The C++ Programming Language in Modern Computer Science

Total Page:16

File Type:pdf, Size:1020Kb

The C++ Programming Language in Modern Computer Science Shayan Shajarian THE C++ PROGRAMMING LANGUAGE IN MODERN COMPUTER SCIENCE Faculty of Information Technology and Communication Sciences (ITC) Master of Science Thesis April 2020 1 ABSTRACT Shayan Shajarian: The C++ programming language in modern computer science Master of science thesis Tampere University Information Technology April 2020 This thesis has studied the C++ programming language’s usefulness in modern computer science both in suitability for developers and education by overviewing its history and main features and comparing it to its main alternatives. The research was mainly conducted with literature reviews and methods used for studying the subject where both quantitative in form of performance analysis and qualitative in the form of analysis of non-numeric attributes. This thesis has found that the C++ programming language is a very capable programming language for overall development, but the language’s popularity has shifted towards system-level programming while the language is losing popularity for higher-level applications. The C++ programming language is also quite complex, making it too difficult to learn for beginners. Despite the complexity, the C++ programming language remains a very good language in terms of education for students of computer science because the language gives a good overview of programming as a whole. Keywords: C++, computer science, software production, education of programming The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 2 TIIVISTELMÄ Shayan Shajarian: The C++ programming language in modern computer science Diplomityö Tampereen yliopisto Ohjelmistotuotanto Huhtikuu 2020 Tämä diplomityö on tutkinut C++-ohjelmointikielen hyödyllisyyttä sekä modernissa ohjelmistotuotannossa, että työkaluna tietotekniikan ja ohjelmoinnin opetukseen. Tutkimus suoritettiin tutkimalla C++-ohjelmointikielen historiaa, kielen yleisiä ominaisuuksia ja vertailemalla sitä muihin ohjelmointikieliin. Tutkimuksen menetelminä käytettiin sekä kvantitatiivisia menetelmiä kuten suorituskyvyn mittauksia, että kvalitatiivisia menetelmiä, kuten laadullisten ja ei-numeeristen attribuuttien analysointia. Tutkimuksessa C++-ohjelmointikieli on todettu hyvin kykeneväksi ohjelmointikieleksi yleiseen ohjelmistotuotantoon, mutta kielen suosio on siirtynyt korkeamman abstraktiotason tehtävistä alempaan tasoon. Opetuksen kannalta, tutkimuksessa todettiin, että C++-ohjelmointikieli on liian monimutkainen ja vaikea kieli aloittelijoille. Ohjelmoinnin opiskelijoille C++-ohjelmointikielen opiskelu on kuitenkin hyvin hyödyllistä, sillä kielen kattavuus antaa opiskelijalle hyvän kokonaiskuvan ohjelmoinnista. Avainsanat: C++, tietotekniikka, ohjelmistotuotanto, ohjelmoinnin opiskelu Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla. 3 PREFACE Writing this thesis has been an interesting learning experience, required using many of the skills I had acquired over the years in the university, from writing in English to study- ing the field itself. The topic for the thesis was chosen out of personal interest of computer science as a whole and the C++ programming language serving as the “protagonist” for this journey. Although writing this thesis has given me a valuable insight into the field of computer science, it feels like learning more about this subject just makes one feel how expansive the field is and how little actual knowledge I have acquired thus far. Although this thesis may mark the end of my academic career, in many ways it feels like I am only beginning to learn. I would like to thank my instructors for this thesis, professors Matti Rintala and Kari Systä. With special thanks to professor Kari Systä for helping me throughout the process and providing feedback and a valuable insight into many of the topics. Tampere, 29.04.2020 Shayan Shajarian 4 CONTENTS 1. INTRODUCTION .................................................................................................. 9 2. THEORETICAL BACKGROUND......................................................................... 11 2.1 The C++ programming language........................................................ 11 2.1.1 C++ Compilation ......................................................................... 13 2.1.2 C++ Type checking ..................................................................... 16 2.1.3 Memory management in C++ ...................................................... 19 2.1.4 Memory exploits in C++ .............................................................. 20 2.1.5 The Auto keyword ....................................................................... 18 2.2 History and development ................................................................... 21 2.3 Overview of programming paradigms ................................................. 24 2.3.1 Imperative paradigm ................................................................... 24 2.3.2 Procedural paradigm ................................................................... 24 2.3.3 Object-oriented paradigm ............................................................ 25 2.3.4 Functional programming paradigm .............................................. 25 2.3.5 The programming paradigms of the C++ language ..................... 26 2.4 Software development ....................................................................... 27 2.4.1 A Brief history of software development ...................................... 27 2.4.2 Productivity in software development .......................................... 30 2.5 Education of programming ................................................................. 