gaussian method of orbit determination is more accurate than the Laplacian, Lambertian methods, as well as the Artificial Neural Network in predicting the orbit of a Near Earth Asteroid. Help Received I designed the experiment myself, and did all of the data gathering and implementation of the math myself. I received help from the staff at CU-Boulder Sommers Bausch Observatory in learning how to operate the equipment. I used the open source data from JPL's minor Planet center to train my neural net. Ap2/17.
Recommended publications
  • Asteroids + Comets
    Datasets for Asteroids and Comets Caleb Keaveney, OpenSpace intern Rachel Smith, Head, Astronomy & Astrophysics Research Lab North Carolina Museum of Natural Sciences 2020 Contents Part 1: Visualization Settings ………………………………………………………… 3 Part 2: Near-Earth Asteroids ………………………………………………………… 5 Amor Asteroids Apollo Asteroids Aten Asteroids Atira Asteroids Potentially Hazardous Asteroids (PHAs) Mars-crossing Asteroids Part 3: Main-Belt Asteroids …………………………………………………………… 12 Inner Main Asteroid Belt Main Asteroid Belt Outer Main Asteroid Belt Part 4: Centaurs, Trojans, and Trans-Neptunian Objects ………………………….. 15 Centaur Objects Jupiter Trojan Asteroids Trans-Neptunian Objects Part 5: Comets ………………………………………………………………………….. 19 Chiron-type Comets Encke-type Comets Halley-type Comets Jupiter-family Comets C 2019 Y4 ATLAS About this guide This document outlines the datasets available within the OpenSpace astrovisualization software (version 0.15.2). These datasets were compiled from the Jet Propulsion Laboratory’s (JPL) Small-Body Database (SBDB) and NASA’s Planetary Data Service (PDS). These datasets provide insights into the characteristics, classifications, and abundance of small-bodies in the solar system, as well as their relationships to more prominent bodies. OpenSpace: Datasets for Asteroids and Comets 2 Part 1: Visualization Settings To load the Asteroids scene in OpenSpace, load the OpenSpace Launcher and select “asteroids” from the drop-down menu for “Scene.” Then launch OpenSpace normally. The Asteroids package is a big dataset, so it can take a few hours to load the first time even on very powerful machines and good internet connections. After a couple of times opening the program with this scene, it should take less time. If you are having trouble loading the scene, check the OpenSpace Wiki or the OpenSpace Support Slack for information and assistance.
    [Show full text]
  • (2000) Forging Asteroid-Meteorite Relationships Through Reflectance
    Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. B.S. Physics Rensselaer Polytechnic Institute, 1988 M.S. Geology and Planetary Science University of Pittsburgh, 1991 SUBMITTED TO THE DEPARTMENT OF EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PLANETARY SCIENCES AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2000 © 2000 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Earth, Atmospheric, and Planetary Sciences December 30, 1999 Certified by: Richard P. Binzel Professor of Earth, Atmospheric, and Planetary Sciences Thesis Supervisor Accepted by: Ronald G. Prinn MASSACHUSES INSTMUTE Professor of Earth, Atmospheric, and Planetary Sciences Department Head JA N 0 1 2000 ARCHIVES LIBRARIES I 3 Forging Asteroid-Meteorite Relationships through Reflectance Spectroscopy by Thomas H. Burbine Jr. Submitted to the Department of Earth, Atmospheric, and Planetary Sciences on December 30, 1999 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Planetary Sciences ABSTRACT Near-infrared spectra (-0.90 to ~1.65 microns) were obtained for 196 main-belt and near-Earth asteroids to determine plausible meteorite parent bodies. These spectra, when coupled with previously obtained visible data, allow for a better determination of asteroid mineralogies. Over half of the observed objects have estimated diameters less than 20 k-m. Many important results were obtained concerning the compositional structure of the asteroid belt. A number of small objects near asteroid 4 Vesta were found to have near-infrared spectra similar to the eucrite and howardite meteorites, which are believed to be derived from Vesta.
