Procrustes Analysis Procrustes Analysis General Procrustes Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Procrustes Analysis Procrustes Analysis General Procrustes Analysis Robert Collins CSE586 CSE 586, Spring 2011 Advanced Computer Vision Procrustes Shape Analysis Robert Collins CSE586 Credits lots of slides are due to Lecture material from Tim Cootes University of Manchester. For more info, see http://www.isbe.man.ac.uk/~bim/ (includes code for exploring active shape/appearance models). Robert Collins CSE586 Statistical Shape Modelling • Represent the shape using a set of points • Align a set of training examples, and compute a “mean shape” • Model distribution of the variation of shapes in the training set wrt the mean shape • This allows us to analyze the major “modes” of shape variation and to generate realistic new shapes similar to ones in training set Robert Collins CSE586 Procrustes Analysis Procrustes Analysis General Procrustes Analysis R1, t1, s1 R, t, s R2, t2, s2 Rm, tm, sm Align one shape with another (not symmetric) Align a set of shapes with respect to some unknown “mean” shape (independent of ordering of shapes) Robert Collins CSE586 Why “Procrustes”? http://www.procrustes.nl/gif/illustr.gif Robert Collins CSE586 Aligning Two Shapes • Procrustes analysis: – Find transformation which minimises 2 | x1 −T (x2 ) | – T is a particular type of transformation that you want “shape” to be invariant to. – Typically a similarity transformation – Involves solving for best rotation, translation and scale between the two sets of points [we talked about how to do this in earlier lectures] Robert Collins CSE586 Steps in Similarity Alignment Given a set of K points: Configuration Translation normalization: Centered Configuration (center of mass at origin) Scale normalization: Pre-shape (divide by Sqrt of SSQ centered coordinates) Rotation normalization: Shape (rotate to align with a second normalized shape) Robert Collins CSE586 Generalized Procrustes Analysis • Generalised Procrustes Analysis – Find the transformations Ti which minimise | m T (x ) |2 ∑ − i i 1 – Where m = T (x ) n ∑ i i – Under the constraint that | m |=1 Robert Collins CSE586 Aligning Shapes : Algorithm • Normalise all so center of mass is at origin, and size=1 • Let m = x1 • Align each shape with m (via a rotation) 1 • Re-calculate m = Ti (xi ) n ∑ • Normalise m to default location, size, and orientation • Repeat until convergence Robert Collins CSE586 Hand shape model • 72 points placed around boundary of hand – 18 hand outlines obtained by thresholding images of hand on a white background • Primary landmarks chosen at tips of fingers and joint between fingers – Other points placed equally between 6 5 4 3 2 1 Robert Collins CSE586 Labeling Examples From Stegmann and Gomez Robert Collins CSE586 Labeling Examples From Stegmann and Gomez Robert Collins CSE586 Point Alignment Training points before and after alignment From Stegmann and Gomez Robert Collins CSE586 Hand Shape Model Samples from training set, after alignment Robert Collins CSE586 Statistical Shape Analysis Independent PCA on each data point cluster Problem: each point DOES NOT move independently from all the other points. In fact, the movement of points when the shape undergoes a deformation is often highly correlated. From Stegmann and Gomez Robert Collins CSE586 Statistical Shape Analysis Model how the entire ensemble of points varies. We will concatenate all points into a single vector in a high dimensional space. The full hand shape model is then built by computing PCA on all model points collectively, which captures correlations of motion between points. Will describe how in a moment, but first let’s look at the results. From Stegmann and Gomez Robert Collins CSE586 Hand Shape Model First 3 modes of variation Varying b1 Varying b2 Varying b3 Robert Collins CSE586 Face Shape Example Sample face training image 1st mode of variation Robert Collins CSE586 Shape Space Consider K landmark points (xi,yi) in 2D Consider each shape as a concatenated vector x, viewed as a point in 2*K dimensional space. (note: the “shape” really lives in 2K-4 dimensional space, but that is outside the scope of this lecture) We would like a parameterized model that describes the class of shapes we have observed. Robert Collins CSE586 Shape Space • Each observed shape is now a point (vector) x in 2*K dimensional space. • The “mean shape” is the center of mass of all these points x shape space Robert Collins CSE586 Shape Models • For shape synthesis – Parameterised model preferable – We will use a linear model x = x + Pb – That is, x = x + b1 p1 + b2 p2 + ... + bm pm € Robert Collins CSE586 Principal Component Analysis • Matrix X contains each shape as one