31 3. RESEARCH METHODOLOGY ........................................................................... 34 3.1 Quantitative methods ......................................................................... 34 3.2 Qualitative methods ........................................................................... 34 3.3 Methods for choosing a programming language ................................. 35 4. RESULTS ........................................................................................................... 37 4.1 Comparison with other programming languages ................................ 37 4.1.1 Comparison with Java ................................................................. 38 4.1.2 Comparison with C# .................................................................... 42 4.1.3 Comparison with Python ............................................................. 46 4.1.4 Comparison with Rust ................................................................. 48 4.1.5 Conclusions from the comparisons ............................................. 50 4.2 Choosing a programming language for education .............................. 52 4.2.1 Examining the criteria selected for C++ in teaching ..................... 53 4.2.2 Examining alternative programming languages ........................... 55 4.2.3 Comparing programming languages for education ...................... 57 4.3 C++ in modern software development ................................................ 59 4.3.1 What is C++ used for today ......................................................... 59 4.3.2 C++ for the waterfall model of development ................................ 62 4.3.3 C++ in agile development ........................................................... 65 4.3.4 Improving the C++ programming language ................................. 67 5. ANALYSIS .......................................................................................................... 68 5.1 Analysis of C++ in modern computer science..................................... 68 5.1.1 Analysis of C++ in education ....................................................... 68 5.1.2 Analysis of C++ in software development ................................... 69 6. CONCLUSION .................................................................................................... 71 5 REFERENCES....................................................................................................... 74 6 LIST OF FIGURES Figure 1. Layers of abstraction in software programming languages [12] .................... 12 Figure 2. The C++ compilation process [15] ................................................................ 14 Figure 3. Memory architecture of a C++ program [47] ................................................. 19 Figure 4. Tiobe Index [39] ........................................................................................... 37 Figure 5. Compilation of Java [41] .............................................................................. 38 Figure 6. Compilation process of Java [42] ................................................................. 39 Figure 7. C# Compilation [52] ..................................................................................... 44 Figure 8. Waterfall Model [79] ..................................................................................... 62 7 LIST OF TABLES Table 1. Productivity levels [98] .................................................................................. 31 Table 2. C++ and Java performance test [45] ............................................................. 41 Table 3. C++ and C# performance test [53] ................................................................ 45 Table 4. C++ and Python performance test [60] .......................................................... 47 Table 5. C++ and Rust performance test [75]
Recommended publications
  • Retrocomputing As Preservation and Remix
    Retrocomputing as Preservation and Remix Yuri Takhteyev Quinn DuPont University of Toronto University of Toronto [email protected] [email protected] Abstract This paper looks at the world of retrocomputing, a constellation of largely non-professional practices involving old computing technology. Retrocomputing includes many activities that can be seen as constituting “preservation.” At the same time, it is often transformative, producing assemblages that “remix” fragments from the past with newer elements or joining together historic components that were never combined before. While such “remix” may seem to undermine preservation, it allows for fragments of computing history to be reintegrated into a living, ongoing practice, contributing to preservation in a broader sense. The seemingly unorganized nature of retrocomputing assemblages also provides space for alternative “situated knowledges” and histories of computing, which can sometimes be quite sophisticated. Recognizing such alternative epistemologies paves the way for alternative approaches to preservation. Keywords: retrocomputing, software preservation, remix Recovering #popsource In late March of 2012 Jordan Mechner received a shipment from his father, a box full of old floppies. Among them was a 3.5 inch disk labelled: “Prince of Persia / Source Code (Apple) / ©1989 Jordan Mechner (Original).” Mechner’s announcement of this find on his blog the next day took the world of nerds by storm.1 Prince of Persia, a game that Mechner single-handedly developed in the late 1980s, revolutionized computer games when it came out due to its surprisingly realistic representation of human movement. After being ported to DOS and Apple’s Mac OS in the early 1990s the game sold 2 million copies (Pham, 2001).
