MUC1 Signaling Directly Reprograms Transcription of CTGF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implications for Diabetic Nephropathy
ORIGINAL ARTICLE Hyperglycemia Causes Renal Cell Damage via CCN2-Induced Activation of the Tropomyosin Receptor Kinase A, TrkA Implications for Diabetic Nephropathy Maria Fragiadaki,1 Nicola Hill,1 Reiko Hewitt,1 George Bou-Gharios,1,2 Terence Cook,1,3 Frederick W. Tam,1 Jan Domin,1,4 and Roger M. Mason1 CCN2, a secreted profibrotic protein, is highly expressed in di- biopsy specimens from patients with different stages of DN abetic nephropathy (DN) and implicated in its pathogenesis; (6). CCN2 is also induced by TGF-b, hypoxia (low oxygen), however, the actions of CCN2 in DN remain elusive. We previously and advanced glycation-end products, all of which are demonstrated that CCN2 triggers signaling via tropomyosin re- stimulants that result in kidney damage (6–9). Moreover, ceptor kinase A (TrkA). Trace expression of TrkA is found in CCN2 overexpression in transgenic mice with streptozotocin- normal kidneys, but its expression is elevated in several nephrop- induced DN led to worsening of the disease, thus indicating athies; yet its role in DN is unexplored. In this study we show de the latter may play a profibrotic role after primary injury in novo expression of TrkA in human and murine DN. We go on to the context of diabetes (10). study the molecular mechanisms leading to TrkA activation and show – More evidence that CCN2 is a profibrotic protein comes that it involves hypoxia, as demonstrated by ischemia reperfusion fi injury and in vitro experiments mimicking hypoxia, implicating from studies of genetically modi ed animals. Sonnylal et al. hypoxia as a common pathway leading to disease. -
R&D Day for Investors and Analysts
R&D Day for Investors and Analysts November 16, 2020 Seagen 2020 R&D Day Clay Siegall, Ph.D. Roger Dansey, M.D. Nancy Whiting, Pharm.D Megan O’Meara, M.D. Shyra Gardai, Ph.D. President & Chief Chief Medical Officer EVP, Corporate Strategy VP, Early Stage Executive Director, Executive Officer Alliances and Development Immunology Communications 2 Forward-Looking Statements Certain of the statements made in this presentation are forward looking, such as those, among others, relating to the Company’s potential to achieve the noted development and regulatory milestones in 2021 and in future periods; anticipated activities related to the Company’s planned and ongoing clinical trials; the potential for the Company’s clinical trials to support further development, regulatory submissions and potential marketing approvals in the U.S. and other countries; the opportunities for, and the therapeutic and commercial potential of ADCETRIS, PADCEV, TUKYSA, tisotumab vedotin and ladiratuzumab vedotin and the Company’s other product candidates and those of its licensees and collaborators; the potential to submit a BLA for accelerated approval of tisotumab vedotin; the potential for data from the EV-301 and EV-201 cohort 2 clinical trials to support additional regulatory approvals of PADCEV; the potential for the approval of TUKYSA by the EMA; the therapeutic potential of the Company’s SEA technology and of the Company’s early stage pipeline agents including SGN-B6A, SGN-STNV, SGN-CD228A, SEA-CD40, SEA-TGT, SEA-BCMA and SEA-CD70; as well as other statements that are not historical fact. Actual results or developments may differ materially from those projected or implied in these forward-looking statements. -
Investigation of Hub Genes Involved in Diabetic Nephropathy Using Biological Informatics Methods