column • Compute eigenvectors of scatter matrix XT X • Eigenvectors : main directions • Eigenvalue : spread or variation along that direction p1 p2 ∝ λ2 ∝ λ1 Robert Collins CSE586 Shape Space • The eigenvectors p1, p2 form a new (rotated) basis set of coordinate axes • Each shape x can now be assigned coordinates (b1,b2) according to the eigenvector axes p2 p1 x x = x + b1 p1 + b2 p2 shape space Robert Collins CSE586 Dimensionality Reduction • Coordinates often highly correlated • Some dimensions account for most of the observed spread (variation) of the data • We don’t lose much by approximating the shape using only those dimensions b1 p1 x x x ≈ x + p1b1 Robert Collins CSE586 Dimensionality Reduction • Data lies in subspace of reduced dim. x = x + p1b1 +L... + pnbn • However, for some t, bj ≈ 0 if j > t (Variance of bj is λ j ) λi i t Robert Collins CSE586 Building Shape Models • Given aligned shapes, {x i} • Apply PCA x ≈ x + Pb • P – First t eigenvectors of covar. matrix • b – Shape model parameters = coordinates of shape along eigenvector axes Robert Collins CSE586 Statistical Shape Models • Represent likelihood of observing a given shape with a probability distribution • Learn p(b) from training set • If x multivariate gaussian, then – b gaussian with diagonal covariance Sb = diag(λ1 L ... λt ) • Or, can use mixture model for p(b) Robert Collins CSE586 Background Information on PCA • principal components analysis (PCA) is a technique that can be used to simplify a dataset • It is a linear transformation that chooses a new coordinate system for the data set such that greatest variance by any projection of the data set comes to lie on the first axis (then called the first principal component), the second greatest variance on the second axis, and so on. • PCA can be used for reducing dimensionality by eliminating principal components that have small variance. Robert Collins CSE586 PCA Toy Example Robert Collins CSE586 Geometrical Interpretation: Robert Collins CSE586 Geometrical Interpretation: Robert Collins CSE586 Principal Component Analysis (PCA) • Given a set of points, how do we know if they can be compressed like in the previous example? – The answer is to look into the correlation between the points – The tool for doing this is called PCA Robert Collins CSE586 Principal component in 2d Robert Collins CSE586 PCA Theorem Robert Collins CSE586 PCA Theorem Robert Collins CSE586 PCA Theorem Robert Collins CSE586 PCA Theorem Robert Collins CSE586 Using PCA to Compress Data • Expressing x in terms of e1 … en has not changed the size of the data • However, if the points are highly correlated many of the coordinates of x will be zero or closed to zero. Robert Collins CSE586 Using PCA to Compress Data • Sort the eigenvectors ei according to their eigenvalue: Robert Collins CSE586 Example of Approximation Robert Collins CSE586 Implementing PCA • Need to find “first” k eigenvectors of Q: Robert Collins CSE586 Singular Value Decomposition (SVD) Robert Collins CSE586 SVD Properties Robert Collins CSE586 More about Shape Space Consider K landmark points (xi,yi) in 2D Dimension of the space of observations is 2*K But what is dimension of the space of the shapes? Recall, two point configurations are equivalent (have the same shape) if one can be translated, rotated and scaled into the other. Thus, each unique “shape” is an equivalence class. Robert Collins CSE586 Shape Space The shape space is then the quotient space induced by this equivalence class on the observation space k rotation translation scaling So shape space has dimension 2*K - 4 This is often called Kendall’s Shape Space. Robert Collins CSE586 Shape Space For triangles (K=3), Kendall’s shape space can be visualized as a sphere. For more points, the space is a more complicated manifold (is it a hypersphere?) Rather than measure variation in shape on the sphere (or higher dimensional nonlinear manifold), it is common to project points into the tangent plane taken at the mean shape. This is a linear space, so can use PCA, Gaussians, mixture of Gaussians, etc. Robert Collins CSE586 Shape Space http://www.york.ac.uk/res/fme/resources/morphologika/helpfiles/shapespace.html Robert Collins CSE586 Shape Space Tangent projection can be carried out by subtracting the vector of normalized shape coordinates of a figure from the mean vector, and taking just the component perpendicular to the mean. tangent plane nonlinear shape space mean shape shape sample projected into tangent plane shape sample Robert Collins CSE586 Shape Space If shape variation is relatively small, we can just take the shape difference vector as an approximation to the vector in the tangent plane. tangent plane nonlinear shape space mean shape shape sample .