    [Show full text]
  • Functional Pls Introduction to Haskell
    Thoughts on Assignment 4 PL Category: Functional PLs Introduction to Haskell CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Friday, February 22, 2019 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks [email protected] © 2017–2019 Glenn G. Chappell Thoughts on Assignment 4 Introduction In Assignment 4 you will be writing a Recursive-Descent parser, in the form of Lua module parseit. It will be similar to module rdparser4 (written in class), but it will involve a different grammar & AST specification. In Assignment 6 you will write an interpreter that takes, as input, an AST of the form your parser returns. The result will be an implementation of a programming language called Jerboa. Module parseit is to parse a complete programming language, while module rdparser4 only parses expressions. Nonetheless, Jerboa has expressions, and they work in much the same way as those handled by rdparser4. I suggest using file rdparser4.lua as a starting point for Assignment 4. 22 Feb 2019 CS F331 / CSCE A331 Spring 2019 2 Thoughts on Assignment 4 The Goal Here is a sample Jerboa program, again. # Function fibo # Main Program # Given k, return F(k), where # F(n) = nth Fibonacci no. # Get number of Fibos to output def fibo() write("How many Fibos to print? ") a = 0 # Consecutive Fibos n = readnum() b = 1 write(cr) i = 0 # Loop counter while i < k # Print requested number of Fibos c = a+b # Advance j = 0 # Loop counter a = b while j < n b = c k = j i = i+1 # ++counter write("F(",j,")
    [Show full text]
  • Comparison of Programming Languages
    ECE326 PROGRAMMING LANGUAGES Lecture 1 : Course Introduction Kuei (Jack) Sun ECE University of Toronto Fall 2019 Course Instructor Kuei (Jack) Sun Contact Information Use Piazza Send me (Kuei Sun) a private post Not “Instructors”, otherwise the TAs will also see it http://piazza.com/utoronto.ca/fall2019/ece326 Sign up to the course to get access Office: PRA371 (office hours upon request only) Research Interests Systems programming, software optimization, etc. 2 Course Information Course Website http://fs.csl.toronto.edu/~sunk/ece326.html Lecture notes, tutorial slides, assignment handouts Quercus Grade posting, course evaluation, lab group sign-up! Piazza Course announcement, course discussion Assignment discussion Lab TAs will read and answer relevant posts periodically 3 Course Information No required textbook Exam questions will come from lectures, tutorials, and assignments See course website for suggested textbooks Lab sessions Get face-to-face help from a TA with your assignments Tutorials Cover supplementary materials not in lectures Go through sample problems that may appear on exams 4 Volunteer Notetakers Help your peers Improve your own notetaking skills Receive Certificate of Recognition Information: https://www.studentlife.utoronto.ca/as/note-taking Registration: https://clockwork.studentlife.utoronto.ca/custom/misc/home.aspx Notetakers needed for lectures and tutorials 5 Background Programming Languages A formal language consisting of a instructions to implement algorithms and perform
    [Show full text]
  • The Past, Present, and Future of Software Evolution
    The Past, Present, and Future of Software Evolution Michael W. Godfrey Daniel M. German Software Architecture Group (SWAG) Software Engineering Group School of Computer Science Department of Computer Science University of Waterloo, CANADA University of Victoria, CANADA email: [email protected] email: [email protected] Abstract How does our system compare to that of our competitors? How easy would it be to port to MacOS? Are users still Change is an essential characteristic of software devel- angry about the spyware incident? As new features are de- opment, as software systems must respond to evolving re- vised and deployed, as new runtime platforms are envis- quirements, platforms, and other environmental pressures. aged, as new constraints on quality attributes are requested, In this paper, we discuss the concept of software evolu- so must software systems continually be adapted to their tion from several perspectives. We examine how it relates changing environment. to and differs from software maintenance. We discuss in- This paper explores the notion of software evolution. We sights about software evolution arising from Lehman’s laws start by comparing software evolution to the related idea of software evolution and the staged lifecycle model of Ben- of software maintenance and briefly explore the history of nett and Rajlich. We compare software evolution to other both terms. We discuss two well known research results of kinds of evolution, from science and social sciences, and we software evolution: Lehman’s laws of software evolution examine the forces that shape change. Finally, we discuss and the staged lifecycle model of Bennett and Rajlich. We the changing nature of software in general as it relates to also relate software evolution to biological evolution, and evolution, and we propose open challenges and future di- discuss their commonalities and differences.