1087 Original Article Page 1 of 11 Investigation of hub genes involved in diabetic nephropathy using biological informatics methods Zhanting Li1#, Jianxin Liu2#, Weiwei Wang3, Yunchun Zhao4, Dengfeng Yang5, Xiaodong Geng6,7^ 1Department of Nephrology, Xi'an International Medical Center Hospital, Xi’an, China; 2Physical Examination Section, Qinhuangdao Jungong Hospital, Qinhuangdao, China; 3Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; 4Cadre Ward of PLA 920 Hospital, Kunming, China; 5Department of Laboratory Medicine, Mianxian Hospital, Mianxian, China; 6Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China; 7Kidney Diagnostic and Therapeutic Center of the Chinese PLA, Beidaihe Rehabilitation and Recuperation Center of the Chinese PLA, Qinhuangdao, China Contributions: (I) Conception and design: X Geng; (II) Administrative support: W Wang; (III) Provision of study materials or patients: Y Zhao, J Liu; (IV) Collection and assembly of data: J Liu, Z Li; (V) Data analysis and interpretation: Z Li, D Yang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Xiaodong Geng. Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China; Kidney Diagnostic and Therapeutic Center of the Chinese PLA, Beidaihe Rehabilitation and Recuperation Center of the Chinese PLA, Qinhuangdao, China. Email: [email protected]. Background: The aim of this study was to find genes with significantly aberrant expression in diabetic nephropathy (DN) and determine their underlying mechanisms. Methods: GSE30528 and GSE1009 were obtained by querying the Gene Expression Omnibus (GEO) database. The difference in target gene expression between normal renal tissues and kidney tissues in patients with DN was screened by using the GEO2R tool. -
CAR- T Cell Immunotherapies
CAR T Therapy Current Status Future Challenges Introduction Basics of CAR T Therapy Cytotoxic T Lymphocytes are Specific and Potent Effector Cells Ultrastructure of CTL-mediated apoptosis The CTL protrudes deeply into cytoplasm of melanoma cell 3 Peter Groscurth, and Luis Filgueira Physiology 1998;13:17-21 What is CAR T Therapy? • CAR T therapy is the name given to chimeric antigen receptor (CAR) genetically modified T cells that are designed to recognize specific antigens on tumor cells resulting in their activation and proliferation eventually resulting in significant and durable destruction of malignant cells • CAR T cells are considered “a living drug” since they tend to persist for long periods of time • CAR T cells are generally created from the patients own blood cells although this technology is evolving to develop “off the shelf” CAR T cells 4 CAR T cells: Mechanism of Action T cell Tumor cell CAR enables T cell to Expression of recognize tumor cell antigen CAR Viral DNA Insertion Antigen Tumor cell apoptosis CAR T cells multiply and release cytokines 5 Chimeric Antigen Receptors Antigen binding VH Antigen Binding Domain domain scFv Single-chain variable fragment (scFv) bypasses MHC antigen presentation, allowing direct activation of T cell by cancer cell antigens VL Hinge region Hinge region Essential for optimal antigen binding Costimulatory Domain: CD28 or 4-1BB Costimulatory Enhances proliferation, cytotoxicity and domain persistence of CAR T cells Activation Domains Signaling Domain: CD3-zeta chain CD3-zeta chain Proliferation -
Galectin-3 Promotes Aβ Oligomerization and Aβ Toxicity in a Mouse Model of Alzheimer’S Disease
Cell Death & Differentiation (2020) 27:192–209 https://doi.org/10.1038/s41418-019-0348-z ARTICLE Galectin-3 promotes Aβ oligomerization and Aβ toxicity in a mouse model of Alzheimer’s disease 1,2 1,3 1 1 1,2 4,5 Chih-Chieh Tao ● Kuang-Min Cheng ● Yun-Li Ma ● Wei-Lun Hsu ● Yan-Chu Chen ● Jong-Ling Fuh ● 4,6,7 3 1,2,3 Wei-Ju Lee ● Chih-Chang Chao ● Eminy H. Y. Lee Received: 1 October 2018 / Revised: 13 April 2019 / Accepted: 2 May 2019 / Published online: 24 May 2019 © ADMC Associazione Differenziamento e Morte Cellulare 2019. This article is published with open access Abstract Amyloid-β (Aβ) oligomers largely initiate the cascade underlying the pathology of Alzheimer’s disease (AD). Galectin-3 (Gal-3), which is a member of the galectin protein family, promotes inflammatory responses and enhances the homotypic aggregation of cancer cells. Here, we examined the role and action mechanism of Gal-3 in Aβ oligomerization and Aβ toxicities. Wild-type (WT) and Gal-3-knockout (KO) mice, APP/PS1;WT mice, APP/PS1;Gal-3+/− mice and brain tissues from normal subjects and AD patients were used. We found that Aβ oligomerization is reduced in Gal-3 KO mice injected with Aβ, whereas overexpression of Gal-3 enhances Aβ oligomerization in the hippocampi of Aβ-injected mice. Gal-3 expression shows an age-dependent increase that parallels endogenous Aβ oligomerization in APP/PS1 mice. Moreover, Aβ oligomerization, Iba1 expression, GFAP expression and amyloid plaque accumulation are reduced in APP/ PS1;Gal-3+/− mice compared with APP/PS1;WT mice. -
MUC1-C Oncoprotein As a Target in Breast Cancer: Activation of Signaling Pathways and Therapeutic Approaches
Oncogene (2013) 32, 1073–1081 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc REVIEW MUC1-C oncoprotein as a target in breast cancer: activation of signaling pathways and therapeutic approaches DW Kufe Mucin 1 (MUC1) is a heterodimeric protein formed by two subunits that is aberrantly overexpressed in human breast cancer and other cancers. Historically, much of the early work on MUC1 focused on the shed mucin subunit. However, more recent studies have been directed at the transmembrane MUC1-C-terminal subunit (MUC1-C) that functions as an oncoprotein. MUC1-C interacts with EGFR (epidermal growth factor receptor), ErbB2 and other receptor tyrosine kinases at the cell membrane and contributes to activation of the PI3K-AKT and mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) pathways. MUC1-C also localizes to the nucleus where it activates the Wnt/b-catenin, signal transducer and activator of transcription (STAT) and NF (nuclear factor)-kB RelA pathways. These findings and the demonstration that MUC1-C is a druggable target have provided the experimental basis for designing agents that block MUC1-C function. Notably, inhibitors of the MUC1-C subunit have been developed that directly block its oncogenic function and induce death of breast cancer cells in vitro and in xenograft models. On the basis of these findings, a first-in-class MUC1-C inhibitor has entered phase I evaluation as a potential agent for the treatment of patients with breast cancers who express this oncoprotein. Oncogene (2013) 32, 1073–1081; doi:10.1038/onc.2012.158; published online 14 May 2012 Keywords: MUC1; breast cancer; oncoprotein; signaling pathways; targeted agents INTRODUCTION In breast tumor cells with loss of apical–basal polarity, the The mucin (MUC) family of high-molecular-weight glycoproteins MUC1-N/MUC1-C complex is found over the entire cell mem- 2 8 evolved in metazoans to provide protection for epithelial cell brane. -
Membrane-Bound Mucins: the Mechanistic Basis for Alterations in the Growth and Survival of Cancer Cells
Oncogene (2010) 29, 2893–2904 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc REVIEW Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells S Bafna1, S Kaur1 and SK Batra1,2 1Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA and 2Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA Mucins (MUC) are high molecular weight O-linked tethered mucins are quite distinct from the classic glycoproteins whose primary functions are to hydrate, extracellular complex mucins forming the mucous layers protect, and lubricate the epithelial luminal surfaces of the of the gastrointestinal and respiratory tracts. These ducts within the human body. The MUC family is epithelial membrane-tethered mucins are the transmem- comprised of large secreted gel forming and transmem- brane (TM) molecules, expressed by most glandular and