Coffee Biomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coffee and Its Effect on Digestion
Expert report Coffee and its effect on digestion By Dr. Carlo La Vecchia, Professor of Medical Statistics and Epidemiology, Dept. of Clinical Sciences and Community Health, Università degli Studi di Milano, Italy. Contents 1 Overview 2 2 Coffee, a diet staple for millions 3 3 What effect can coffee have on the stomach? 4 4 Can coffee trigger heartburn or GORD? 5 5 Is coffee associated with the development of gastric or duodenal ulcers? 6 6 Can coffee help gallbladder or pancreatic function? 7 7 Does coffee consumption have an impact on the lower digestive tract? 8 8 Coffee and gut microbiota — an emerging area of research 9 9 About ISIC 10 10 References 11 www.coffeeandhealth.org May 2020 1 Expert report Coffee and its effect on digestion Overview There have been a number of studies published on coffee and its effect on different areas of digestion; some reporting favourable effects, while other studies report fewer positive effects. This report provides an overview of this body of research, highlighting a number of interesting findings that have emerged to date. Digestion is the breakdown of food and drink, which occurs through the synchronised function of several organs. It is coordinated by the nervous system and a number of different hormones, and can be impacted by a number of external factors. Coffee has been suggested as a trigger for some common digestive complaints from stomach ache and heartburn, through to bowel problems. Research suggests that coffee consumption can stimulate gastric, bile and pancreatic secretions, all of which play important roles in the overall process of digestion1–6. -
Phenolic Compounds in Coffee1
M I N I R E V I E W Phenolic compounds in coffee1 Adriana Farah and Carmen Marino Donangelo* Laboratório de Bioquímica Nutricional e de Alimentos. Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, Sala 528-A. Ilha do Fundão, Rio de Janeiro, RJ, 21949-900, Brazil. *Corresponding author: [email protected] Phenolic compounds are secondary metabolites generally involved in plant adaptation to environmental stress conditions. Chlorogenic acids (CGA) and related compounds are the main components of the phenolic fraction of green coffee beans, reaching levels up to 14 % (dry matter basis). These compounds have a number of beneficial health properties related to their potent antioxidant activity as well as hepatoprotective, hypoglycemic and antiviral activities. The main groups of CGA found in green coffee beans include caffeoylquinic acids, dicaffeoylquinic acids, feruloylquinic acids, p-coumaroylquinic acids and mixed diesters of caffeic and ferulic acids with quinic acid, each group with at least three isomers. During coffee processing, CGA may be isomerized, hydrolyzed or degraded into low molecular weight compounds. The high temperatures of roasting also produce transformation of part of CGA into quinolactones and, along with other compounds, melanoidins. This review focuses on the chemical characteristics, biosynthesis, and distribution of CGA and related compounds in coffee. The influence of genetic, physiological and environmental factors as well as processing on the chemical composition of coffee beans is discussed. The impact of CGA composition of green coffee on cup quality is also approached. Despite the existence of substantial published information on the total levels of CGA in coffee, more research is needed on the composition of minor phenolic compounds and specific CGA isomers (and related substances) in green and roasted coffee beans, as well as their impact on coffee quality. -
Identification and Quantification of Adulterants in Coffee
