Comparison Between Packages Shapes and Genstat ® in Ordinary Procrustes Analysis for Sensory Profiling of Food Products

Total Page:16

File Type:pdf, Size:1020Kb

Comparison Between Packages Shapes and Genstat ® in Ordinary Procrustes Analysis for Sensory Profiling of Food Products doi: http://dx.doi.org/10.5892/ruvrv.2012.102. 12 8135 Comparison between packages Shapes and Genstat ® in ordinary procrustes analysis for sensory profiling of food products Eric Batista FERREIRA 1 Marcelo Silva de OLIVEIRA 2 1Professor do Instituto de Ciências Exatas. Universidade Federal de Alfenas. [email protected]. 2Professor do Departamento de Ciências Exatas. Universidade Federal de Lavras. [email protected]. Recebido em: 16/10/2012 - Aprovado em: 12/12/2012 - Disponibilizado em: 30/12/2012 ABSTRACT: In modern management of companies, the quantitative knowledge is determinant for defining marketing strategies and product images. Particularly for industries of products that strongly stimulate the human senses, the statistical methods that allow quantitative evaluations are joined under the science chunk called Sensometrics. One of those methods is the Ordinary or Classical Procrustes Analysis (OPA), that consists in finding the best way one matrix can be fitted to a reference matrix by minimizing the sum of squared distances. Since this methodology begun to be use in sensory evaluation many specific and non-specific software have been developed. The high costs involved to purchase such programs lead some researchers to look for free software. R is a free statistical and mathematical package that already has an implementation of OPA and GPA (Generalized Procrustes Analysis) in its Shapes package (a statistical shape analysis package). The aim of this paper is to interpret, describe and compare R output to a non-specific software, GenStat ®, normally used in sensory analysis. Under simulated data the software were compared and lead to same conclusions and interpretations. Therefore, package Shapes from R can be used in sensory analysis, rather than Statistical Shape analysis. Key words: Ordinary Procrustes Analysis, software R, data simulation, Food products. INTRODUCTION methods that allow quantitative evaluations In the modern management of are joint under the science chunk called companies, the quantitative knowledge of Sensometrics, which deals with several the consumer preferences is determinant categories of problems like consumer for defining marketing strategies and preference, sensory profile of a product product images, impacting also in the and assessors training (FERREIRA; definition of competitive advantage by OLIVEIRA, 2007). production (SLACK; CHAMBERS; One of the greatest needs of Food JOHNSTON, 1997). Further, knowing Sensorial Analysis, especially in dairy such preferences is strictly related to the industries, is a satisfactory statistical implemented programs and politics, aims analysis of the panelist’s scores. For these and objectives of the quality management reason, along the years, a lot of tools have of the company. been tested. The multivariate techniques Particularly for industries of had been demonstrated to be efficient to products that strongly stimulate the human provide good answers about consumer’s senses (food, cosmetics and perfumes preference and food quality (FERREIRA industry, among others), the statistical et al., 2008). 128 Revista da Universidade Vale do Rio Verde, Três Corações, v. 10, n. 2, p. 128-135, ago./dez. 2012 This paper deals with the particular ||sX 1Q - X 2|| . (1) problem of identifying the possible consensus of a trained assessor and an Here, Q refers to a orthogonal expert. It is reasonable to assume that if the matrix (SCHÖENEMANN, 1966), and s is assessor agrees with the expert, his/her a scaling factor that enables stretching or training can be considered satisfactory. shrinking the configuration (GOWER, Cheese sensory data is used here for such 1975). evaluation. In dairy industry is natural to One of the suitable multivariate suppose that an expert panelist train a techniques for such evaluation is the beginner. In order to verify the efficiency Procrustes Analysis. Particularly, the of the training an OPA must be performed Ordinary Procrustes Analysis (OPA) (or (fitting the trainee score matrix to the Classical Procrustes Analysis) is a expert score matrix) to evaluate the multivariate technique that is used when residual sum of squared distances between one want to find the best way one matrix these two matrices. Also, agreements and can fit another. For instance, how similar disagreements between the two panelists one score matrix is to another. While the can be identified in some two axes OPA allow to match just two score graphics (FERREIRA et al., 2007). matrices, with Generalized Procrustes There are a lot of specific and non- Analysis (GPA) we can match m matrices specific software that perform this analysis at the same time (GOWER, 1975). satisfactorily, but all of the commonly used The minimization problem of are so expensive. R is a free