    [Show full text]
  • 1987Aj 93. . 738T the Astronomical Journal
    738T . THE ASTRONOMICAL JOURNAL VOLUME 93, NUMBER 3 MARCH 1987 93. DISCOVERY OF M CLASS OBJECTS AMONG THE NEAR-EARTH ASTEROID POPULATION Edward F. TEDEScoa),b) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 1987AJ Jonathan Gradie20 Planetary Geosciences Division, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822 Received 10 September 1986; revised 17 November 1986 ABSTRACT Broadband colorimetry (0.36 to 0.85 ¡um), visual photometry, near-infrared (JHK) photometry, and 10 and 20 /urn radiometry of the near-Earth asteroids 1986 DA and 1986 EB were obtained during March and April 1986. Model radiometric visual geometric albedos of 0.14 + 0.02 and 0.19 + 0.02 and model radiometric diameters of 2.3 + 0.1 and 2.0 + 0.1 km, respectively, (on the IRAS asteroid ther- mal model system described by Lebofsky et al. 1986) were derived from the thermal infrared and visual fluxes. These albedos, together with the colorimetric and (for 1986 DA) near-infrared data, establish that both objects belong to the M taxonomic class, the first of this kind to be recognized among the near-Earth asteroid population. This discovery, together with previous detections of C and S class objects, establishes that all three of the most common main-belt asteroid classes are represented among this population. The similarity in the corrected distribution of taxonomic classes among the 38 Earth- approaching asteroids for which such classes exist is similar to those regions of the main belt between the 3:1 (2.50 AU) and 5:2 (2.82 AU) orbital resonances with Jupiter, suggesting that they have their origins among asteroids in the vicinity of these resonances.
    [Show full text]
  • Binary Asteroids in the Near-Earth Synchronous and Asynchronous to the Satellites Population As Well
    Asteroid Systems: Binaries, Triples, and Pairs Jean-Luc Margot University of California, Los Angeles Petr Pravec Astronomical Institute of the Czech Republic Academy of Sciences Patrick Taylor Arecibo Observatory Benoˆıt Carry Institut de Mecanique´ Celeste´ et de Calcul des Eph´ em´ erides´ Seth Jacobson Coteˆ d’Azur Observatory In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (.20 km) binaries form by rotational fission and establishes that the YORP effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large(&20 km) binaries with small satellites are most likely created during large collisions. 1. INTRODUCTION composition and internal structure of minor plan- ets. Binary systems offer opportunities to mea- 1.1. Motivation sure thermal and mechanical properties, which are generally poorly known. Multiple-asteroid systems are important be- The binary and triple systems within near- cause they represent a sizable fraction of the aster- Earth asteroids (NEAs), main belt asteroids oid population and because they enable investiga- (MBAs), and trans-Neptunian objects (TNOs) ex- tions of a number of properties and processes that hibit a variety of formation mechanisms (Merline are often difficult to probe by other means. The et al. 2002c; Noll et al.
