Vetiver System Ecotechnology for Water Quality Improvement and Environmental Enhancement

Total Page:16

File Type:pdf, Size:1020Kb

Vetiver System Ecotechnology for Water Quality Improvement and Environmental Enhancement NEWS MEETING REPORT Vetiver system ecotechnology for water quality improvement and environmental enhancement Vetiver, Vetiveria zizanioides L. Nash, a highlighting that vetiver (i) is native to vetiver hedges to mark out farm bounda- native grass of India has traditionally hygro-environment such as wetland, ries in Karnataka (India), to the World been in use in India for contour protec- lagoon and bog, (ii) is extremely tolerant Bank-supported follow-up studies on tion and essential-oil production. Taking to drought as well as waterlogged/ grass biodiversity vis-à-vis its multifari- clues from its traditional usage in envi- submergence conditions, (iii) is effective ous applications in phyto-remediation, ronmental protection, The World Bank for soil and water conservation, and (iv) reclamation of mine dumps, and its abil- initiated several projects in India in is endowed with excellent biological ity to filter toxins before they enter the 1980s for systematic development of features to ameliorate wastewater and water-table. Vetiver Grass Technology (VGT), now pollution mitigation. The conference was In his opening lecture ‘Vetiver grass – popularly known as Vetiver System (VS). inaugurated by the Patron of The Vetiver a world technology and its impact on Large-scale developments have since Network, HRH Princess Maha Chakri water’ Richard G. Grimshaw (USA) des- taken place in the advancement of VS in Sirindhorn of Thailand, and was attended cribed how vetiver has developed as a environmental protection1; new avenues by over 230 delegates representing 28 world technology over four phases of have opened up over the past 15 years2. countries. There were 13 plenary presen- application: soil and water conservation The VS is emerging as a panacea to a tations covering eight sub-themes, and 46 in poor rural areas; infrastructure stabili- host of environmental problems. It is a oral presentations, including four King of zation; rehabilitation of difficult and low cost, extremely effective system that Thailand Vetiver Award presentations4. often polluted sites; and water quality offers proven solutions for soil and water Also, an exhibition on VS-based eco- enhancement and site rehabilitation in conservation, wastewater treatment, em- technologies and products in the form of relation to industry and intensive agricul- bankment stabilization, flood control, posters and demonstration stalls was ture. He admitted that introduction of disaster and pollution mitigation, agro- arranged at the conference site by vari- VS-based new technology was slow, but forestry management, and many other ous scientific agencies and entrepre- it has since made steady progress. environment-friendly applications being neurs. Further, the organizers had also Paul Truong (Australia) in his talk on used in over 100 countries3. The VS for arranged a one-day study tour for an on- ‘Vetiver system for water quality imp- wastewater treatment is a new and inno- site live demonstration of VS projects rovement’, dwelt upon the significance vative phyto-remedial eco-technology, ranging from applications of vetiver in of the VS in addressing the imminent which has the potential to meet all the garbage landfill site management, land global crisis of water shortage. Pinpoint- right criteria necessary for environmental slope stabilization and slope aforestation, ing the ability of vetiver grass to with- enhancement. It is a natural, green, sim- and water and vegetation rehabilitation at stand highly adverse climatic and edaphic ple, practicable and cost-effective solu- an ecological park. conditions, including elevated levels of tion, and its by-products offer a range of Sumit Tantivejkul, Secretary General, salt, acidity, alkalinity, sodicity as well uses in handicrafts, animal feed, fuel and Chaipattana Foundation, Bangkok in his as a whole range of heavy metals, and construction applications. Morphological keynote address on Thailand’s experience also its ability to absorb and tolerate and physiological attributes of vetiver with respect to vetiver and water, under- extreme levels of nutrients, he advocated grass, its strong, deep penetrating (Figure pinned the significance of vetiver grass that vetiver is ideally suited