statistical and transforming one given matrix X1 by a mathematical program. It has some basic matrix, say Q, such that best fits a given packages (default) and many others target matrix X2 is called a Procrustes packages to be loaded in accordance with Problem since Procrustes was an evil the user needs (R DEVELOPMENT personage of the Greek Mythology which CORE TEAM, 2011). In R there isn’t a used to fit his guests in a so called magical package specific for Procrustes analysis, bed by sawing or stretching them. The but there is a package called Shapes , for term Procrustes Problem is due to Hurley statistical shape analysis, that brings OPA and Cattel (1962) that suggested for the and GPA algorithms implemented first time the problem of transforming one (DRYDEN, 2009). matrix into another by minimizing the Residual Sum of Squares (RSS) 129 Revista da Universidade Vale do Rio Verde, Três Corações, v. 10, n. 2, p. 128-135, ago./dez. 2012 GenStat is statistical software that context. The reason we choose analyze just two attributes was to facilitate the building is able to perform the Procrustes analysis, of graphics. enabling many graphic tools (GENSTAT, 2003). Despite its high purchase cost, it is Data simulation commonly used in sensory analysis Graybill (1976) presents an easy (GAINS; THOMSON, 1990; MCEWAN; manner to generate data from a bivariate SCHLICH, 1992). Normal distribution ( X, Z ), where Z|X=x is This proposed situation was found by a linear relation of X. performed in the programs R and GenStat This way, to simulate data from a (7 th edition) in order to compare the bivariate Normal distribution one has to outputs. We also built graphics with R and assume known five parameters, since got some practical information. (X, Z) ~ N 2(µZ, µX, σZZ , σXX , σZX ) (2) where µZ, µX are the means of Z e X; σZZ , METHODOLOGY σXX the variances of Z e X and σZX the Ordinary Procrustes Analysis covariance between Z e X; and where (OPA) consists in find the best way one σZX = ρσ ZσX. matrix fits a reference matrix by The linear relationship between Z e minimizing the sum of squared distances X is the mathematical expectation of the between the points (lines) in a fixed matrix conditional Z|X = x and a shifted and rotated to-be-fitted-one σ ZX (3) EZXx[|==+ ]µZ ( x − µββ X ) =+0 1 x (GOWER, 1975). σ XX A reference matrix (expert scores) was established and a data matrix (trained and with variance 2 assessor) was simulated in R (like V[Z|X = x ] = σZZ (1-ρ ) (4) demonstrated below). So, one value of the variable Z|X=x is It was considered four brands of given by Gorgonzola cheese, each line of the matrix Z|X= µZ|X=x + e(x) (5) representing a brand. The judges scored 2 where e(x) ~ N(0, σZZ (1-ρ )) . these four samples at two attributes Data simulation was necessary only (appearance and characteristic flavor), to get the trained assessor's scores. We each column of the matrix representing an assumed that the trained assessor scores attribute. So, this simulated sensory were random values from four bivariate analysis occurred in a fixed vocabulary 130 Revista da Universidade Vale do Rio Verde, Três Corações, v. 10, n. 2, p. 128-135, ago./dez. 2012 Normal distributions ( X, Z ), where X is the Later, the configuration graphics appearance and Z is the characteristic were made utilizing R. Figure 1 presents flavor. The means of these four bivariate the configurations of the both assessors, Normal distributions are the expert scores. before and after Procrustes analysis. In The expert scores were arbitrarily Figure 1 one can observe how OPA established and it was considered a allowed a better view of the agreements positive correlation between the attributes and disagreements of such assessors. (appearance and characteristic flavor). We Looking at the right hand side of assumed the following covariance matrix Figure 1 one can observe that both 100 120 assessors agree more about brands 2 and 3 R = 120 225 than about brands 1 and 4. Considering Therefore, there was a positive first the appearance axis, for both correlation between attributes ( ρ=0,8) but assessors, the decreasing relation of brands not between cheese brands. is ordered like 4, 1, 2 and 3; but when one consider the characteristic flavor axis, the MAIN RESULTS decreasing relation of brands for expert is ordered like 4, 1, 2 and 3; and for the After data simulation, the trained assessor the relation of brands is established (A) and simulated matrices (B) ordered like 1, 4, 2 and 3. So, concerning (score matrices from expert and trained to characteristic flavor, they disagree in assessor, respectively) were: first and second positions. However, both 8082 7175 agree that brand 4 is the better whole 7072 and 6259 sample and brand 3 is the worst. A = B = 3050 36 44 9095 7772 131 Revista da Universidade Vale do Rio Verde, Três Corações, v. 10, n. 2, p. 128-135, ago./dez. 2012 (a) (b) FIGURE 1. Configurations of the both assessors: expert (1a, 2a, 3a, 4a) e trained assessor (1b, 2b, 3b, 4b), before (left) and after (right) Ordinary Procrustes Analysis.