Recommended publications
  • Shape Analysis
    Proceedings in CURRENT ISSUES IN STATISTICAL SHAPE ANALYSIS Edited by KVMardia, C.A.GU1 After AlbrechtDurer, 1524 Leeds University Press Proceedings in Current Issues in Statistical Shape Analysis International Conference, held in Leeds, UK, 5-7 April, 1995, incorporating The 15th Leeds Statistics Research Workshop co-sponsored by the Centre of Medical Imaging Research (CoMIR) Edited by K.V.Mardia, C.A.Gill Department of Statistics, University of Leeds, Leeds LS2 9JT. Leeds University Press Front cover: After AlbrechtDurer, 1524 (Reproduced from "D'Arcy Thompson On Growth and Form" (abridged edition) edited by J.T. Bonner, Cambridge University Press, 1961, with permission). Copyright ©K.V. Mardia, C.A. Gill, Department of Statistics, University of Leeds. ISBN 0 85316 161 5 Conference Committee I.L. Dryden J.T. Kent K.V. Mardia Department of Statistics University of Leeds Leeds, LS2 9JT, UK Conference Organisers C.A. Gill K.V. Mardia Session Chairs Session I: Procrustes and Mathematical Statistics Issues J.T. Kent Department of Statistics, University of Leeds, Leeds LS2 9JT, UK. Session II: Overview and Shape Geometry Fred L. Bookstein Centre for Human Growth & Development, University of Michigan, Ann Arbor, Michigan 48109, USA. Session III: Image Analysis and Computer Vision D.C. Hogg School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK. Session IV: Morphometrics and Shape Geometry K.V. Mardia Department of Statistics, University of Leeds, Leeds LS2 9JT, UK. To David Kendall & Fred Bookstein for their pioneering work on SHAPE PREFACE The annual Leeds Research Workshop by the Department of Statistics began informally (i.e. without numbering!) as far back as 1975.
    [Show full text]
  • Package 'Shapes'
    Package ‘shapes’ March 31, 2021 Title Statistical Shape Analysis Date 2021-03-30 Version 1.2.6 Author Ian L. Dryden Description Routines for the statistical analysis of landmark shapes, including Procrustes analysis, graphical displays, principal components analysis, permutation and bootstrap tests, thin-plate spline transformation grids and comparing covariance matrices. See Dryden, I.L. and Mardia, K.V. (2016). Statistical shape analysis, with Applications in R (2nd Edition), John Wiley and Sons. Maintainer Ian Dryden <[email protected]> Imports minpack.lm, scatterplot3d, rgl, MASS Depends R (>= 2.10) License GPL-2 URL http://www.maths.nottingham.ac.uk/~ild/shapes NeedsCompilation no Repository CRAN Date/Publication 2021-03-31 12:20:02 UTC R topics documented: apes.............................................3 bookstein2d . .3 brains . .4 centroid.size . .5 cortical . .6 digit3.dat . .7 distcov . .7 dna.dat . .8 estcov . .9 frechet . 10 1 2 R topics documented: gels ............................................. 12 gorf.dat . 12 gorm.dat . 13 groupstack . 14 humanmove . 15 macaques . 16 macf.dat . 16 macm.dat . 17 mice............................................. 18 panf.dat . 19 panm.dat . 19 plot3darcs . 20 plotshapes . 21 pns.............................................. 22 pns4pc . 24 pnss3d . 25 pongof.dat . 26 pongom.dat . 27 procdist . 27 procGPA . 28 procOPA . 31 procWGPA . 33 qcet2.dat . 35 qlet2.dat . 36 qset2.dat . 36 rats.............................................. 37 resampletest . 38 riemdist . 40 rigidbody
    [Show full text]
  • Procrustes — Procrustes Transformation
    Title stata.com procrustes — Procrustes transformation Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas References Also see Description procrustes performs the Procrustean analysis, a standard method of multidimensional scaling in which the goal is to transform the source varlist to be as close as possible to the target varlist. Closeness is measured by the residual sum of squares. The permitted transformations are any combination of dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations), and translation. procrustes deals with complete cases only. procrustes assumes equal weights or scaling for the dimensions. Variables measured on different scales should be standardized before using procrustes. Quick start Procrustes transform source variables x1 and x2 to be close to target variables y1 and y2 procrustes (y1 y2) (x1 x2) Add a third source variable, x3, and target variable, y3 procrustes (y1 y2 y3) (x1 x2 x3) As above, but allow an oblique instead