foods Communication Identification and Quantification of Adulterants in Coffee (Coffea arabica L.) Using FT-MIR Spectroscopy Coupled with Chemometrics Mauricio Flores-Valdez 1 , Ofelia Gabriela Meza-Márquez 2 , Guillermo Osorio-Revilla 2 and Tzayhri Gallardo-Velázquez 1,* 1 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Santo Tomás, Departamento de Biofísica, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Alcaldía Miguel Hidalgo, Ciudad de México C.P. 11340, Mexico; [email protected] 2 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas-Zacatenco, Departamento de Ingeniería Bioquímica, Av. Wilfrido Massieu S/N, Esq. Cda, Miguel Stampa, Col. Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, Ciudad de México C.P. 07738, Mexico; [email protected] (O.G.M.-M.); [email protected] (G.O.-R.) * Correspondence: [email protected]; Tel.: +52-(55)-5729-6000 (ext. 62305) Received: 24 May 2020; Accepted: 28 June 2020; Published: 30 June 2020 Abstract: Food adulteration is an illegal practice performed to elicit economic benefits. In the context of roasted and ground coffee, legumes, cereals, nuts and other vegetables are often used to augment the production volume; however, these adulterants lack the most important coffee compound, caffeine, which has health benefits. In this study, the mid-infrared Fourier transform spectroscopy (FT-MIR) technique coupled with chemometrics was used to identify and quantify adulterants in coffee (Coffea arabica L.). Coffee samples were adulterated with corn, barley, soy, oat, rice and coffee husks, in proportions ranging from 1–30%. A discrimination model was developed using the soft independent modeling of class analogy (SIMCA) framework, and quantitative models were developed using such algorithms as the partial least squares algorithms with one variable (PLS1) and multiple variables (PLS2) and principal component regression (PCR). -
GRAS Notice GRN 868 Agency Response Letter -Coffee Fruit Extract
U.S. FOOD & DRUG ADMINISTRATI ON CENTER FOR FOOD SAFETY &APPLIED NUTRITION Ashish Talati Amin Talati Wasserman, LLP 100 S. Wacker Drive Suite 2000 Chicago, IL 60606 Re: GRAS Notice No. GRN 000868 Dear Mr. Talati: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000868. We received the notice that you submitted on behalf of VDF FutureCeuticals, Inc. (VDF) on June 10, 2019, and filed it on August 19, 2019. VDF submitted an amendment to the notice on November 1, 2019, that clarified information related to the description of coffee fruit extract, batch compliance with specifications, dietary exposure, safety studies, and analytical method validation. The subject of the notice is coffee fruit extract for use as an ingredient and as an antioxidant in certain beverages, including flavored waters, coffee, tea, ready-to-mix (RTM) beverages, fruit juices, and vegetable juices/blends; nutritional and replacement milk products (pre-workout); clusters/bars; chocolate; candy; and chewing gum, at levels ranging from 20 mg to 300 mg/serving.1 This notice informs us of VDF ' sview. that these uses of coffee fruit extract are GRAS through scientific procedures. Our use of the term, "coffee fruit extract" in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA's labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods. -
(Coffea Arabica) Beans: Chlorogenic Acid As a Potential Bioactive Compound
molecules Article Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound Muchtaridi Muchtaridi 1,2,* , Dwintha Lestari 2, Nur Kusaira Khairul Ikram 3,4 , Amirah Mohd Gazzali 5 , Maywan Hariono 6 and Habibah A. Wahab 5 1 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia 2 Department of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno-Hatta No. 752, Bandung 40614, Indonesia; [email protected] 3 Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 4 Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia 5 School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; [email protected] (A.M.G.); [email protected] (H.A.W.) 6 Faculty of Pharmacy, Campus III, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +62-22-8784288888 (ext. 3210) Abstract: Coffee has been studied for its health benefits, including prevention of several chronic Citation: Muchtaridi, M.; Lestari, D.; diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid Khairul Ikram, N.K.; Gazzali, A.M.; (CGA), an important component in coffee beans, was shown to possess antiviral activity against Hariono, M.; Wahab, H.A. viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach Decaffeination and Neuraminidase irritation, and increase heart rate and respiration rate. -