    [Show full text]
  • A Brief History of Software Engineering Niklaus Wirth ([email protected]) (25.2.2008)
    1 A Brief History of Software Engineering Niklaus Wirth ([email protected]) (25.2.2008) Abstract We present a personal perspective of the Art of Programming. We start with its state around 1960 and follow its development to the present day. The term Software Engineering became known after a conference in 1968, when the difficulties and pitfalls of designing complex systems were frankly discussed. A search for solutions began. It concentrated on better methodologies and tools. The most prominent were programming languages reflecting the procedural, modular, and then object-oriented styles. Software engineering is intimately tied to their emergence and improvement. Also of significance were efforts of systematizing, even automating program documentation and testing. Ultimately, analytic verification and correctness proofs were supposed to replace testing. More recently, the rapid growth of computing power made it possible to apply computing to ever more complicated tasks. This trend dramatically increased the demands on software engineers. Programs and systems became complex and almost impossible to fully understand. The sinking cost and the abundance of computing resources inevitably reduced the care for good design. Quality seemed extravagant, a loser in the race for profit. But we should be concerned about the resulting deterioration in quality. Our limitations are no longer given by slow hardware, but by our own intellectual capability. From experience we know that most programs could be significantly improved, made more reliable, economical and comfortable to use. The 1960s and the Origin of Software Engineering It is unfortunate that people dealing with computers often have little interest in the history of their subject.
    [Show full text]
  • Analytická Řešení Vybraných Typů Diferenciálních Rovnic
    VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING ÚSTAV AUTOMATIZACE A INFORMATIKY INSTITUTE OF AUTOMATION AND COMPUTER SCIENCE ANALYTICKÁ ŘEŠENÍ VYBRANÝCH TYPŮ DIFERENCIÁLNÍCH ROVNIC: SOFTWAROVÁ PODPORA PRO STUDENTY TECHNICKÝCH OBORŮ ANALYTICAL SOLUTIONS FOR SELECTED TYPES OF DIFFERENTIAL EQUATIONS: SOFTWARE SUPPORT TOOL FOR STUDENTS IN TECHNICAL FIELDS BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS AUTOR PRÁCE Daniel Neuwirth, DiS. AUTHOR VEDOUCÍ PRÁCE Ing. Jan Roupec, Ph.D. SUPERVISOR BRNO 2017 ABSTRAKT Cílem této práce bylo vytvořit počítačovou aplikaci s jednoduchým uživatelským rozhraním, určenou pro řešení vybraných typů diferenciálních rovnic, jejíž výstup není omezen na prosté zobrazení konečného výsledku, nýbrž zahrnuje i kompletní postup výpočtu, a díky tomu může sloužit jako podpůrná výuková pomůcka pro studenty vysokých škol. ABSTRACT The aim of this thesis was to create a computer application with a simple user interface for solving selected types of differential equations, whose output is not limited to display a final result only, but also includes a complete calculation procedure and therefore can serve as a supportive teaching aid for university students. KLÍČOVÁ SLOVA diferenciální rovnice, počítačový algebraický systém, programovací jazyk C++ KEYWORDS differential equation, computer algebra system, C++ programming language BIBLIOGRAFICKÁ CITACE NEUWIRTH, Daniel. Analytická řešení vybraných typů diferenciálních rovnic: softwarová podpora pro studenty technických oborů. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2017. 77 s. Vedoucí bakalářské práce Ing. Jan Roupec, Ph.D. PODĚKOVÁNÍ Rád bych poděkoval vedoucímu své bakalářské práce Ing. Janu Roupcovi, Ph.D. za odborné vedení při tvorbě této práce, za cenné rady a návrhy ke zlepšení, drobné korektury a zejména za jeho entuziasmus, se kterým k tomuto procesu přistupoval.