    [Show full text]
  • – Near-Earth Asteroid Mission Concept Study –
    ASTEX – Near-Earth Asteroid Mission Concept Study – A. Nathues1, H. Boehnhardt1 , A. W. Harris2, W. Goetz1, C. Jentsch3, Z. Kachri4, S. Schaeff5, N. Schmitz2, F. Weischede6, and A. Wiegand5 1 MPI for Solar System Research, 37191 Katlenburg-Lindau, Germany 2 DLR, Institute for Planetary Research, 12489 Berlin, Germany 3 Astrium GmbH, 88039 Friedrichshafen, Germany 4 LSE Space AG, 82234 Oberpfaffenhofen, Germany 5 Astos Solutions, 78089 Unterkirnach, Germany 6 DLR GSOC, 82234 Weßling, Germany ASTEX Marco Polo Symposium, Paris 18.5.09, A. Nathues - 1 Primary Objectives of the ASTEX Study Identification of the required technologies for an in-situ mission to two near-Earth asteroids. ¾ Selection of realistic mission scenarios ¾ Definition of the strawman payload ¾ Analysis of the requirements and options for the spacecraft bus, the propulsion system, the lander system, and the launcher ASTEX ¾ Definition of the requirements for the mission’s operational ground segment Marco Polo Symposium, Paris 18.5.09, A. Nathues - 2 ASTEX Primary Mission Goals • The mission scenario foresees to visit two NEAs which have different mineralogical compositions: one “primitive'‘ object and one fragment of a differentiated asteroid. • The higher level goal is the provision of information and constraints on the formation and evolution history of our planetary system. • The immediate mission goals are the determination of: – Inner structure of the targets – Physical parameters (size, shape, mass, density, rotation period and spin vector orientation) – Geology, mineralogy, and chemistry ASTEX – Physical surface properties (thermal conductivity, roughness, strength) – Origin and collisional history of asteroids – Link between NEAs and meteorites Marco Polo Symposium, Paris 18.5.09, A.
    [Show full text]
  • Spectral Study of Asteroids and Laboratory Simulation of Asteroid Organics
    University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2015 Spectral Study of Asteroids and Laboratory Simulation of Asteroid Organics Kelsey Hargrove University of Central Florida Part of the Astrophysics and Astronomy Commons, and the Physics Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Hargrove, Kelsey, "Spectral Study of Asteroids and Laboratory Simulation of Asteroid Organics" (2015). Electronic Theses and Dissertations, 2004-2019. 1265. https://stars.library.ucf.edu/etd/1265 SPECTRAL STUDY OF ASTEROIDS AND LABORATORY SIMULATED ASTEROID ORGANICS by KELSEY D. HARGROVE B.S. University of Central Florida, 2009 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the College of Sciences at the University of Central Florida Orlando, Florida Spring Term 2015 Major Professor: Joshua Colwell c 2015 Kelsey D. Hargrove ii ABSTRACT We investigate the spectra of asteroids at near- and mid-infrared wavelengths. In 2010 and 2011 we reported the detection of 3 mm and 3.2-3.6 mm signatures on (24) Themis and (65) Cybele indicative of water-ice and complex organics [1] [2] [3]. We further probed other primitive asteroids in the Cybele dynamical group and Themis family, finding diversity in the shape of their 3 mm [4] [5] [6] and 10 mm spectral features [4].
    [Show full text]
  • Endogenous Surface Processes on Asteroids, Comets, and Meteorite
    Lunar and Planetary Science XXIX 1203.pdf ENDOGENOUS SURFACE PROCESSES ON ASTEROIDS, COMETS AND METEORITE PARENT BODIES. Derek W. G. Sears, Cosmochemistry Group, Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, USA. It is known that (i) almost half of the known asteroids are CI- or CM-like, and these meteorites are 10-20% water; (ii) many asteroids have water on their surfaces despite impact heating and evaporative drying; (iii) many asteroids, including Apollo-Amor asteroids that have been linked to the ordinary chondrites, are possibly related to comets. It is therefore suggested that endogenous processes involving the mobilization and loss of water and other volatile compounds on meteorite parent bodies should be considered in explaining the properties of ordinary chondrite meteorites. It is suggested that water and other volatile compounds from the interior of the meteorite parent body passing through the unconsolidated surface layers produced many of the major meteorite properties, including the aerodynamic and gravitational sorting of their components, and occasional aqueous alteration. Asteroids are almost certainly the immediate parent bodies of most meteorites (1), and some asteroids could be cometary in origin (2,3). There is considerable uncertainty as to which meteorite properties reflect processes occurring on the meteorite parent body (MPB) and which occurred in interstellar or interplanetary space (e.g. 4,5). The impact history and the formation of regoliths on asteroids (and thus MPB) are often discussed (6,7), but not the possibility of endogenous surface alteration processes. Many asteroids have CI- or CM-like surfaces (8), and these meteorites are 10-20 percent total water (9).
