Phenolic Compounds in Coffee1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GRAS Notice GRN 868 Agency Response Letter -Coffee Fruit Extract
U.S. FOOD & DRUG ADMINISTRATI ON CENTER FOR FOOD SAFETY &APPLIED NUTRITION Ashish Talati Amin Talati Wasserman, LLP 100 S. Wacker Drive Suite 2000 Chicago, IL 60606 Re: GRAS Notice No. GRN 000868 Dear Mr. Talati: The Food and Drug Administration (FDA, we) completed our evaluation of GRN 000868. We received the notice that you submitted on behalf of VDF FutureCeuticals, Inc. (VDF) on June 10, 2019, and filed it on August 19, 2019. VDF submitted an amendment to the notice on November 1, 2019, that clarified information related to the description of coffee fruit extract, batch compliance with specifications, dietary exposure, safety studies, and analytical method validation. The subject of the notice is coffee fruit extract for use as an ingredient and as an antioxidant in certain beverages, including flavored waters, coffee, tea, ready-to-mix (RTM) beverages, fruit juices, and vegetable juices/blends; nutritional and replacement milk products (pre-workout); clusters/bars; chocolate; candy; and chewing gum, at levels ranging from 20 mg to 300 mg/serving.1 This notice informs us of VDF ' sview. that these uses of coffee fruit extract are GRAS through scientific procedures. Our use of the term, "coffee fruit extract" in this letter is not our recommendation of that term as an appropriate common or usual name for declaring the substance in accordance with FDA's labeling requirements. Under 21 CFR 101.4, each ingredient must be declared by its common or usual name. In addition, 21 CFR 102.5 outlines general principles to use when establishing common or usual names for nonstandardized foods. -
Down Regulation of P-Coumarate 3-Hydroxylase in Petunia Uniquely
www.nature.com/scientificreports OPEN Down regulation of p-coumarate 3-hydroxylase in petunia uniquely alters the profle of emitted foral Received: 18 January 2019 Accepted: 25 April 2019 volatiles Published: xx xx xxxx Joo Young Kim, Robert T. Swanson, Maria I. Alvarez, Timothy S. Johnson, Keun H. Cho , David G. Clark & Thomas A. Colquhoun Petunia × hybrida cv ‘Mitchell Diploid’ foral volatile benzenoid/phenylpropanoid (FVBP) biosynthesis ultimately produces foral volatiles derived sequentially from phenylalanine, cinnamic acid, and p- coumaric acid. In an attempt to better understand biochemical steps after p-coumaric acid production, we cloned and characterized three petunia transcripts with high similarity to p-coumarate 3-hydroxylase (C3H), hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT), and cafeoyl shikimate esterase (CSE). Transcript accumulation of PhC3H and PhHCT was highest in fower limb tissue during open fower stages. PhCSE transcript accumulation was also highest in fower limb tissue, but it was detected earlier at initial fower opening with a bell-shaped distribution pattern. Down regulation of endogenous PhC3H transcript resulted in altered transcript accumulation of many other FVBP network transcripts, a reduction in foral volatiles, and the emission of a novel foral volatile. Down regulation of PhHCT transcript did not have as large of an efect on foral volatiles as was observed for PhC3H down regulation, but eugenol and isoeugenol emissions were signifcantly reduced on the downstream foral volatiles. Together these results indicate that PhC3H is involved in FVBP biosynthesis and the reduction of PhC3H transcript infuences FVBP metabolism at the network level. Additional research is required to illustrate PhHCT and PhCSE functions of petunia. -
(Coffea Arabica) Beans: Chlorogenic Acid As a Potential Bioactive Compound