    [Show full text]
  • The History of Computing in the History of Technology
    The History of Computing in the History of Technology Michael S. Mahoney Program in History of Science Princeton University, Princeton, NJ (Annals of the History of Computing 10(1988), 113-125) After surveying the current state of the literature in the history of computing, this paper discusses some of the major issues addressed by recent work in the history of technology. It suggests aspects of the development of computing which are pertinent to those issues and hence for which that recent work could provide models of historical analysis. As a new scientific technology with unique features, computing in turn can provide new perspectives on the history of technology. Introduction record-keeping by a new industry of data processing. As a primary vehicle of Since World War II 'information' has emerged communication over both space and t ime, it as a fundamental scientific and technological has come to form the core of modern concept applied to phenomena ranging from information technolo gy. What the black holes to DNA, from the organization of English-speaking world refers to as "computer cells to the processes of human thought, and science" is known to the rest of western from the management of corporations to the Europe as informatique (or Informatik or allocation of global resources. In addition to informatica). Much of the concern over reshaping established disciplines, it has information as a commodity and as a natural stimulated the formation of a panoply of new resource derives from the computer and from subjects and areas of inquiry concerned with computer-based communications technolo gy.
    [Show full text]
  • An Overview of Software Evolution
    An Overview of Software Evolution CPRE 416-Software Evolution and Maintenance-Lecture 2 1 Software Evolution • What is it? • How important is it? • What to do about it? 2 An early history of software engineering • The following slides provide a condensation of the ideas of Robert L. Glass in his book "In the Beginning: Recollections of Software Pioneers" about the history of software engineering. 3 The Pioneering Era (1955-1965) • New computers were coming out every year or two. • Programmers did not have computers on their desks and had to go to the "machine room". • Jobs were run by signing up for machine time. Punch cards were used. • Computer hardware was application-specific. Scientific and business tasks needed different machines. 4 The Pioneering Era (1955-1965) • High-level languages like FORTRAN, COBOL, and ALGOL were developed. • No software companies were selling packaged software. • Academia did not yet teach the principles of computer science. 5 The Stabilizing Era (1965-1980) • Came the IBM 360. • This was the largest software project to date. • The 360 also combined scientific and business applications onto one machine. 6 The Stabilizing Era (1965-1980) • Programmers had to use the job control language (JCL) to tell OS what to do. • PL/I, introduced by IBM to merge all programming languages into one, failed. • The notion of timesharing emerged. • Software became a corporate asset and its value became huge. • Academic computing started in the late 60's. • Software engineering discipline did not yet exist. 7 The Stabilizing Era (1965-1980) • High-hype disciplines like Artificial Intelligence emerged.. • Structured Programming burst on the scene.
    [Show full text]
  • The History of Unix in the History of Software Haigh Thomas
    The History of Unix in the History of Software Haigh Thomas To cite this version: Haigh Thomas. The History of Unix in the History of Software. Cahiers d’histoire du Cnam, Cnam, 2017, La recherche sur les systèmes : des pivots dans l’histoire de l’informatique – II/II, 7-8 (7-8), pp77-90. hal-03027081 HAL Id: hal-03027081 https://hal.archives-ouvertes.fr/hal-03027081 Submitted on 9 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 77 The History of Unix in the History of Software Thomas Haigh University of Wisconsin - Milwaukee & Siegen University. You might wonder what I am doing The “software crisis” and here, at an event on this history of Unix. the 1968 NATO Conference As I have not researched or written about on Software Engineering the history of Unix I had the same question myself. But I have looked at many other The topic of the “software crisis” things around the history of software and has been written about a lot by profes- this morning will be talking about how sional historians, more than anything some of those topics, including the 1968 else in the entire history of software2.