brane (TM) mucins. MUC1, MUC4, and MUC16 are the ductal epithelial cells (Taylor-Papadimitriou et al., well-characterized TM mucins and have been shown to be 1999). Several TM mucins (MUC1, MUC3A, MUC3B, aberrantly overexpressed in various malignancies includ- MUC4, MUC 12, MUC13, MUC15, MUC16, MUC17, ing cystic fibrosis, asthma, and cancer. Recent studies MUC20, and MUC21) (human mucins are designated have uncovered the unique roles of these mucins in the as MUC, whereas other species mucins are designated as pathogenesis of cancer. These mucins possess specific Muc) have been identified so far (Moniaux et al., 2001; domains that can make complex associations with various Chaturvedi et al., 2008a; Itoh et al., 2008). -
(EMA) Is Preferentially Expressed by ALK Positive Anaplastic Large Cell Lymphoma, in The
J Clin Pathol 2001;54:933–939 933 MUC1 (EMA) is preferentially expressed by ALK positive anaplastic large cell lymphoma, in the normally glycosylated or only partly J Clin Pathol: first published as on 1 December 2001. Downloaded from hypoglycosylated form R L ten Berge*, F G M Snijdewint*, S von MensdorV-Pouilly, RJJPoort-Keesom, J J Oudejans, J W R Meijer, R Willemze, J Hilgers, CJLMMeijer Abstract 30–50% of cases, a chromosomal aberration Aims—To investigate whether MUC1 such as the t(2;5)(p23;q35) translocation gives mucin, a high molecular weight trans- rise to expression of the anaplastic lymphoma membrane glycoprotein, also known as kinase (ALK) protein,2 identifying a subgroup epithelial membrane antigen (EMA), dif- of patients with systemic ALCL with excellent fers in its expression and degree of glyco- prognosis.3–6 ALK expression seems specific for sylation between anaplastic large cell systemic nodal ALCL; it is not found in classic lymphoma (ALCL) and classic Hodgkin’s Hodgkin’s disease (HD)7–11 or primary cutane- disease (HD), and whether MUC1 ous ALCL.7101213Morphologically, these lym- immunostaining can be used to diVerenti- phomas may closely resemble systemic ALCL, ate between CD30 positive large cell being also characterised by CD30 positive lymphomas. tumour cells with abundant cytoplasm, large Methods/Results—Using five diVerent irregular nuclei, and a prominent single monoclonal antibodies (E29/anti-EMA, nucleolus or multiple nucleoli.1 Clinically, DF3, 139H2, VU-4H5, and SM3) that however, classic HD and primary cutaneous distinguish between various MUC1 glyco- ALCL have a more favourable prognosis than 12 14–16 Department of forms, high MUC1 expression (50–95% of ALK negative systemic ALCL. -
Epithelial Mucin-1 (MUCI) Expression and MA5 Anti-MUC1 Monoclonal Antibody Targeting in Multiple Myeloma I
Vol. 5, 3065s-3072s, October 1999 (Suppl.) Clinical Cancer Research 3065s Epithelial Mucin-1 (MUCI) Expression and MA5 Anti-MUC1 Monoclonal Antibody Targeting in Multiple Myeloma I J. Burton, z D. Mishina, T. Cardillo, K. Lew, cGy/mCi of injected dose compared with 3099 cGy/mCi of A. Rubin, D. M. Goldenberg, and D. V. Gold tumor-absorbed dose delivered by nonspecific antibody. Garden State Cancer Center, Belleville, New Jersey 07109 [J. B., D. M., T. C., K. L., D. M. G., D. V. G.], and St. Joseph's Hospital and Introduction Medical Center, Paterson, New Jersey 07503 [A. R.] MM 3 is a B-cell malignancy that appears to result from the transformation and monoclonal expansion of a cell with char- acteristics of a plasma cell, i.e., a terminally differentiated B cell Abstract (1, 2). The expression by MM cells of certain non-B-cell anti- Multiple myeloma (MM) is the second most common gens also raises the possibility of the transformation of an hematological cancer in the United States. It is typically earlier, more multipotent lymphoid precursor cell. As with nor- incurable, even with myeloablative chemotherapy and stem- mal plasma cells, this degree of terminal differentiation is as- cell transplantation. The epithelial mucin-1 (MUC1) glyco- sociated with the complete or partial loss of certain B-cell- protein is expressed by normal and malignant epithelial cells associated antigens, such as surface immunoglobulin and CDs but has also been shown to be expressed by MM cells. MUC1 19-22 (CD19 is expressed on normal plasma cells; Ref. 3). -