for treating 1 a), aerenchymatous (Figure 1 b) root for its deep penetrating root system that contaminated and polluted wastewater system, unusual ability to absorb and forms an underground wall barrier and from industries as well as domestic dis- tolerate extreme levels of nutrients, agro- helps to filter silt and maintain topsoil. charge. Highlighting morphological and chemicals and heavy metals make it an He stressed that exhaustive experimenta- physiological attributes of vetiver sup- ideal system for environmental enhance- tion on vetiver system covering over 30 ported with empirical observations, he ment through appropriate interventions initiatives by the Royal Development emphasized that the VS can help manage in the treatment regime. Study Centres has since been imple- wastewater quantity through seepage The 3rd International Conference on mented all over Thailand by the Gov- control, and its quality by trapping sedi- Vetiver and Exhibition (ICV-3), was orga- ernmental agencies for realization of bene- ments and particles, tolerating and absor- nized in Guangzhou, China during 6–9 fits of vetiver system in soil and water bing pollutants, heavy metals, and deto- October 2003 by the Guangdong Academy conservation, forest rehabilitation and xification and breakdown of industrial, of Agricultural Sciences, in association restoration of degraded soil, as well as mining and agrochemical residues, dur- with South China Institute of Botany environmental protection of water bodies ing land irrigation and under wetland (Chinese Academy of Sciences), South from effluent contamination and garbage conditions. Through another presenta- China Agricultural University and Guang- decomposition. John Greenfield (New tion he pointed out that vetiver, on ac- dong Association of Grass Industry and Zealand) giving a historical perspective count of its trapping/absorption capacity Environment. The theme of the confer- of ‘Advance of scientific research on of nutrients, sediments and agrochemi- ence ‘Vetiver and water’ was truly em- vetiver system’ traced the rediscovery of cals, can help stabilize otherwise fragile bodied in the conference deliberations, the versatile VS, from realization of drain banks made up of acid sulphate CURRENT SCIENCE, VOL. 86, NO. 1, 10 JANUARY 2004 11 NEWS a b c d e f h g i Figure 1. Eco-technological applications of the vetiver system. a, A 3.4 m long fibrous root system after 275 days of growth, from China, b, Transverse section of mature root showing schizogenous aerenchymatous cortex suitable for waterlogged condition and well-developed phloem for essential oil. c, Garbage landfill site in China covered with thick rubber sheet on top and earthen slope planted with vetiver for slope stabilization and leachate absorption. d, Slide-slope protection by vetiver along the railway line in Madagascar – proper drainage and suitable agroforestry for sustainable utilization of the vetiver system. e, Tea bushes grown between vetiver hedge rows in China to advance tea growth and tea quality. f and g, Restoration of water channel in the ecological park – contaminated wastewater channel (f) and ecologically restored water channel after vetiver plantation (g). h, Natural water ponds near Lucknow. (Below) With eutrophicated water having algal bloom. (Top) With vetiver purified water supported with green vegetation. i, Vetiver floating pontoons for wastewater treatment in a sewerage pond in Australia. 12 CURRENT SCIENCE, VOL. 86, NO. 1, 10 JANUARY 2004 NEWS soils highly loaded with heavy metals, wan Mahisarakul (Bangkok) showed that gesting that in addition to mechanical iron, aluminum and other metal concen- the vetiver root could grow luxuriantly characteristics, the root growth curve, trations, thus facilitating control of channel and tolerate contamination of agricultural three-dimensional root net, capacity to bank erosion. Cameron Smeal (Australia) residues, including endosulphan in the re-vegetate on slope are the important pointed out that treating effluents with garbage-fill site. Xuhui Kong (China) contributing factors in vetiver eco-engi- vetiver in industrial wastewater is actu- showed that vetiver–bamboo floats effi- neering anti-scour and anti-slide applica- ally a ‘recycling process’ and not a treat- ciently absorb heavy metals such as Zn, tions. Ping Zhang and Bo Huang (China), ment process per se, as in the process of Cu, Pb, Hg as well as nitrates from the through their independent