    [Show full text]
  • Statistical and Numerical Study of Asteroid Orbital Uncertainty J
    Astronomy & Astrophysics manuscript no. paper c ESO 2013 March 13, 2013 Statistical and Numerical Study of Asteroid Orbital Uncertainty J. Desmars1;2, D. Bancelin2, D. Hestroffer2, and W. Thuillot2 1 Shanghai Astronomical Observatory, 80 Nandan Road, The Chinese Academy of Science, Shanghai, 200030, PR China 2 IMCCE - Observatoire de Paris, UPMC, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France e-mail: [desmars,bancelin,hestro,thuillot]@imcce.fr Preprint online version: March 13, 2013 ABSTRACT Context. The knowledge of the orbit or the ephemeris uncertainty of asteroid presents a particular interest for various purposes. These quantities are for instance useful for recovering asteroids, for identifying lost asteroids or for planning stellar occultation campaigns. They are also needed to estimate the close approach of Near-Earth asteroids, and subsequent risk of collision. Ephemeris accuracy can also be used for instrument calibration purposes or for scientific applications. Aims. Asteroid databases provide information about the uncertainty of the orbits allowing the measure of the quality of an orbit. The aims of this paper is to analyse these different uncertainty parameters and to estimate the impact of the different measurements on the uncertainty of orbits. Methods. We particularly deal with two main databases ASTORB and MPCORB providing uncertainty parameters for asteroid orbits. Statistical methods are used in order to estimate orbital uncertainty and compare with parameters from databases. Simulations are also generated to deal with specific measurements such as future Gaia or present radar measurements. Results. Relations between the uncertainty parameter and the characteristics of the asteroid (orbital arc, absolute magnitude, ...) are highlighted.
    [Show full text]
  • Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites Author(S): Richard P
    Spectral Properties of Near-Earth Asteroids: Evidence for Sources of Ordinary Chondrite Meteorites Author(s): Richard P. Binzel, Schelte J. Bus, Thomas H. Burbine and Jessica M. Sunshine Reviewed work(s): Source: Science, New Series, Vol. 273, No. 5277 (Aug. 16, 1996), pp. 946-948 Published by: American Association for the Advancement of Science Stable URL: http://www.jstor.org/stable/2891527 . Accessed: 18/12/2012 11:25 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Association for the Advancement of Science is collaborating with JSTOR to digitize, preserve and extend access to Science. http://www.jstor.org This content downloaded on Tue, 18 Dec 2012 11:25:44 AM All use subject to JSTOR Terms and Conditions close to the A+ direction obtained from tipodalpositive inclination in the marginof 3. A. Kroner and P. W. Layer, Science 256, 1405 of the to- the in the (1992). the margin Kaap Valley pluton pluton and sedimentsadjacent to 4. E. S. Barton, W. Altermann, I. S. Williams, C. B. nalite and reflects overprinting of the pluton(which is presentto a lesserdegree in Smith, Geology 22, 343 (1994). Moodiesshale duringpluton emplacement.
    [Show full text]
  • Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect
    University of California Los Angeles Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Geophysics and Space Physics by Carolyn Rosemary Nugent 2013 c Copyright by Carolyn Rosemary Nugent 2013 Abstract of the Dissertation Solar Radiation and Near-Earth Asteroids: Thermophysical Modeling and New Measurements of the Yarkovsky Effect by Carolyn Rosemary Nugent Doctor of Philosophy in Geophysics and Space Physics University of California, Los Angeles, 2013 Professor Jean-Luc Margot, Chair This dissertation examines the influence of solar radiation on near-Earth asteroids (NEAs); it investigates thermal properties and examines changes to orbits caused by the process of anisotropic re-radiation of sunlight called the Yarkovsky effect. For the first portion of this dissertation, we used geometric albedos (pV ) and diameters derived from the Wide-Field Infrared Survey Explorer (WISE), as well as geometric albedos and diameters from the literature, to produce more accurate diurnal Yarkovsky drift predic- tions for 540 NEAs out of the current sample of ∼ 8800 known objects. These predictions are intended to assist observers, and should enable future Yarkovsky detections. The second portion of this dissertation introduces a new method for detecting the Yarkovsky drift. We identified and quantified semi-major axis drifts in NEAs by performing orbital fits to optical and radar astrometry of all numbered NEAs. We discuss on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements.