of an orthogonal rotation procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique) As above, but suppress dilation procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique) norho Menu Statistics > Multivariate analysis > Procrustes transformations 1 2 procrustes — Procrustes transformation Syntax procrustes (varlisty)(varlistx) if in weight , options options Description Model transform(orthogonal) orthogonal rotation and reflection transformation; the default transform(oblique) oblique rotation transformation transform(unrestricted) unrestricted transformation noconstant suppress the constant norho suppress the dilation factor ρ (set ρ = 1) force allow overlap and duplicates in varlisty and varlistx (advanced) Reporting nofit suppress table of fit statistics by target variable bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
    [Show full text]
  • Manifold Alignment Using Procrustes Analysis Chang Wang University of Massachusetts - Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Computer Science Department Faculty Publication Computer Science Series 2008 Manifold Alignment using Procrustes Analysis Chang Wang University of Massachusetts - Amherst Sridhar Mahadevan University of Massachusetts - Amherst Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs Part of the Computer Sciences Commons Recommended Citation Wang, Chang and Mahadevan, Sridhar, "Manifold Alignment using Procrustes Analysis" (2008). Computer Science Department Faculty Publication Series. 64. Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/64 This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Manifold Alignment using Procrustes Analysis Chang Wang [email protected] Sridhar Mahadevan [email protected] Computer Science Department, University of Massachusetts, Amherst, MA 01003 USA Abstract only have a limited number of degrees of freedom, im- plying the data set has a low intrinsic dimensionality. In this paper we introduce a novel approach Similar to current work in the ¯eld, we assume kernels to manifold alignment, based on Procrustes for computing the similarity between data points in analysis. Our approach di®ers from \semi- the original space are already given. In the ¯rst step, supervised alignment" in that it results in a we map the data sets to low dimensional spaces reflect- mapping that is de¯ned everywhere { when ing their intrinsic geometries using a standard (nonlin- used with a suitable dimensionality reduction ear or linear) dimensionality reduction approach.
    [Show full text]
  • Procrustes Analysis
    Procrustes Analysis Amy Ross Department of Computer Science and Engineering University of South Carolina, SC 29208 [email protected] Abstract. Shape correspondence is an important aspect of imaging. Understanding shape is the basis of any correspondence. The correspondence and analysis of shapes plays a vital role, not only in determining correspondence, but also determining the validity of the algorithms used to place the landmarks in accurate locations. The analysis should be well defined so that it is unbiased and thorough in its evaluation. Procrustes analysis is a rigid shape analysis that uses isomorphic scaling, translation, and rotation to find the “best” fit between two or more landmarked shapes. This paper is an in-depth study of Procrustes analysis. 1 Introduction Procrustes analysis has many variations and forms. Of these forms, the generalized orthogonal Procrustes analysis (GPA) is the most useful in shape correspondence, because of the orthogonal nature of the rotation matrix. Gower played an important role in the introduction and derivation of the generalized orthogonal Procrustes analysis in 1971-75. Though Hurley and Cattell first used the term Procrustes analysis in 1962 with a method that did not limit the transformation to an orthogonal matrix [2]. This paper will explore what shape is, how to maintain shape, landmarks, and how these all work together to correspond shapes using the technique of generalized orthogonal Procrustes analysis. 2 Shape and Landmarks Shape and landmarks are two important concepts involved with generalized orthogonal Procrustes analysis. Both shape and landmarks have their own role in the process of aligning shapes. The following is an overview of shape and landmarks to give a foundation for the generalized orthogonal Procrustes analysis.