Recommended publications
  • Shape Analysis
    Proceedings in CURRENT ISSUES IN STATISTICAL SHAPE ANALYSIS Edited by KVMardia, C.A.GU1 After AlbrechtDurer, 1524 Leeds University Press Proceedings in Current Issues in Statistical Shape Analysis International Conference, held in Leeds, UK, 5-7 April, 1995, incorporating The 15th Leeds Statistics Research Workshop co-sponsored by the Centre of Medical Imaging Research (CoMIR) Edited by K.V.Mardia, C.A.Gill Department of Statistics, University of Leeds, Leeds LS2 9JT. Leeds University Press Front cover: After AlbrechtDurer, 1524 (Reproduced from "D'Arcy Thompson On Growth and Form" (abridged edition) edited by J.T. Bonner, Cambridge University Press, 1961, with permission). Copyright ©K.V. Mardia, C.A. Gill, Department of Statistics, University of Leeds. ISBN 0 85316 161 5 Conference Committee I.L. Dryden J.T. Kent K.V. Mardia Department of Statistics University of Leeds Leeds, LS2 9JT, UK Conference Organisers C.A. Gill K.V. Mardia Session Chairs Session I: Procrustes and Mathematical Statistics Issues J.T. Kent Department of Statistics, University of Leeds, Leeds LS2 9JT, UK. Session II: Overview and Shape Geometry Fred L. Bookstein Centre for Human Growth & Development, University of Michigan, Ann Arbor, Michigan 48109, USA. Session III: Image Analysis and Computer Vision D.C. Hogg School of Computer Studies, University of Leeds, Leeds LS2 9JT, UK. Session IV: Morphometrics and Shape Geometry K.V. Mardia Department of Statistics, University of Leeds, Leeds LS2 9JT, UK. To David Kendall & Fred Bookstein for their pioneering work on SHAPE PREFACE The annual Leeds Research Workshop by the Department of Statistics began informally (i.e. without numbering!) as far back as 1975.