Identification of Characterizing Aroma Components of Roasted Chicory
Article Cite This: J. Agric. Food Chem. XXXX, XXX, XXX−XXX pubs.acs.org/JAFC Identification of Characterizing Aroma Components of Roasted Chicory “Coffee” Brews Tiandan Wu and Keith R. Cadwallader* Department of Food Science and Human Nutrition, University of Illinois at Urbana−Champaign, 1302 West Pennsylvania Avenue, Urbana, Illinois 61801, United States *S Supporting Information ABSTRACT: The roasted and ground root of the chicory plant (Cichorium intybus), often referred to as chicory coffee, has served as a coffee surrogate for well over 2 centuries and is still in common use today. Volatile components of roasted chicory brews were identified by direct solvent extraction and solvent-assisted flavor evaporation (SAFE) combined with gas chromatography−olfactometry (GC−O), aroma extract dilution analysis (AEDA), and gas chromatography−mass spectrometry (GC−MS). A total of 46 compounds were quantitated by stable isotope dilution analysis (SIDA) and internal standard methods, and odor-activity values (OAVs) were calculated. On the basis of the combined results of AEDA and OAVs, rotundone was considered to be the most potent odorant in roasted chicory. On the basis of their high OAVs, additional predominant odorants included 3-hydroxy-4,5-dimethyl-2(5H)-furanone (sotolon), 2-methylpropanal, 3-methylbutanal, 2,3- dihydro-5-hydroxy-6-methyl-4H-pyran-4-one (dihydromaltol), 1-octen-3-one, 2-ethyl-3,5-dimethylpyrazine, 4-hydroxy-2,5- dimethyl-3(2H)-furanone (HDMF), and 3-hydroxy-2-methyl-4-pyrone (maltol). Rotundone, with its distinctive aromatic woody, peppery, and “chicory-like” note was also detected in five different commercial ground roasted chicory products. -
Coffee, Coffea Spp
A Horticulture Information article from the Wisconsin Master Gardener website, posted 28 Jan 2013 Coffee, Coffea spp. As you sip your morning cup of coffee have you ever wondered where this ubiquitous beverage comes from? Coffea is a genus of about 100 species of evergreen shrubs and small understory trees in the madder family (Rubiaceae) native to tropical forests in Africa and Asia. The seeds of these plants are processed to produce the drink people around the world have enjoyed for centuries, as well as for fl avoring ice cream, pastries, candies, and liqueurs. It is one of the world’s most valuable crops and is an important export product of several countries. The largest producers include Brazil, Vietnam, Indonesia, and Colombia, along with many other Central and South American countries and East Africa. Coffee comes from a tropical shrub. Coffea is an attractive plant with glossy, deep green foliage. The woody, evergreen shrubs or small trees have opposite, elliptic- ovate, wavy-edged leaves. The fairly stiff leaves have a prominent leaf midrib and lateral veins. Wild plants will grow 10 to 12 feet high, with an open branching structure, but are easily kept smaller and denser by pruning. Fragrant, sweet scented white fl owers bloom along reproductive branches in the leaf axils on old wood. The dense clusters of star-shaped fl owers can be produced at any time of year, but are most common in our Coffea has glossy, deep green leaves. autumn, as coffee is a short-day plant and blooming most profusely when nights are getting longer (daylight of only 8-10 hours). -
Summary of the Application: DRIED COFFEE CHERRY of Coffea Sp