    [Show full text]
  • CHAPTER 10 Shapeworks Particle-Based Shape Correspondence and Visualization Software
    CHAPTER 10 ShapeWorks Particle-Based Shape Correspondence and Visualization Software ,†,‡ ,†,¶ ,§ Joshua Cates∗ ,ShireenElhabian∗ ,RossWhitaker∗ ∗Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA †Biomedical Image and Data Analysis Core, University of Utah, Salt Lake City, USA ‡Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA §School of Computing, University of Utah, Salt Lake City, USA ¶Faculty of Computers and Information, Cairo University, Cairo, Egypt Contents 10.1 Introducing ShapeWorks 258 10.1.1 The Potential and the Challenge 258 10.1.2 Rising to the Challenge 259 10.1.2.1 Particle Systems for a Flexible Shape Representation 259 10.1.2.2 Optimized Correspondences Address the Model Selection Problem 260 10.1.3 ShapeWorks: An Open-Source Implementation of PBM 261 10.2 Particle-Based Modeling 262 10.2.1 Overview 262 10.2.2 Surface Representation 263 10.2.3 Adaptive Distributions on Surface Features 265 10.2.4 Surface Constraint 266 10.2.5 The Kernel Width σ for PDF Estimation 267 10.2.6 Numerical Considerations 267 10.2.7 Correspondence: Entropy Minimization in Shape Space 268 10.2.8 Setting Parameters 270 10.2.9 Illustration of the Properties and Interpretability of the PBM Optimization 271 10.3 PBM Extensions 273 10.3.1 Modeling Shape with Open Surfaces 274 10.3.2 Modeling Shape Complexes 276 10.3.3 Correspondence Based on Functions of Position 277 10.3.4 Correspondence with Regression Against Explanatory Variables 279 10.3.5 Dense PBM Correspondence Models 281 10.4 ShapeWorks Software Implementation and Workflow 284 10.4.1 The ShapeWorks Shape Modeling Workflow 284 10.4.1.1 Segmentation Preprocessing and Alignment 285 10.4.1.2 Initialization and Optimization 286 10.4.1.3 Analysis 287 10.4.2 The PBM Code Library 288 10.4.3 The ShapeWorks Software Tool Suite 289 10.5 ShapeWorks in Biomedical Applications 290 Statistical Shape and Deformation Analysis Copyright © 2017 Elsevier Ltd DOI: 10.1016/B978-0-12-810493-4.00012-2 All rights reserved.
    [Show full text]
  • Procrustes and PCA the Details
    Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes and PCA the details P. David Polly Department of Earth and Atmospheric Sciences Adjunct in Biology and Anthropology Indiana University Bloomington, Indiana 47405 USA [email protected] Euclid Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Outline Behind the scenes of Procrustes analysis • Translation, scaling, and rotation Behind the scenes of Principal Components Analysis (PCA) • PCA as a data rotation • Covariance matrices as rotation matrices • Eigenvectors, eigenvalues, and scores Properties of PCA scores (shape variables) • Equivalence of PCA scores and Procrustes residuals • Orthogonality • Descending order of variance • “Significance” of PC axes Curved spaces and tangent spaces • Why is morphospace curved? • What is tangent space? • Does it matter? Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes superimposition also known as… Procrustes analysis Procrustes fitting Generalized Procrustes Analysis (GPA) Generalized least squares (GLS) Least squares fitting • Centers all shapes at the origin (0,0,0) • Usually scales all shapes to the same size (usually “unit size” or size = 1.0) • Rotates each shape around the origin until the sum of squared distances among them is minimized (similar to least-squares fit of a regression line) • Ensures that the differences in shape are minimized Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes superimposition • Translates, scales, and rotates landmarks to a common coordinate system • Removes degrees of freedom in the process • 2 + 1 + 1 = 4 for 2D data • 3 + 1 + 3 = 7 for 3D data • Creates statistical challenges Before • colinearity • “singular” covariance matrix • “curved” shape space After Department of Geological Sciences | Indiana University (c) 2012, P.