molecules Article Decaffeination and Neuraminidase Inhibitory Activity of Arabica Green Coffee (Coffea arabica) Beans: Chlorogenic Acid as a Potential Bioactive Compound Muchtaridi Muchtaridi 1,2,* , Dwintha Lestari 2, Nur Kusaira Khairul Ikram 3,4 , Amirah Mohd Gazzali 5 , Maywan Hariono 6 and Habibah A. Wahab 5 1 Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Bandung-Sumedang KM 21, Jatinangor 45363, Indonesia 2 Department of Pharmacy, Faculty of Science and Technology, Universitas Muhammadiyah Bandung, Jl. Soekarno-Hatta No. 752, Bandung 40614, Indonesia; [email protected] 3 Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 4 Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia 5 School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang 11800, Malaysia; [email protected] (A.M.G.); [email protected] (H.A.W.) 6 Faculty of Pharmacy, Campus III, Sanata Dharma University, Paingan, Maguwoharjo, Depok, Sleman, Yogyakarta 55282, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +62-22-8784288888 (ext. 3210) Abstract: Coffee has been studied for its health benefits, including prevention of several chronic Citation: Muchtaridi, M.; Lestari, D.; diseases, such as type 2 diabetes mellitus, cancer, Parkinson’s, and liver diseases. Chlorogenic acid Khairul Ikram, N.K.; Gazzali, A.M.; (CGA), an important component in coffee beans, was shown to possess antiviral activity against Hariono, M.; Wahab, H.A. viruses. However, the presence of caffeine in coffee beans may also cause insomnia and stomach Decaffeination and Neuraminidase irritation, and increase heart rate and respiration rate. -
Coffee, Coffea Spp
A Horticulture Information article from the Wisconsin Master Gardener website, posted 28 Jan 2013 Coffee, Coffea spp. As you sip your morning cup of coffee have you ever wondered where this ubiquitous beverage comes from? Coffea is a genus of about 100 species of evergreen shrubs and small understory trees in the madder family (Rubiaceae) native to tropical forests in Africa and Asia. The seeds of these plants are processed to produce the drink people around the world have enjoyed for centuries, as well as for fl avoring ice cream, pastries, candies, and liqueurs. It is one of the world’s most valuable crops and is an important export product of several countries. The largest producers include Brazil, Vietnam, Indonesia, and Colombia, along with many other Central and South American countries and East Africa. Coffee comes from a tropical shrub. Coffea is an attractive plant with glossy, deep green foliage. The woody, evergreen shrubs or small trees have opposite, elliptic- ovate, wavy-edged leaves. The fairly stiff leaves have a prominent leaf midrib and lateral veins. Wild plants will grow 10 to 12 feet high, with an open branching structure, but are easily kept smaller and denser by pruning. Fragrant, sweet scented white fl owers bloom along reproductive branches in the leaf axils on old wood. The dense clusters of star-shaped fl owers can be produced at any time of year, but are most common in our Coffea has glossy, deep green leaves. autumn, as coffee is a short-day plant and blooming most profusely when nights are getting longer (daylight of only 8-10 hours). -
A Chapter in the History of Coffee: a Critical Edition and Translation of Murtad}A> Az-Zabīdī's Epistle on Coffee
A Chapter in the History of Coffee: A Critical Edition and Translation of Murtad}a> az-Zabīdī’s Epistle on Coffee Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University By Heather Marie Sweetser, B.A. Graduate Program in Near Eastern Languages and Cultures The Ohio State University 2012 Thesis Committee: Dr. Georges Tamer, Advisor Dr. Joseph Zeidan Copyright by Heather Marie Sweetser 2012 Abstract What follows is an edition and translation of an Arabic manuscript written by Murtad}a> az-Zabīdī in 1171/1758 in defense of coffee as per Islamic legality. He cites the main objections to coffee drinking and refutes them systematically using examples from Islamic jurisprudence to back up his points. The author also includes lines of poetry in his epistle in order to defend coffee’s legality. This particular manuscript is important due to its illustrious author as well as to its content, as few documents describing the legal issues surrounding coffee at such a late date have been properly explored by coffee historians. The dictionary Ta>j al-ʿAru>s, authored by Murtad}a> az-Zabīdī himself, as well as Edward Lane’s dictionary, were used to translate the manuscript, which was first edited. Unfortunately, I was only able to acquire one complete and one incomplete manuscript; other known manuscripts were unavailable. Arabic mistakes in the original have been corrected and the translation is annotated to provide appropriate background to the epistle’s commentary. A brief introduction to the history of coffee, a sample of the debate surrounding the legality of coffee in Islam, and a biography of the author is provided. -