studies, pro- ‘treatment’, the vetiver plant absorbs wastewater, thus helping the purification vided successful examples of quarry/ essential plant nutrients such as N, P and of eutrophicated water accumulated on karst stony slopes re-vegetation using cations, and stores them for other uses. pig farms. Based on wetland microcosm complex vetiver eco-engineering tech- In Australia, with large-scale planning test Xuerui Lin and Wensheng Shu (China), nique, where vetiver plantations could be this recycling plant is anticipated to pro- from their two independent studies, sug- established in mechanically designed plant- vide high nutrient material for animal gested that vetiver grass-constructed ing traps on quarry slopes. Surapol San- feed, mulch for gardens, manure for or- wetlands have a great potential in the guankaeo (Bangkok) provided an account ganic
Recommended publications
  • Balancing Natural and Agricultural Systems in the Atlantic Rainforest of Brazil
    Institut für Nutzpflanzenwissenschaften und Ressourcenschutz der Rheinischen Friedrich- Wilhelms- Universität Bonn BALANCING NATURAL AND AGRICULTURAL SYSTEMS IN THE ATLANTIC RAINFOREST OF BRAZIL Inaugural-Dissertation Zur Erlangung des Grades Doktor der Agrarwissenschaften (Dr. Agr.) der Hohen Landwirtschaftlichen Fakultät Der Rheinischen Friederich- Wilhelms- Universität Zu Bonn Vorgelegt am 06.10.2006 Von Juan Carlos TORRICO ALBINO Aus Cochabamba- Bolivien Referent: Prof. Dr. M.J.J. Janssens Korreferent: Prof. Dr. Heiner E. Goldbach Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert D 98 Tag der Mündlichen Prüfung: 15.12.2006 AKNOWLEDGEMENTS Deseo expresar mi más profundo agradecimiento a las siguientes personas que hicieron posible la realización y culminación de este trabajo. En Primer lugar al Prof. Dr. Marc Janssens, por haber sido más que mi primer supervisor, por haberme enseñado el camino de la ciencia y a la vez impartido valiosas lecciones de vida, por haberme allanado el camino en momentos difíciles, por sus ideas visionarias y por su gran paciencia en la conducción y corrección de esta tesis. Un especial agradecimiento a su esposa Frau Janssens por su apoyo moral y por inyectar energía positiva en mi familia. Al Prof. Dr. Heiner Goldbach, mi segundo supervisor por las correcciones y el valioso aporte científico. Al Prof. Dr. Jürgen Pohlan, por sus valiosos consejos, y por ser un ejemplo de profesionalismo. Muy especialmente al Prof. Dr. Hartmut Gaese, en primer lugar por su amistad, por haber hecho posible la realización de este trabajo a través del proyecto BLUMEN , por haberme brindado su apoyo científico y humano, por los valiosos consejos, discusiones, por los gratos momentos en campo, y finalmente por apoyar a mi familia.
    [Show full text]
  • Comparisons of Mayan Forest Management, Restoration, and Conservation
    Forest Ecology and Management 261 (2011) 1696–1705 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Comparisons of Mayan forest management, restoration, and conservation Stewart A.W. Diemont a,b,∗, Jessica L. Bohn a, Donald D. Rayome a, Sarah J. Kelsen a, Kaity Cheng c a Department of Environmental Resources Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, 402 Baker Lab, Syracuse, NY 13210, USA b Department of Agroecology, El Colegio de La Frontera Sur, Carretera Panamericana y Periférico Sur S/N, Maria Auxiliadora San Cristóbal de las Casas, Chiapas, San Cristóbal de Las Casas, Chiapas, Mexico c Department of Forest and Natural Resources Management, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, 402 Baker Lab, Syracuse, NY 13210, USA article info abstract Article history: Numerous communities associated with at least five distinct ethnic Mayan groups in southern Mexico Received 6 May 2010 and Central America continue to rely upon forested areas as integral components of their agricultural Received in revised form 16 October 2010 systems. They carefully manage these areas so that forests provide food, raw materials, and animals. Man- Accepted 7 November 2010 agement practices include removing and planting of woody and herbaceous species, apiculture, and seed Available online 7 December 2010 harvest. Mayan agroforestry systems in geographically and ecologically distinct areas of Mesoamerica were evaluated to better understand traditional agroforestry system components and how indigenous Keywords: Mayan agroforestry could be a part of regional forest conservation and restoration.