    [Show full text]
  • Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI
    Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI by P. Thomas Fletcher A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2004 Approved by: Stephen M. Pizer, Advisor Sarang Joshi, Advisor Guido Gerig, Reader J. S. Marron, Reader Michael Kerckhove, Reader ii iii c 2004 P. Thomas Fletcher ALL RIGHTS RESERVED iv v TABLE OF CONTENTS 1 Introduction x 1.1 Motivation . 1 1.1.1 Shape Analysis . 3 1.1.2 Diffusion Tensor Imaging . 4 1.2 Thesis and Claims . 4 1.3 Overview of Chapters . 6 2 Mathematical Background 7 2.1 Topology . 8 2.1.1 Basics . 8 2.1.2 Metric spaces . 9 2.1.3 Continuity . 10 2.1.4 Various Topological Properties . 10 2.2 Differentiable Manifolds . 11 2.2.1 Topological Manifolds . 11 2.2.2 Differentiable Structures on Manifolds . 12 2.2.3 Tangent Spaces . 14 2.3 Riemannian Geometry . 15 2.3.1 Riemannian Metrics . 15 2.3.2 Geodesics . 16 2.4 Lie Groups . 20 2.4.1 Lie Group Exponential and Log Maps . 22 2.4.2 Bi-invariant Metrics . 24 2.5 Symmetric Spaces . 25 2.5.1 Lie Group Actions . 26 2.5.2 Symmetric Spaces as Lie Group Quotients . 27 vi 3 Image Analysis Background 29 3.1 Statistical Shape Theory . 29 3.1.1 Point Set Shape Spaces . 30 3.1.2 Procrustes Distance and Alignment .
    [Show full text]
  • Stratified Generalized Procrustes Analysis
    Stratified Generalized Procrustes Analysis Adrien Bartoli1 Daniel Pizarro2 Marco Loog3 1 Clermont Universit´e,France 2 Universidad de Alcal´a,Spain 3 Delft University of Technology, The Netherlands Corresponding author: Adrien Bartoli [email protected] Abstract Generalized procrustes analysis computes the best set of transformations that relate matched shape data. In shape analysis the transformations are usually chosen as similarities, while in general statistical data analysis other types of transformation groups such as the affine group may be used. Generalized procrustes analysis has a nonlinear and nonconvex formulation. The classical approach alternates the computation of a so-called reference shape and the computation of transformations relating this reference shape to each shape datum in turn. We propose the stratified approach to generalized procrustes analysis. It first uses the affine trans- formation group to analyze the data and then upgrades the solution to the sought after group, whether Euclidean or similarity. We derive a convex formulation for each of these two steps, and efficient practical algorithms that gracefully handle missing data (incomplete shapes.) Extensive experimental results show that our approaches perform well on simulated and real data. In particular our closed-form solution gives very accurate results for generalized procrustes analysis of Euclidean data. Keywords: shape, registration, procrustes, theseus, generalized. Implementation: our generalized procrustes analysis toolbox which implements the methods we pro- pose and methods from the literature in Matlab is freely available under the GPL licence. Download the code from http://isit.u-clermont1.fr/∼ab/SGPAv1.0.tgz. Contents 2 Contents 1 Introduction 4 2 Problem Statement and Mathematical Preliminaries 6 2.1 The Reference-Space Model .