Verbascoside — a Review of Its Occurrence, (Bio)Synthesis and Pharmacological Significance
Biotechnology Advances 32 (2014) 1065–1076 Contents lists available at ScienceDirect Biotechnology Advances journal homepage: www.elsevier.com/locate/biotechadv Research review paper Verbascoside — A review of its occurrence, (bio)synthesis and pharmacological significance Kalina Alipieva a,⁎, Liudmila Korkina b, Ilkay Erdogan Orhan c, Milen I. Georgiev d a Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria b Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia c Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey d Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria article info abstract Available online 15 July 2014 Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological proper- ties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first Keywords: isolated from mullein but is also found in several other plant species. It has also been produced by in vitro Acteoside plant culture systems, including genetically transformed roots (so-called ‘hairy roots’). Verbascoside is hydro- fl Anti-in ammatory philic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, (Bio)synthesis anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective Cancer prevention Cell suspension culture properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside Hairy roots are summarised in this review. We also discuss its prominent pharmacological properties and outline future Phenylethanoid glycosides perspectives for its potential application. Verbascum spp. © 2014 Elsevier Inc. All rights reserved. Contents Treasurefromthegarden:thediscoveryofverbascoside,anditsoccurrenceanddistribution.......................... -
Solid-Liquid Phase Equilibrium of Trans-Cinnamic Acid, P-Coumaric Acid and Ferulic Acid in Water and Organic Solvents: Experimental and Modelling Studies
Journal Pre-proof Solid-liquid phase equilibrium of trans-cinnamic acid, p-coumaric acid and ferulic acid in water and organic solvents: Experimental and modelling studies Sérgio M. Vilas-Boas, Rebeca S. Alves, Paula Brandão, Leila M.A. Campos, João A.P. Coutinho, Simão P. Pinho, Olga Ferreira PII: S0378-3812(20)30294-6 DOI: https://doi.org/10.1016/j.fluid.2020.112747 Reference: FLUID 112747 To appear in: Fluid Phase Equilibria Received Date: 12 May 2020 Revised Date: 26 June 2020 Accepted Date: 30 June 2020 Please cite this article as: Sé.M. Vilas-Boas, R.S. Alves, P. Brandão, L.M.A. Campos, Joã.A.P. Coutinho, Simã.P. Pinho, O. Ferreira, Solid-liquid phase equilibrium of trans-cinnamic acid, p-coumaric acid and ferulic acid in water and organic solvents: Experimental and modelling studies, Fluid Phase Equilibria (2020), doi: https://doi.org/10.1016/j.fluid.2020.112747. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier B.V. CRediT author statement Sérgio M. Vilas-Boas: Investigation, Writing - Original Draft, Data Curation, Software. -
Fruit Thinning and Shade Improve Bean Characteristics and Beverage