    [Show full text]
  • The Method and Model of Ecological Technology Evaluation
    sustainability Article The Method and Model of Ecological Technology Evaluation Xiaoning Hu 1, Meizi Si 2, Han Luo 3 , Mancai Guo 1,* and Jijun Wang 3 1 College of Science, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] 2 College of Economics and Management, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] 3 Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, China; [email protected] (H.L.); [email protected] (J.W.) * Correspondence: [email protected]; Tel.: +86-029-8709-2298 Received: 11 January 2019; Accepted: 5 February 2019; Published: 8 February 2019 Abstract: In order to evaluate ecological technology scientifically, we constructed a modular “three-stage evaluation method” based on qualitative evaluation, semiquantitative evaluation and quantitative evaluation, and established the theoretical models of the four kinds of ecotechnology, such as soil and water conservation technology, desertification governance technology, rocky desertification governance technology and ecological restoration technology. We gave the quantification criteria of the first-level and second-level index commonly shared by four kinds of ecotechnology and defined the quantification criteria of the third-level index of reflecting the heterogeneity of soil and water conservation technology. An ecotechnology evaluation model combining Analytic Hierarchy Process and Logistic regression was established based on soil and water conservation technology. The rationality of the evaluation method and model were verified by field investigation data of soil and water conservation technology in Gaoxigou. The evaluation method and model could provide scientific basis for the effective introduction and popularization of ecotechnology.
    [Show full text]
  • Ecosystem Antifragility: Beyond Integrity and Resilience
    Ecosystem antifragility: beyond integrity and resilience Miguel Equihua1, Mariana Espinosa Aldama2, Carlos Gershenson3,4,5, Oliver López-Corona1,4,6, Mariana Munguía7, Octavio Pérez-Maqueo1 and Elvia Ramírez-Carrillo8 1 Red Ambiente y Sustentabilidad, Instituto de Ecología A.C., Xalapa, Veracruz, México 2 Doctorado en Ciencias Sociales y Humanidades, UAM-Cuajimalpa., CDMX, México 3 IIMAS, Universidad Nacional Autónoma de México, CDMX, México 4 Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, CDMX, México 5 ITMO University, St. Petersburg, Russia 6 Cátedras CONACyT, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), CDMX, México 7 Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), CDMX, México 8 Facultad de Psicología, Universidad Nacional Autónoma de México, CDMX, México ABSTRACT We review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. We summarize the literature on the subject identifying three main narratives: ecosystem properties that enable them to be more resilient; ecosystem response to perturbations; and complexity. We also include original ideas with theoretical and quantitative developments with application examples. The main contribution is a new way to rethink resilience, that is mathematically formal and easy to evaluate heuristically in real-world applications: ecosystem antifragility. An ecosystem is antifragile if it benefits from environmental variability. Antifragility therefore
    [Show full text]
  • Closed Ecological Systems, Space Life Support and Biospherics
    11 Closed Ecological Systems, Space Life Support and Biospherics Mark Nelson, Nickolay S. Pechurkin, John P. Allen, Lydia A Somova, and Josef I. Gitelson CONTENTS INTRODUCTION TERMINOLOGY OF CLOSED ECOLOGICAL SYSTEMS:FROM LABORATORY ECOSPHERES TO MANMADE BIOSPHERES DIFFERENT TYPES OF CLOSED ECOLOGICAL SYSTEMS CONCLUSION REFERENCES Abstract This chapter explores the development of a new type of scientific tool – man- made closed ecological systems. These systems have had a number of applications within the past 50 years. They are unique tools for investigating fundamental processes and interactions of ecosystems. They also hold the potentiality for creating life support systems for space exploration and habitation outside of Earth’s biosphere. Finally, they are an experimental method of working with small “biospheric systems” to gain insight into the functioning of Earth’s biosphere. The chapter reviews the terminology of the field, the history and current work on closed ecological systems, bioregenerative space life support and biospherics in Japan, Europe, Russia, and the United States where they have been most developed. These projects include the Bios experiments in Russia, the Closed Ecological Experiment Facility in Japan, the Biosphere 2 project in Arizona, the MELiSSA program of the European Space Agency as well as fundamental work in the field by NASA and other space agencies. The challenges of achieving full closure, and of recycling air and water and producing high- production crops for such systems are discussed, with examples of different approaches being used to solve these problems. The implications for creating sustainable technologies for our Earth’s environment are also illustrated. Key Words Life support r biospherics r bioregenerative r food r air r water recycling r microcosm rclosed ecological systems rBios rNASA rCEEF rBiosphere 2 rBIO-Plex.