    [Show full text]
  • Package 'Shapes'
    Package ‘shapes’ March 31, 2021 Title Statistical Shape Analysis Date 2021-03-30 Version 1.2.6 Author Ian L. Dryden Description Routines for the statistical analysis of landmark shapes, including Procrustes analysis, graphical displays, principal components analysis, permutation and bootstrap tests, thin-plate spline transformation grids and comparing covariance matrices. See Dryden, I.L. and Mardia, K.V. (2016). Statistical shape analysis, with Applications in R (2nd Edition), John Wiley and Sons. Maintainer Ian Dryden <[email protected]> Imports minpack.lm, scatterplot3d, rgl, MASS Depends R (>= 2.10) License GPL-2 URL http://www.maths.nottingham.ac.uk/~ild/shapes NeedsCompilation no Repository CRAN Date/Publication 2021-03-31 12:20:02 UTC R topics documented: apes.............................................3 bookstein2d . .3 brains . .4 centroid.size . .5 cortical . .6 digit3.dat . .7 distcov . .7 dna.dat . .8 estcov . .9 frechet . 10 1 2 R topics documented: gels ............................................. 12 gorf.dat . 12 gorm.dat . 13 groupstack . 14 humanmove . 15 macaques . 16 macf.dat . 16 macm.dat . 17 mice............................................. 18 panf.dat . 19 panm.dat . 19 plot3darcs . 20 plotshapes . 21 pns.............................................. 22 pns4pc . 24 pnss3d . 25 pongof.dat . 26 pongom.dat . 27 procdist . 27 procGPA . 28 procOPA . 31 procWGPA . 33 qcet2.dat . 35 qlet2.dat . 36 qset2.dat . 36 rats.............................................. 37 resampletest . 38 riemdist . 40 rigidbody
    [Show full text]
  • Procrustes — Procrustes Transformation
    Title stata.com procrustes — Procrustes transformation Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas References Also see Description procrustes performs the Procrustean analysis, a standard method of multidimensional scaling in which the goal is to transform the source varlist to be as close as possible to the target varlist. Closeness is measured by the residual sum of squares. The permitted transformations are any combination of dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations), and translation. procrustes deals with complete cases only. procrustes assumes equal weights or scaling for the dimensions. Variables measured on different scales should be standardized before using procrustes. Quick start Procrustes transform source variables x1 and x2 to be close to target variables y1 and y2 procrustes (y1 y2) (x1 x2) Add a third source variable, x3, and target variable, y3 procrustes (y1 y2 y3) (x1 x2 x3) As above, but allow an oblique instead of an orthogonal rotation procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique) As above, but suppress dilation procrustes (y1 y2 y3) (x1 x2 x3), transform(oblique) norho Menu Statistics > Multivariate analysis > Procrustes transformations 1 2 procrustes — Procrustes transformation Syntax procrustes (varlisty)(varlistx) if in weight , options options Description Model transform(orthogonal) orthogonal rotation and reflection transformation; the default transform(oblique) oblique rotation transformation transform(unrestricted) unrestricted transformation noconstant suppress the constant norho suppress the dilation factor ρ (set ρ = 1) force allow overlap and duplicates in varlisty and varlistx (advanced) Reporting nofit suppress table of fit statistics by target variable bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
    [Show full text]
  • Manifold Alignment Using Procrustes Analysis Chang Wang University of Massachusetts - Amherst
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Computer Science Department Faculty Publication Computer Science Series 2008 Manifold Alignment using Procrustes Analysis Chang Wang University of Massachusetts - Amherst Sridhar Mahadevan University of Massachusetts - Amherst Follow this and additional works at: https://scholarworks.umass.edu/cs_faculty_pubs Part of the Computer Sciences Commons Recommended Citation Wang, Chang and Mahadevan, Sridhar, "Manifold Alignment using Procrustes Analysis" (2008). Computer Science Department Faculty Publication Series. 64. Retrieved from https://scholarworks.umass.edu/cs_faculty_pubs/64 This Article is brought to you for free and open access by the Computer Science at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Computer Science Department Faculty Publication Series by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Manifold Alignment using Procrustes Analysis Chang Wang [email protected] Sridhar Mahadevan [email protected] Computer Science Department, University of Massachusetts, Amherst, MA 01003 USA Abstract only have a limited number of degrees of freedom, im- plying the data set has a low intrinsic dimensionality. In this paper we introduce a novel approach Similar to current work in the ¯eld, we assume kernels to manifold alignment, based on Procrustes for computing the similarity between data points in analysis. Our approach di®ers from \semi- the original space are already given. In the ¯rst step, supervised alignment" in that it results in a we map the data sets to low dimensional spaces reflect- mapping that is de¯ned everywhere { when ing their intrinsic geometries using a standard (nonlin- used with a suitable dimensionality reduction ear or linear) dimensionality reduction approach.