Summary of the application: DRIED COFFEE CHERRY of Coffea sp. (Cascara) Applicant: LUIGI LAVAZZA SpA, Via Bologna,32, 10152 Torino, ITALY This is an application for notification to place DRIED COFFEE CHERRY (commonly referred to as Cascara), from Coffea sp., on the market in the European Union (EU) for use as an ingredient in a herbal tea/infusion referred to as “Coffee cherry tea”, which is prepared by brewing the DRIED COFFEE CHERRY. This application is submitted pursuant to Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, and specifically corresponds to the category covered in Article 2 (iv) “food consisting of, isolated from or produced from plants or their parts, except when the food has a history of safe food use within the Union and is consisting of, isolated from or produced from a plant or a variety of the same species obtained by traditional propagating practices which have been used for food production within the Union before 15 May 1997.” The application was prepared according to the European Food Safety Authority (EFSA) guidance on the preparation and presentation of an application for notification of a Traditional Food in the context of Regulation (EU) 2015/2283. Evidence of the consumption of “Coffee cherry tea” in Ethiopia dates back to before the 9th century; “Coffee cherry tea” is indeed commonly used as substitute for coffee in Ethiopia and Yemen. In the scientific literature and in this notification, the term DRIED COFFEE CHERRY refers to the outer part of coffee fruit, the husk and pulp, and accounts for almost 45% of the fresh berry. -
Managing Shade Coffee
ManagingManaging ShadeShade Caribbean Area CoffeeCoffee Fact Sheet November 2012 An Agroforestry System Shade coffee production in Puerto Rico has experi- enced a resurgence in growth during recent years, after undergoing a dramatic period of deforestation to convert to coffee production under full sun. The re- vival of shade coffee production utilizes a combina- tion of coffee shrubs and shade trees that form a sec- ondary forest. Shade coffee production has been proven to provide environmental benefits such as soil erosion control, water quality and quantity improve- ment, and wildlife habitat. Shade coffee production also provides socioeconomic benefits such as the opportunity to develop other sustainable forest prod- Coffee fruits in process of ripening. ucts, and the reintroduction of traditional jobs and cultural activities for local coffee pickers. are achieved by planting coffee in locations with the most suitable environmental conditions. In Puerto The coffee growing zone in Puerto Rico is located Rico, not all coffee plantations may be located in are- mostly in the humid mountains of the west-central as that are ecologically suitable for coffee growth. section of the “Cordillera Central.” This area is char- Therefore, recreating favorable coffee growing condi- acterized by steep, mountainous topography and a tions may be beneficial for both coffee production cool climate in the humid and wet subtropical forest. and for the environment. The coffee tree or shrub originated in Ethiopia. The For example, the optimum growth temperature for most common species grown in Puerto Rico are the arabica coffee varies from 60° to 65° F. With these Coffea arabica and C. -
Starmaya: the First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility
METHODS published: 22 October 2019 doi: 10.3389/fpls.2019.01344 Starmaya: The First Arabica F1 Coffee Hybrid Produced Using Genetic Male Sterility Frédéric Georget 1,2*, Lison Marie 1,2, Edgardo Alpizar 3, Philippe Courtel 3, Mélanie Bordeaux 4, Jose Martin Hidalgo 4, Pierre Marraccini 1,2, Jean-christophe Breitler 1,2, Eveline Déchamp 1,2, Clément Poncon 3, Hervé Etienne 1,2 and Benoit Bertrand 1,2 1 CIRAD, UMR IPME, Montpellier, France, 2 IPME, Université de Montpellier, IRD, CIRAD, Montpellier, France, 3 Plant material, ECOM, Exportadora Atlantic, Managua, Nicaragua, 4 FONDATION NICAFRANCE, Managua, Nicaragua In the present paper, we evaluated the implementation of a seed production system based on the exploitation of male sterility on coffee. We studied specifically the combination between CIR-SM01 and Marsellesa® (a Sarchimor line), which provides a hybrid population called Starmaya. We demonstrated that the establishment of seed garden under natural pollination is possible and produces a sufficient amount of hybrid seeds to be multiplied efficiently and economically. As expected for F1 hybrid, the performances of Starmaya are highly superior to conventional