    [Show full text]
  • Wetland Buffers ___An Annotated Bibliography
    Wetland Buffers ____________ An Annotated Bibliography February 1992 Publication #92-11 printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Office PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 Ecology is an Equal Opportunity and Affirmative Action employer and shall not discriminate on the basis of race, creed, color, national origin, sex, marital status, sexual orientation, age, religion or disability as defined by applicable state and/or federal regulations or statutes. If you have special accommodation needs, contact TDD# 360/407- 6006. Wetlands Buffers: An Annotated Bibliography edited by Andrew J. Castelle, Catherine Conolly, Michael Emers (Adolfson Associates, Inc., Edmonds, WA) Eric D. Metz, Susan Meyer and Michael Witter (W & H Pacific, Inc., Bellevue, WA) for Shorelands and Coastal Zone Management Program Washington State Department of Ecology Olympia, Washington February 1992 Ecology Publication #92-11 INTRODUCTION Wetland Buffers: An Annotated Bibliography is a compilation of abstracts dealing with the use of vegetated "buffer zones" to reduce the impact of adjacent land use on wetland ecosystems. Most of the entries in this document come from journal articles published in diverse fields: agriculture, engineering, fisheries, forestry, geology, landscape architecture, marine sciences, resource management, and wildlife biology. The bibliography also contains summaries of government publications from the federal, state, and local levels, including government-funded research, guidance documents, and adopted or proposed wetlands conservation ordinances. Also included are summaries of symposia presentations. OBJECTIVE The objective was to create a compilation of citations which analyze the functional requirements, composition, uses, effectiveness, or delineation of wetland buffer areas.
    [Show full text]
  • Ecological Engineering and Civil Engineering Works
    Ecological Engineering and Civil Engineering Works A Practical Set of Ecological Engineering Principles for Road Infrastructure and Coastal Management H.D. van Bohemen Ecological Engineering and Civil Engineering Works A Practical Set of Ecological Engineering Principles for Road Infrastructure and Coastal Management H.D. van Bohemen Ecological Engineering and Civil Engineering Works 1 Versie7.pmd 1 13-4-2004, 11:32 Ecological Engineering and Civil Engineering Works 2 Versie7.pmd 2 13-4-2004, 11:32 Ecological Engineering and Civil Engineering Works A Practical Set of Ecological Engineering Principles for Road Infrastructure and Coastal Management Ecological Engineering and Civil Engineering Works 3 Versie7.pmd 3 13-4-2004, 11:32 Ecological Engineering and Civil Engineering Works 4 Versie7.pmd 4 13-4-2004, 11:32 Ecological Engineering and Civil Engineering Works A Practical Set of Ecological Engineering Principles for Road Infrastructure and Coastal Management Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 18 mei 2004 om 15.30 uur door Heinrich Diederik van BOHEMEN doctorandus biologie geboren te ‘s-Gravenhage Ecological Engineering and Civil Engineering Works 5 Versie7.pmd 5 13-4-2004, 11:32 Dit proefschrift is goedgekeurd door de promotor: Prof. dr. ir. Ch.F. Hendriks Samenstelling promotiecommissie: Rector Magnificus Voorzitter Prof. dr. ir. Ch. F. Hendriks Technische Universiteit Delft, promotor Prof. dr. F.M. Sanders Technische Universiteit Delft Prof. dr. P. Zonderwijk Wageningen Universiteit, emeritus Prof. dr.