    [Show full text]
  • Procrustes Analysis
    Procrustes Analysis Amy Ross Department of Computer Science and Engineering University of South Carolina, SC 29208 [email protected] Abstract. Shape correspondence is an important aspect of imaging. Understanding shape is the basis of any correspondence. The correspondence and analysis of shapes plays a vital role, not only in determining correspondence, but also determining the validity of the algorithms used to place the landmarks in accurate locations. The analysis should be well defined so that it is unbiased and thorough in its evaluation. Procrustes analysis is a rigid shape analysis that uses isomorphic scaling, translation, and rotation to find the “best” fit between two or more landmarked shapes. This paper is an in-depth study of Procrustes analysis. 1 Introduction Procrustes analysis has many variations and forms. Of these forms, the generalized orthogonal Procrustes analysis (GPA) is the most useful in shape correspondence, because of the orthogonal nature of the rotation matrix. Gower played an important role in the introduction and derivation of the generalized orthogonal Procrustes analysis in 1971-75. Though Hurley and Cattell first used the term Procrustes analysis in 1962 with a method that did not limit the transformation to an orthogonal matrix [2]. This paper will explore what shape is, how to maintain shape, landmarks, and how these all work together to correspond shapes using the technique of generalized orthogonal Procrustes analysis. 2 Shape and Landmarks Shape and landmarks are two important concepts involved with generalized orthogonal Procrustes analysis. Both shape and landmarks have their own role in the process of aligning shapes. The following is an overview of shape and landmarks to give a foundation for the generalized orthogonal Procrustes analysis.
    [Show full text]
  • CHAPTER 10 Shapeworks Particle-Based Shape Correspondence and Visualization Software
    CHAPTER 10 ShapeWorks Particle-Based Shape Correspondence and Visualization Software ,†,‡ ,†,¶ ,§ Joshua Cates∗ ,ShireenElhabian∗ ,RossWhitaker∗ ∗Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, USA †Biomedical Image and Data Analysis Core, University of Utah, Salt Lake City, USA ‡Comprehensive Arrhythmia Research and Management Center, University of Utah, Salt Lake City, USA §School of Computing, University of Utah, Salt Lake City, USA ¶Faculty of Computers and Information, Cairo University, Cairo, Egypt Contents 10.1 Introducing ShapeWorks 258 10.1.1 The Potential and the Challenge 258 10.1.2 Rising to the Challenge 259 10.1.2.1 Particle Systems for a Flexible Shape Representation 259 10.1.2.2 Optimized Correspondences Address the Model Selection Problem 260 10.1.3 ShapeWorks: An Open-Source Implementation of PBM 261 10.2 Particle-Based Modeling 262 10.2.1 Overview 262 10.2.2 Surface Representation 263 10.2.3 Adaptive Distributions on Surface Features 265 10.2.4 Surface Constraint 266 10.2.5 The Kernel Width σ for PDF Estimation 267 10.2.6 Numerical Considerations 267 10.2.7 Correspondence: Entropy Minimization in Shape Space 268 10.2.8 Setting Parameters 270 10.2.9 Illustration of the Properties and Interpretability of the PBM Optimization 271 10.3 PBM Extensions 273 10.3.1 Modeling Shape with Open Surfaces 274 10.3.2 Modeling Shape Complexes 276 10.3.3 Correspondence Based on Functions of Position 277 10.3.4 Correspondence with Regression Against Explanatory Variables 279 10.3.5 Dense PBM Correspondence Models 281 10.4 ShapeWorks Software Implementation and Workflow 284 10.4.1 The ShapeWorks Shape Modeling Workflow 284 10.4.1.1 Segmentation Preprocessing and Alignment 285 10.4.1.2 Initialization and Optimization 286 10.4.1.3 Analysis 287 10.4.2 The PBM Code Library 288 10.4.3 The ShapeWorks Software Tool Suite 289 10.5 ShapeWorks in Biomedical Applications 290 Statistical Shape and Deformation Analysis Copyright © 2017 Elsevier Ltd DOI: 10.1016/B978-0-12-810493-4.00012-2 All rights reserved.