    [Show full text]
  • Statistical Shape Analysis Ian Dryden (University of Nottingham) 3E Cycle
    Statistical Shape Analysis Ian Dryden (University of Nottingham) Session I Dryden and Mardia (1998, chapters 1,2,3,4) [email protected] ¡ Introduction ¡ http://www.maths.nott.ac.uk/ ild Motivation and applications ¡ Size and shape coordinates ¡ Shape space 3e cycle romand de statistique et probabilites´ ¡ Shape distances. appliques´ Les Diablerets, Switzerland, March 7-10, 2004. 1 2 An object’s shape is invariant under the similarity trans- In a wide variety of applications we wish to study the formations of translation, scaling and rotation. geometrical properties of objects. We wish to measure, describe and compare the size and shapes of objects Shape: location, rotation and scale information (simi- larity transformations) can be removed. [Kendall, 1984] Size-and-shape: location, rotation (rigid body trans- formations) can be removed. Two mouse second thoracic vertebra (T2 bone) out- lines with the same shape. 3 4 ¡ Landmark: point of correspondence on each object that matches between and within populations. Different types: anatomical (biological), mathematical, pseudo, quasi From Galileo (1638) illustrating the differences in shapes of the bones of small and large animals. 5 6 ¡ Bookstein (1991) Type I landmarks (joins of tissues/bones) Type II landmarks (local properties such as maximal curvatures) Type III landmarks (extremal points or constructed land- marks) ¡ T2 mouse vertebra with six mathematical landmarks Labelled or un-labelled configurations (line junctions) and 54 pseudo-landmarks. 7 8 1 3 A 2 B 3 2 1 3 1 C 2
    [Show full text]
  • Riemannian Procrustes Analysis: Transfer
    Riemannian Procrustes Analysis : Transfer Learning for Brain-Computer Interfaces Pedro Luiz Coelho Rodrigues, Christian Jutten, Marco Congedo To cite this version: Pedro Luiz Coelho Rodrigues, Christian Jutten, Marco Congedo. Riemannian Procrustes Anal- ysis : Transfer Learning for Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2018, 66 (8), pp.2390 - 2401. 10.1109/TBME.2018.2889705. hal-01971856 HAL Id: hal-01971856 https://hal.archives-ouvertes.fr/hal-01971856 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL, NO. 1 Riemannian Procrustes Analysis : Transfer Learning for Brain-Computer Interfaces Pedro L. C. Rodrigues, Member, IEEE, Christian Jutten, Fellow, IEEE, and Marco Congedo, Member, IEEE Abstract—Objective: This paper presents a Transfer Learning with low signal-to-noise ratio, low spatial resolution [1], and approach for dealing with the statistical variability of EEG high cross-session and cross-subject variability [2]. signals recorded on different sessions and/or from different While many signal processing techniques have been devel- subjects. This is a common problem faced by Brain-Computer Interfaces (BCI) and poses a challenge for systems that try to oped to ameliorate the quality of EEG signals and improve reuse data from previous recordings to avoid a calibration phase its spatial resolution [3], the cross-session and cross-subject for new users or new sessions for the same user.
    [Show full text]
  • Arxiv:2101.06494V2 [Stat.ME] 19 Jan 2021
    NOVEL BAYESIAN PROCRUSTES VARIANCE-BASED INFERENCES IN GEOMETRIC MORPHOMETRICS &NOVEL R PACKAGE: BPviGM1 APREPRINT Debashis Chatterjee∗ Interdisciplinary Statistical Research Unit Indian Statistical Institute Kolkata, India [email protected] January 20, 2021 ABSTRACT Classical Procrustes analysis (Bookstein, 1997) has become an indispensable tool under Geometric Morphometrics. Compared to abundant classical statistics-based literature, to date, very few Bayesian literature exists on Procrustes shape analysis in Geometric Morphometrics, probably because of being a relatively new branch of statistical research and because of inherent computational difficulty associated with Bayesian analysis. On the other hand, although we can easily obtain the point estimators of the shape parameters using classical statistics-based methods, we cannot make inferences regarding the distribution of those shape parameters in general and, cannot put forward our prior belief and update to posterior belief on the same. We need to shift to Bayesian methods for that. Moreover, we may obtain a plethora of novel inferences from Bayesian Procrustes analysis of shape parameter distributions. In this paper we propose to regard the posterior of Procrustes shape variance as morphological variability indicators, which is on par with various laws of mathematical population genetics like Hardy-Weinberg law (Stern, 1943; Masel, 2012). Here we propose novel Bayesian methodologies for Procrustes shape analysis based on landmark data’s isotropic variance assumption and propose a Bayesian statistical test for model validation of new species discovery using morphological variation reflected in the posterior distribution of landmark-variance of objects studied under Geometric Morphometrics. We will consider Gaussian distribution-based and heavy-tailed t distribution-based models for Procrustes analysis.
    [Show full text]