    [Show full text]
  • Developing an Ecological Engineering Curriculum
    Session 3151 Developing an Ecological Engineering Curriculum Scott D. Bergen, Susan M. Bolton, James L. Fridley University of Washington Abstract This paper describes efforts to develop an Ecological Engineering curriculum at the University of Washington. Ecological engineering is the design of sustainable systems consistent with ecological principles that integrate human society with its natural environment for the benefit of both. Graduates will be able to practice design with an appreciation for the relationship of organisms (including humans) with their environment, and the constraints on design imposed by the complexity, variability and uncertainty inherent to natural systems. Students educated as ecological engineers will be prepared to work on pressing environmental problems such as: 1. The design of ecological systems (ecotechnology) as an alternative to man- made/energy intensive systems to meet various human needs (for example, constructed wetlands for wastewater treatment). 2. The restoration of damaged ecosystems and the mitigation of development activities. 3. The management, utilization, and conservation of natural resources. 4. The integration of society and ecosystems in built environments (for example, in landscape architecture, urban planning, and urban horticulture applications). We discuss our concept of the definition and scope of ecological engineering, and the knowledge areas and skills that could be included in a university curricula. Specific attention is given to the principles of ecology that will influence ecological engineering design practice. We also note organizational challenges posed by working with faculty and administration from many disciplines, attracting students, research funding and external partnerships, and seeking ABET accreditation. Introduction The emerging practice of ecological engineering grows out of the failure of past engineering practice to provide for human welfare while at the same time protecting the natural environment from which goods and services are drawn.
    [Show full text]
  • Redefining Ecological Engineering to Promote Its Integration with Sustainable Development and Tighten Its Links with the Whole of Ecology F
    Redefining ecological engineering to promote its integration with sustainable development and tighten its links with the whole of ecology F. Gosselin To cite this version: F. Gosselin. Redefining ecological engineering to promote its integration with sustainable development and tighten its links with the whole of ecology. Ecological Engineering, Elsevier, 2008, 32 (3), p. 199 - p. 205. 10.1016/j.ecoleng.2007.11.007. hal-00453899 HAL Id: hal-00453899 https://hal.archives-ouvertes.fr/hal-00453899 Submitted on 5 Feb 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Redefining ecological engineering to promote its integration with sustainable development and tighten its links with the whole of ecology Frédéric Gosselin Institute for Agricultural and Environmental Engineering Research (Cemagref), URE Ecosystèmes Forestiers, Domaine des Barres, 45290 Nogent-sur-Vernisson, France. E- mail: [email protected] Fax: 00 33 238 95 03 44, Tel: 00 33 238 95 03 58 Published in "Ecological Engineering", vol. 32, n°3, pp.199-205 (doi: 10.1016/j.ecoleng.2007.11.007). Available at http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFB-4RTKXF4- 1&_user=5403736&_coverDate=03%2F03%2F2008&_rdoc=1&_fmt=high&_orig=browse&_ srch=doc- info(%23toc%236006%232008%23999679996%23680290%23FLA%23display%23Volume) &_cdi=6006&_sort=d&_docanchor=&_ct=12&_acct=C000037979&_version=1&_urlVersio n=0&_userid=5403736&md5=6623ff006a283bc44c150fd67449c788 1 Abstract Ecological engineering was defined several decades ago, both in the academic field and in management.
    [Show full text]
  • Effectiveness of the Miyawaki Method in Mediterranean Forest Restoration Programs
    Landscape Ecol Eng (2011) 7:81–92 DOI 10.1007/s11355-010-0117-0 ORIGINAL PAPER Effectiveness of the Miyawaki method in Mediterranean forest restoration programs Bartolomeo Schirone • Antonello Salis • Federico Vessella Received: 26 January 2010 / Revised: 18 May 2010 / Accepted: 18 May 2010 / Published online: 17 June 2010 Ó International Consortium of Landscape and Ecological Engineering and Springer 2010 Abstract In the 1980s, Professor Akira Miyawaki intro- foresters and ecological engineering experts for Mediter- duced a new and innovative reforestation approach in ranean environmental reforestation program. Japan with the challenge to restore indigenous ecosystems, and maintaining global environments, including disaster Keywords Ecological restoration Á prevention and carbon dioxide (CO2) mitigation. Here, Potential natural vegetation Á Ecotechnology Á natural vegetation successional stages (from bare soil to Reforestation practices comparison Á mature forest) are practically forced and reproduced, Mediterranean environment accelerating natural successional times. The Miyawaki method has been applied in the Far East, Malaysia, and South America; results have been very impressive, allow- Introduction ing quick environmental restorations of strongly degraded areas. However, these applications have always been made Global climatic changes, together with recent rapid on sites characterized by high precipitation. The same urbanization and industrialization, have been the main method has never been used in a Mediterranean context anthropogenic effects worldwide in destroying natural distinguished by summer aridity and risk of desertification. environments and increasing risk of desertification. They A first test was carried out by the University of Tuscia, suggest the need for performing more environmental con- Department of Forest and Environment (DAF), 11 years servation activity, as well as using innovative environ- ago in Sardinia (Italy) on an area where traditional refor- mental recovery activities.