    [Show full text]
  • Procrustes and PCA the Details
    Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes and PCA the details P. David Polly Department of Earth and Atmospheric Sciences Adjunct in Biology and Anthropology Indiana University Bloomington, Indiana 47405 USA [email protected] Euclid Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Outline Behind the scenes of Procrustes analysis • Translation, scaling, and rotation Behind the scenes of Principal Components Analysis (PCA) • PCA as a data rotation • Covariance matrices as rotation matrices • Eigenvectors, eigenvalues, and scores Properties of PCA scores (shape variables) • Equivalence of PCA scores and Procrustes residuals • Orthogonality • Descending order of variance • “Significance” of PC axes Curved spaces and tangent spaces • Why is morphospace curved? • What is tangent space? • Does it matter? Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes superimposition also known as… Procrustes analysis Procrustes fitting Generalized Procrustes Analysis (GPA) Generalized least squares (GLS) Least squares fitting • Centers all shapes at the origin (0,0,0) • Usually scales all shapes to the same size (usually “unit size” or size = 1.0) • Rotates each shape around the origin until the sum of squared distances among them is minimized (similar to least-squares fit of a regression line) • Ensures that the differences in shape are minimized Earth and Atmospheric Sciences | Indiana University (c) 2018, P. David Polly Procrustes superimposition • Translates, scales, and rotates landmarks to a common coordinate system • Removes degrees of freedom in the process • 2 + 1 + 1 = 4 for 2D data • 3 + 1 + 3 = 7 for 3D data • Creates statistical challenges Before • colinearity • “singular” covariance matrix • “curved” shape space After Department of Geological Sciences | Indiana University (c) 2012, P.
    [Show full text]
  • Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI
    Statistical Variability in Nonlinear Spaces: Application to Shape Analysis and DT-MRI by P. Thomas Fletcher A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 2004 Approved by: Stephen M. Pizer, Advisor Sarang Joshi, Advisor Guido Gerig, Reader J. S. Marron, Reader Michael Kerckhove, Reader ii iii c 2004 P. Thomas Fletcher ALL RIGHTS RESERVED iv v TABLE OF CONTENTS 1 Introduction x 1.1 Motivation . 1 1.1.1 Shape Analysis . 3 1.1.2 Diffusion Tensor Imaging . 4 1.2 Thesis and Claims . 4 1.3 Overview of Chapters . 6 2 Mathematical Background 7 2.1 Topology . 8 2.1.1 Basics . 8 2.1.2 Metric spaces . 9 2.1.3 Continuity . 10 2.1.4 Various Topological Properties . 10 2.2 Differentiable Manifolds . 11 2.2.1 Topological Manifolds . 11 2.2.2 Differentiable Structures on Manifolds . 12 2.2.3 Tangent Spaces . 14 2.3 Riemannian Geometry . 15 2.3.1 Riemannian Metrics . 15 2.3.2 Geodesics . 16 2.4 Lie Groups . 20 2.4.1 Lie Group Exponential and Log Maps . 22 2.4.2 Bi-invariant Metrics . 24 2.5 Symmetric Spaces . 25 2.5.1 Lie Group Actions . 26 2.5.2 Symmetric Spaces as Lie Group Quotients . 27 vi 3 Image Analysis Background 29 3.1 Statistical Shape Theory . 29 3.1.1 Point Set Shape Spaces . 30 3.1.2 Procrustes Distance and Alignment .