cultivars. However, we observed some heterogeneity on Starmaya cultivar Edited by: in the field. We confirmed by genetic marker analysis that the off-types were partly related to Marcelino Perez De La Vega, Universidad de León, Spain the heterozygosity of the CIR-SM01 clone and could not be modified. Regarding the level Reviewed by: of rust resistance of Starmaya cv., we saw that it could be improved if Marsellesa was more Aaron P. Davis, fully fixed genetically. If so, we should be able to decrease significantly the percentage of rust Royal Botanic Gardens, Kew, United Kingdom incidence of Starmaya from 15 to 5%, which would be quite acceptable at a commercial Eveline Teixeira Caixeta, level. -
Lavazza-Blue-Manual.Pdf
ITALIANO ENGLISH LB2300 FRANÇAIS DEUTSCH ESPAÑOL PORTUGUÊS SINGLE CUP SINGLE CUP WITH STEAM РУССКИЙ DOUBLE CUP WITH STEAM ISTRUZIONI PER L’USO OPERATING INSTRUCTIONS Leggere attentamente queste istruzioni d’uso prima di utilizzare Read these operating instructions carefully before using the la macchina machine BEDIENUNGSANLEITUNG MODE D’EMPLOI Bedienungsanleitung ist vor dem ersten Gebrauch der Maschine Lire attentivement ce mode d’emploi avant d’utiliser la machine aufmerksam zu lesen INSTRUCCIONES PARA EL USO INSTRUÇÕES DE UTILIZAÇÃO Leer atentamente estas instrucciones de uso antes de usar la Leia atentamente estas instruções de utilização antes de utilizar máquina a máquina ИНСТРУКЦИЯ ПО ПРИМЕНЕНИЮ Внимательно прочитайте данную инструкцию перед использованием машины! Type SUP026F - SUP026RF - SUP026RF/US - SUP026RQF - SUP026RQF/US 11 10 4 1 13 2 12 3 9 4 5 6 8 7 15 19 DOUBLE CUP 14 20 WITH STEAM 16 22 17 15 18 21 19 SINGLE CUP 14 23 WITH STEAM 16 22 17 18 21 19 SINGLE CUP 14 23 24 22 17 18 21 • 2 • • 3 • Use of the machine - User Manual IMPORTANT SAFEGUARDS CAUTION When using electrical appliances, basic safety precautions should Any servicing, other than cleaning and user maintenance, should always be followed to reduce the risk of fire, electric shock, and/or be performed by an authorized service centre. Do not immerse injury to persons, including the following: base in water. To reduce the risk of fire or electric shock, do not 1 Read all instructions and information in this instruction book disassemble the base. There are no user serviceable parts inside. and any other literature included in this carton referring to this Repair should be done by authorized service personnel only. -
Koa Coffee Plantation Selected As Kona's Finest Coffee
Contact: Current Events (808)326-7820 FAX (808)326-5634 [email protected] FOR IMMEDIATE RELEASE KOA COFFEE PLANTATION SELECTED AS KONA'S FINEST COFFEE KONA, HAWAII'S BIG ISLAND - Marin and Cathy Artukovich Koa Coffee Plantation won the coveted Gevalia Kona Coffee Cupping Competition today. The five-year old family run Kona coffee farm is located in Captain Cook at the 2,700 foot elevation. Cupping judge John King of Harold King and Co. described the winning coffee as "a typical medium mellow bodied Kona coffee with a delicate acidity." Second place went to Sugai Kona Coffee and third place to Wood Captain Cook Estate. Over sixty Kona coffee farmers submitted entries into this year's Gevalia Kona Coffee Cupping Competition. The blind-taste competition, held Wednesday and Thursday at the Ohana Keauhou Beach Resort, was sponsored by Gevalia Kaffe of Sweden, and fourteen entries advanced to Thursday's final round. The guest judge of honor, international master cupper Willy Pettersson of Gevalia Kaffe, was welcomed back to Kona. Manabu Fujita of UCC Ueshima Coffee Company, the largest coffee roaster in Japan, served on the judge's panel with John King of Harold King and Co. and Michael Therrien, an international coffee expert, maintaining the high standards for the competition. Each farm submitted a 50-pound sample from which five pounds were actually entered into the cupping competition. To be eligible, the coffee submitted must have been harvested in Kona. The cupping competition is a blind tasting, once the entry is accepted it is simply assigned a number to protect its anonymity.