    [Show full text]
  • Phytotechnologies
    Freshwater Management Series No. 7 Phytotechnologies A Technical Approach in Environmental Management The purpose of this publication is to provide a conceptual overview of phytotechnologies and their importance in relation to various environmental problems and potential solutions. Although it does not address all aspects of phytotechnology, it does provide the basis of a conceptual framework for understanding the importance of ecosystems approaches in helping to achieve sustainable development objectives. It also examines the role of phytotechnology in relation to some key issues including integrated water resources management, urban environmental management, biodiversity and climate change. (Webmaster's note: The glossary may be accessed by clicking the corresponding vocabulary set in blue type). PREFACE SUMMARY I. INTRODUCTION – AN ECOSYSTEM'S PERSPECTIVE Introduction A. Environmentally Sound Technologies B. Ecological Engineering and Ecotechnologies C. Phytotechnology D. UNEP’s Interest in Phytotechnology II. GLOBAL ISSUES REQUIRING INNOVATIVE SOLUTIONS Introduction A. Biodiversity and the Biodiversity Convention B. Biotechnology and the Biosafety Protocol C. Integrated Water Resources Management and Ecohydrology D. Cities as Sustainable Ecosystems E. Climate Change F. Valuation of Ecological Services and Natural Capital III. EXAMPLES OF ENVIRONMENTAL APPLICATIONS OF PHYTOTECHNOLOGY Introduction A. Ecotone Protection and Augmentation B. Natural Wetlands C. Constructed Wetlands D. Floating Macrophytes and Root Zone Plants for Improving Water Quality E. Combined Waste Stabilisation Ponds and Wetlands F Use of Plantations for Wastewater Treatment G. Use of Floodlands for Water Quality Improvement and Eutrophication Control H. Phytoremediation I. Forestry and Agriculture J. Bio-Energy IV. IMPORTANT CONSIDERATIONS FOR THE APPLICATION OF PHYTOTECHNOLOGIES Introduction A. Site Characterization B. Plant Selection C. Modelling D.
    [Show full text]
  • Ecological Engineering and Ecosystem Restoration
    EcologicalEcological EngineeringEngineering andand EcosystemEcosystem RestorationRestoration History,History, definitions,definitions, andand principlesprinciples William J. Mitsch Professor of Natural Resources and Environmental Science Director, Olentangy River Wetland Research Park The Ohio State University Columbus, Ohio USA 2004 Everglades Restoration, Florida Historic Current Restoration Conditions Flow Plan Everglades Restoration, Florida Delta Restoration, Louisiana Mississippi River Basin Restoration, USA created wetland restored intercepting bottomland tile drainage forest River Channel Restoration, Skern River Denmark River Channel Restoration, Skern River Denmark Wetland Creation/ Restoration Columbus, Ohio 6.1 ha mitigation wetland Olentangy River Wetland Research Park Columbus, Ohio 12-ha wetland research facility on Ohio State University campus Olentangy River Wetland Research Park Columbus, Ohio Floodplain Forest Restoration Treatment Wetland, Central Ohio Salt Marsh Restoration, New Jersey Salt Marsh Restoration, New Jersey Biosphere 2, Arizona Biosphere 2, Arizona Change in population 1805-1999 and an op- timistic (but realistic) prognosis 1999-2050 10 ns) lio 8 (bil 6 4 2 Human population 0 1800 1900 2000 2100 Year 100 Global Nitrogen Fixation 80 60 Percent Change 40 Atmospheric CO 20 2 0 1900 1920 1940 1960 1980 2000 Year HistoryHistory ofof EcologicalEcological EngineeringEngineering H.T. Odum (1960s) mention of ecological eengineerngineering in several publications Ma Shijun (1960s-70s in China; 1985 in Western
    [Show full text]