    [Show full text]
  • Near-Earth Objects 400 Years After Galileo: Physical Properties and Internal Structure
    Galileo’s Medicean Moons: their impact on 400 years of discovery Proceedings IAU Symposium No. 269, 2010 c International Astronomical Union 2010 C. Barbieri, S. Chakrabarti, M. Coradini & M. Lazzarin, eds. doi:10.1017/S1743921310007477 Near-Earth Objects 400 Years after Galileo: Physical Properties and Internal Structure Dmitrij Lupishko1 and Zhanna Pozhalova2 1 Institute of Astronomy of Kharkiv V. N. Karazin National University, Sumska str., 35, Kharkiv 61022, Ukraine email: [email protected] 2 Research Institute “Nikolaev Astronomical Observatory”, Observatornaya str. 1, Nikolaev 54030, Ukraine email: [email protected] Abstract. The review contains the most recent data on near-Earth objects such as their sizes and densities, rotation and shapes, taxonomy and mineralogy, optical properties and structure of their surfaces, binary systems among the NEOs and internal structure of asteroids and comets constituted the NEO population. Keywords. Asteroids, near-Earth objects, physical properties, internal structure. 1. Introduction Near-Earth objects (NEOs) are defined as asteroids and comets having orbits with perihelion distances of 1.3 AU or less. About 30% of the entire NEO population may reside in orbits having a Jovian Tisserand parameter <3, and among them roughly half are observed to have comet-like physical properties such as albedos and spectra. Thus, about 10-15% of the NEO population may be comprised by extinct or dormant comets (Lupishko & Lupishko 2001; Binzel & Lupishko 2006; Michel & Bottke 2009). The rest are the near-Earth asteroids, which are traditionally divided into three groups (the relative abundances are estimated by Bottke et al. (2002)): Amor a 1.0 AU 1.017 < q 1.3 AU (32 ± 1%) Apollo a 1.0 AU q < 1.017 AU (62 ± 1%) Aten a < 1.0 AU Q > 0.983 AU (6 ± 1%) Besides, there is an additional group of rather dangerous asteroids whose orbits reside entirely inside of the Earth’s one (Q < 0.983 AU).
    [Show full text]
  • An Introduction to Near-Earth Objects
    AN INTRODUCTION TO NEAR-EARTH OBJECTS An Introduction to Near-Earth Objects Andrew S. Rivkin n 13 April 2029, an object the size of the APL campus (≈300 m across) will make its closest approach to Earth. At the beginning of January 2029, the object will be a dot visible only in large telescopes that know exactly where to point, 250,000 times too faint to be seen even by the sharpest-eyed person. In early February it will reach its aphelion and begin its return toward the Sun. The Earth, closer to the Sun and moving faster, will overtake the object: already the Earth and this asteroid will have closed the gap between them by nearly 40% since New Year’s Day, and the asteroid will have brightened by a factor of roughly 3. At the end of March, the incoming asteroid will have brightened by a factor of 100 since January. The next factor of 100 will take only 2 weeks. As clocks switch over on the East Coast to 13 April, a Friday, the Moon will briefly no longer be Oour nearest neighbor. As the morning rush hour winds down in the east, sharp-eyed people in dark sites on the other side of the globe will be able to discern the visitor. It will continue to brighten, moving north and west at tens of degrees per hour, reaching a peak brightness comparable to stars in the Big Dipper. Then the geometry between the Sun, Earth, and asteroid will have changed so the asteroid will first become gib- bous, then quarter phase.
    [Show full text]