    [Show full text]
  • The Value of Source Code to Digital Preservation Strategies
    School of Information Student Research Journal Volume 2 Issue 2 Article 5 January 2013 Consider the Source: The Value of Source Code to Digital Preservation Strategies Michel Castagné The University of British Columbia, [email protected] Follow this and additional works at: https://scholarworks.sjsu.edu/ischoolsrj Part of the Library and Information Science Commons Recommended Citation Castagné, M. (2013). Consider the Source: The Value of Source Code to Digital Preservation Strategies. School of Information Student Research Journal, 2(2). https://doi.org/10.31979/2575-2499.020205 Retrieved from https://scholarworks.sjsu.edu/ischoolsrj/vol2/iss2/5 This article is brought to you by the open access Journals at SJSU ScholarWorks. It has been accepted for inclusion in School of Information Student Research Journal by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Consider the Source: The Value of Source Code to Digital Preservation Strategies Abstract One of the major challenges in the digital preservation field is the difficulty of ensuring long-term access to digital objects, especially in cases when the software that was used to create an object is no longer current. Software source code has a human-readable, documentary structure that makes it an overlooked aspect of digital preservation strategies, in addition to a valuable component for the records of modern computing history. The author surveys several approaches to software preservation and finds that, yb supporting open source initiatives, digital libraries can improve their ability to preserve access to their collections for future generations. Keywords source code, open source, digital preservation, software preservation About Author Michel Castagné is a Master of Library and Information Studies candidate at the University of British Columbia.
    [Show full text]
  • 4500/6500 Programming Languages What Are Types? Different Definitions
    What are Types? ! Denotational: Collection of values from domain CSCI: 4500/6500 Programming » integers, doubles, characters ! Abstraction: Collection of operations that can be Languages applied to entities of that type ! Structural: Internal structure of a bunch of data, described down to the level of a small set of Types fundamental types ! Implementers: Equivalence classes 1 Maria Hybinette, UGA Maria Hybinette, UGA 2 Different Definitions: Types versus Typeless What are types good for? ! Documentation: Type for specific purposes documents 1. "Typed" or not depends on how the interpretation of the program data representations is determined » Example: Person, BankAccount, Window, Dictionary » When an operator is applied to data objects, the ! Safety: Values are used consistent with their types. interpretation of their values could be determined either by the operator or by the data objects themselves » Limit valid set of operation » Languages in which the interpretation of a data object is » Type Checking: Prevents meaningless operations (or determined by the operator applied to it are called catch enough information to be useful) typeless languages; ! Efficiency: Exploit additional information » those in which the interpretation is determined by the » Example: a type may dictate alignment at at a multiple data object itself are called typed languages. of 4, the compiler may be able to use more efficient 2. Sometimes it just means that the object does not need machine code instructions to be explicitly declared (Visual Basic, Jscript
    [Show full text]
  • Javascript Affogato
    JavaScript Afogato: Programming a Culture of Improvised Expertise Brian Lennon Pennsylvania State University ABSTRACT: This essay attempts a philological—meaning a both technically and socially attentive—historical study of an individual computer programming language, JavaScript. From its introduction, JavaScript’s reception by software developers, and its importance in web development as we now understand it, was structured by a con- tinuous negotiation of expertise. I use the term “improvised expertise” to describe both conditions for and effects of the unanticipated de- velopment of JavaScript, originally designed for casual and inexpert coders, into a complex of technical artifacts and practices whose range and complexity of use has today propelled it into domains previously dominated by other, often older and more prestigious languages. “Im- provised expertise” also marks the conditions for and effects of three specific developmental dynamics in JavaScript’s recent history: first, the rapidly accelerated development of the language itself, in the ver- sions of its standard specification; second, the recent, abruptly emerg- ing, yet rapid growth of JavaScript in server-side networking, data pro- cessing, and other so-called back-end development tasks previously off limits to it; third, the equally recent and abrupt, yet decisive emer- gence of JavaScript as the dominant language of a new generation of dynamic web application frameworks and the developer tool chains or tooling suites that support them. Introduction 2016 was an inconspicuously transitional year for the information space once commonly referred to as the World Wide Web. Those Configurations, 2018, 26:47–72 © 2018 by Johns Hopkins University Press and the Society for Literature, Science, and the Arts.
    [Show full text]