Journal of the Science of Food and Agriculture J Sci Food Agric 86:197–204 (2006) DOI: 10.1002/jsfa.2338 Fruit thinning and shade improve bean characteristics and beverage quality of coffee (Coffea arabica L.) under optimal conditions Philippe Vaast,1,2∗ Benoit Bertrand,2 Jean-Jacques Perriot,2 Bernard Guyot2 and Michel Genard´ 3 1Centro Agronomico´ Tropical de Investigacion´ y Ensenanza˜ (CATIE), Apdo 3, 7170 Turrialba, Costa Rica 2Centre de Cooperation´ Internationale en Recherche Agronomique pour le Developpement´ (CIRAD), 2477 Avenue du Val de Montferrand, BP 5035, F-34032 Montpellier, France 3Institut National de la Recherche Agronomique (INRA), Plantes et Systemes` de Cultures Horticoles, Domaine Saint-Paul Agroparc, F-84914 Avignon Cedex 9, France Abstract: Under two contrasting light regimes (full sun and 45% shade) and the optimal coffee-growing conditions of the central valley of Costa Rica, production pattern, bean characteristics and beverage quality were assessed over two production cycles on dwarf coffee (Coffea arabica L. cv. Costa Rica 95) trees with varying fruit loads (quarter, half and full loads) imposed by manual fruit thinning. Shade decreased coffee tree productivity by 18% but reduced alternate bearing. Shade positively affected bean size and composition as well as beverage quality by delaying berry flesh ripening by up to 1 month. Higher sucrose, chlorogenic acid and trigonelline contents in sun-grown beans pointed towards incomplete bean maturation and explained the higher bitterness and astringency of the coffee beverage. Higher fruit loads reduced bean size owing to carbohydrate competition among berries during bean filling. These results have important implications in terms of agricultural management (shade, fruit thinning, tree pruning) to help farmers increase coffee plantation sustainability, produce coffee beans of larger size and higher quality and ultimately improve their revenues, especially during times of world overproduction. -
Effect of Roasting Levels and Drying Process of Coffea Canephora on the Quality of Bioactive Compounds and Cytotoxicity
International Journal of Molecular Sciences Article Effect of Roasting Levels and Drying Process of Coffea canephora on the Quality of Bioactive Compounds and Cytotoxicity Deborah Bauer 1 , Joel Abreu 1 , Nathállia Jordão 2, Jeane Santos da Rosa 3, Otniel Freitas-Silva 3 and Anderson Teodoro 1,* 1 Laboratory of Functional Foods—Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 22290-240, Brazil; [email protected] (D.B.); [email protected] (J.A.) 2 Food Science Departament, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 22290-240, Brazil; [email protected] or [email protected] 3 Empresa Brasileira de Pesquisa Agropecuária—Embrapa Agroindústria de Alimentos, Rio de Janeiro 23020-470, Brazil; [email protected] or [email protected] (J.S.d.R.); [email protected] (O.F.-S.) * Correspondence: [email protected]; Tel.: +55-21-2542-7236 Received: 30 August 2018; Accepted: 17 October 2018; Published: 31 October 2018 Abstract: Coffee is a popular drink consumed all over the world. Besides its long-recognized stimulant effect, it has important nutritional and health effects. However, the type of bean processing modifies the composition of brewed coffee and possibly its bioactivity. In this study, extracts obtained from green and roasted beans of Coffea canephora (Coffea canephora var. robusta) were submitted to spray- or freeze-drying and were tested for antiproliferative activity, using MTT assay, and their influence on the cell cycle and apoptosis by flow cytometry analysis. Moreover, colors and nutrient contents were measured to identify the changes due to the roasting process. -
Cinnamic Acid Derivatives,P-Coumaric,Caffeic And
No.12 4841 Chem.Pharm.Bull. [36(12)4841-4848(1988 11 New Phenylpropanoid Glycerol Glucosides from the Bulbs of Lilium Species HIROKO SHIMOMURA,YUTAKA SASHIDA,*YOSHIHIRO MIMAKI, YASUE KUDO,and KATSUHIKO MAEDA Tokyo College of Pharmacy,1432-1,Horinouchi, Hachioji,Tokyo 192-03,Japan (Received May 11,1988) The fresh bulbs of the genus Lilium have yielded new phenylpropanoid glycerol glucosides,epi- regaloside A(6b),epi-regaloside C(7b)and epi-regaloside F(10b),as mixtures with the corresponding(2S)-regalosides(6a,7a and 10a),and regaloside G(11).Compounds 6b and 7b have been obtained from Lilium pardarinum,and 6b,10b and 11 from L.auratum.The spectroscopic data and chemical evidence have allowed us to assign the structures of 6b,7b,10b and 11 as(2R)-1-O-p- coumaroy1-3-O-ƒÀ-D-glucopyranosylglycerol, (2R)-1-O-caffeoy1-3-O-ƒÀ-D-glucopyranosylglycerol, (2R)-1-O-feruloy1-3-O-ƒÀ-D-glucopyranosylglycerol