ETV5 Links the FGFR3 and Hippo Signalling Pathways in Bladder Cancer Received: 2 December 2016 Erica Di Martino, Olivia Alder , Carolyn D
www.nature.com/scientificreports OPEN ETV5 links the FGFR3 and Hippo signalling pathways in bladder cancer Received: 2 December 2016 Erica di Martino, Olivia Alder , Carolyn D. Hurst & Margaret A. Knowles Accepted: 14 November 2018 Activating mutations of fbroblast growth factor receptor 3 (FGFR3) are common in urothelial Published: xx xx xxxx carcinoma of the bladder (UC). Silencing or inhibition of mutant FGFR3 in bladder cancer cell lines is associated with decreased malignant potential, confrming its important driver role in UC. However, understanding of how FGFR3 activation drives urothelial malignant transformation remains limited. We have previously shown that mutant FGFR3 alters the cell-cell and cell-matrix adhesion properties of urothelial cells, resulting in loss of contact-inhibition of proliferation. In this study, we investigate a transcription factor of the ETS-family, ETV5, as a putative efector of FGFR3 signalling in bladder cancer. We show that FGFR3 signalling induces a MAPK/ERK-mediated increase in ETV5 levels, and that this results in increased level of TAZ, a co-transcriptional regulator downstream of the Hippo signalling pathway involved in cell-contact inhibition. We also demonstrate that ETV5 is a key downstream mediator of the oncogenic efects of mutant FGFR3, as its knockdown in FGFR3-mutant bladder cancer cell lines is associated with reduced proliferation and anchorage-independent growth. Overall this study advances our understanding of the molecular alterations occurring during urothelial malignant transformation and indicates TAZ as a possible therapeutic target in FGFR3-dependent bladder tumours. Fibroblast growth factors (FGF) and their four tyrosine kinase receptors (FGFR1-4) activate multiple downstream cellular signalling pathways, such as MAPK/ERK, PLCγ1, PI3K and STATs, and regulate a variety of physiolog- ical processes, encompassing embryogenesis, angiogenesis, metabolism, and wound healing1–3. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Characterization and Function of Medium and Large Extracellular
bioRxiv preprint doi: https://doi.org/10.1101/623553; this version posted April 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Characterization and function of medium and large extracellular vesicles from plasma and urine by surface antigens and Annexin V Ko Igami1, 2, 3, Takeshi Uchiumi1*, Saori Ueda1, Kazuyuki Kamioka2, 4, Daiki Setoyama1, Kazuhito Gotoh1, Masaru Akimoto1, Shinya Matsumoto1 and Dongchon Kang1 1Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 2Kyushu Pro Search Limited Liability Partnership, 4-1, Kyudaishimmachi, Nishi- ku, Fukuoka, 819-0388, Japan. 3Business Management Division, Clinical Laboratory Business Segment, LSI Medience Corporation, 13-4, Uchikanda 1-chome, Chiyoda-ku, Tokyo, 101-8517, Japan. 4Medical Solutions Department, LSI Medience Corporation, 3- 30-1, Shimura, Itabashi-ku, Tokyo, 174-8555, Japan. Running title: Characterization of plasma and urine extracellular microvesicles Keywords: microvesicle, cell-derived microvesicle, peptidase, plasma, urine *Correspondence to: Takeshi Uchiumi, Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. Tel: (+81) 92-642-5750; Fax: (+81) 92-642-5772 1 bioRxiv preprint doi: https://doi.org/10.1101/623553; this version posted April 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.