and (2S)-1-O-feruloy1-2-O-ƒÀ-D-glucopyrano- sylglycerol,respectively.In addition,jatropham and its glucoside have been detected in the fresh bulbs of L.medeoloides.Several previously reported compounds have also been obtained and identified. Keywords-Lilium pardarinum;Lilium auratum;Lilium medeoloides;Liliaceae;phenolic glycerol glucoside;epi-regaloside A;epi-regaloside C;epi-regaloside F;ragaloside G;jatropham Cinnamic acid derivatives,p-coumaric,caffeic and ferulic acids,are widely distributed in higher plants as esters and glycosides.1)Some medical uses of the bulbs of the genus Lilium are described in the literature,2)and recently,we have reported the occurrence of phenyl- propanoid glycosides in lily bulbs3);little had previously been known about the phenolic constituents.4)Regalosides,phenylpropanoid glycerol glucosides,are considered to be the major components of the lily bulbs,and no report has appeared on such compounds from other natural sources.On the other hand,the isolation of jatropham and its glucoside from L. -
Use of NMR-Based Metabolomics to Chemically Characterize The
Article pubs.acs.org/JAFC Use of NMR-Based Metabolomics To Chemically Characterize the Roasting Process of Chicory Root † § † † † † Feifei Wei, , Kazuo Furihata, Mimin Zhang, Takuya Miyakawa, and Masaru Tanokura*, † Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan § Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan *S Supporting Information ABSTRACT: Roasted chicory root (Cichorium intybus) has been widely accepted as the most important coffee substitute. In this study, a nuclear magnetic resonance (NMR)-based comprehensive analysis was performed to monitor the substantial changes in the composition of chicory root during the roasting process. A detailed signal assignment of dried raw and roasted chicory roots was carried out using 1H, 13C, 1H−1H DQF-COSY, 1H−13C edited-HSQC, 1H−13C CT-HMBC, and 1H−13C HSQC-TOCSY NMR spectra. On the basis of the signal assignments, 36 NMR-visible components were monitored simultaneously during roasting. Inulins, sucrose, and most of the amino acids were largely degraded during the roasting process, whereas monosaccharides decreased at the beginning and then increased until the dark roasting stage. Acetamide, 5- hydroxymethylfurfural, di-D-fructose dianhydride, and norfuraneol were newly formed during roasting. Furthermore, a principal component analysis score plot indicated that similar chemical composition profiles could be achieved by roasting the chicory root either at a higher firepower for a shorter time or at a lower firepower for a longer time. KEYWORDS: NMR, chicory root, roast, inulin, coffee substitute ■ INTRODUCTION metabolite profiles of chicory leaf,21 but there is no report of the Roasted chicory root (Cichorium intybus) has been widely use of NMR to investigate the chemical changes of chicory root accepted as the most important coffee substitute.1 For several during the roasting process. -
Metabolomics Fingerprint of Coffee Species Determined by Untargeted
Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS Florence Souard, Cédric Delporte, Piet Stoffelen, Etienne Thévenot, Nausicaa Noret, Bastien Dauvergne, Jean-Michel Kauffmann, Pierre van Antwerpen, Caroline Stevigny To cite this version: Florence Souard, Cédric Delporte, Piet Stoffelen, Etienne Thévenot, Nausicaa Noret, et al.. Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS. Food Chemistry, Elsevier, 2018, 245, pp.603 - 612. 10.1016/j.foodchem.2017.10.022. cea-01765677 HAL Id: cea-01765677 https://hal-cea.archives-ouvertes.fr/cea-01765677 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Metabolomics fingerprint of coffee species determined by untargeted-profiling study using LC-HRMS Florence Souarda, b, 1, Cédric Delportec, 1, Piet Stoffelend, Etienne A. Thévenote, Nausicaa Noretf, Bastien Dauvergneb, g, Jean-Michel Kauffmanng, Pierre Van Antwerpen c, Caroline Stévigny b 1 Equal contribution of these authors a Département de Pharmacochimie