    [Show full text]
  • Stratified Generalized Procrustes Analysis
    Stratified Generalized Procrustes Analysis Adrien Bartoli1 Daniel Pizarro2 Marco Loog3 1 Clermont Universit´e,France 2 Universidad de Alcal´a,Spain 3 Delft University of Technology, The Netherlands Corresponding author: Adrien Bartoli [email protected] Abstract Generalized procrustes analysis computes the best set of transformations that relate matched shape data. In shape analysis the transformations are usually chosen as similarities, while in general statistical data analysis other types of transformation groups such as the affine group may be used. Generalized procrustes analysis has a nonlinear and nonconvex formulation. The classical approach alternates the computation of a so-called reference shape and the computation of transformations relating this reference shape to each shape datum in turn. We propose the stratified approach to generalized procrustes analysis. It first uses the affine trans- formation group to analyze the data and then upgrades the solution to the sought after group, whether Euclidean or similarity. We derive a convex formulation for each of these two steps, and efficient practical algorithms that gracefully handle missing data (incomplete shapes.) Extensive experimental results show that our approaches perform well on simulated and real data. In particular our closed-form solution gives very accurate results for generalized procrustes analysis of Euclidean data. Keywords: shape, registration, procrustes, theseus, generalized. Implementation: our generalized procrustes analysis toolbox which implements the methods we pro- pose and methods from the literature in Matlab is freely available under the GPL licence. Download the code from http://isit.u-clermont1.fr/∼ab/SGPAv1.0.tgz. Contents 2 Contents 1 Introduction 4 2 Problem Statement and Mathematical Preliminaries 6 2.1 The Reference-Space Model .
    [Show full text]
  • Statistical Shape Analysis Ian Dryden (University of Nottingham) 3E Cycle
    Statistical Shape Analysis Ian Dryden (University of Nottingham) Session I Dryden and Mardia (1998, chapters 1,2,3,4) [email protected] ¡ Introduction ¡ http://www.maths.nott.ac.uk/ ild Motivation and applications ¡ Size and shape coordinates ¡ Shape space 3e cycle romand de statistique et probabilites´ ¡ Shape distances. appliques´ Les Diablerets, Switzerland, March 7-10, 2004. 1 2 An object’s shape is invariant under the similarity trans- In a wide variety of applications we wish to study the formations of translation, scaling and rotation. geometrical properties of objects. We wish to measure, describe and compare the size and shapes of objects Shape: location, rotation and scale information (simi- larity transformations) can be removed. [Kendall, 1984] Size-and-shape: location, rotation (rigid body trans- formations) can be removed. Two mouse second thoracic vertebra (T2 bone) out- lines with the same shape. 3 4 ¡ Landmark: point of correspondence on each object that matches between and within populations. Different types: anatomical (biological), mathematical, pseudo, quasi From Galileo (1638) illustrating the differences in shapes of the bones of small and large animals. 5 6 ¡ Bookstein (1991) Type I landmarks (joins of tissues/bones) Type II landmarks (local properties such as maximal curvatures) Type III landmarks (extremal points or constructed land- marks) ¡ T2 mouse vertebra with six mathematical landmarks Labelled or un-labelled configurations (line junctions) and 54 pseudo-landmarks. 7 8 1 3 A 2 B 3 2 1 3 1 C 2
    [Show full text]
  • Procrustes Analysis Procrustes Analysis General Procrustes Analysis
    Robert Collins CSE586 CSE 586, Spring 2011 Advanced Computer Vision Procrustes Shape Analysis Robert Collins CSE586 Credits lots of slides are due to Lecture material from Tim Cootes University of Manchester. For more info, see http://www.isbe.man.ac.uk/~bim/ (includes code for exploring active shape/appearance models). Robert Collins CSE586 Statistical Shape Modelling • Represent the shape using a set of points • Align a set of training examples, and compute a “mean shape” • Model distribution of the variation of shapes in the training set wrt the mean shape • This allows us to analyze the major “modes” of shape variation and to generate realistic new shapes similar to ones in training set Robert Collins CSE586 Procrustes Analysis Procrustes Analysis General Procrustes Analysis R1, t1, s1 R, t, s R2, t2, s2 Rm, tm, sm Align one shape with another (not symmetric) Align a set of shapes with respect to some unknown “mean” shape (independent of ordering of shapes) Robert Collins CSE586 Why “Procrustes”? http://www.procrustes.nl/gif/illustr.gif Robert Collins CSE586 Aligning Two Shapes • Procrustes analysis: – Find transformation which minimises 2 | x1 −T (x2 ) | – T is a particular type of transformation that you want “shape” to be invariant to. – Typically a similarity transformation – Involves solving for best rotation, translation and scale between the two sets of points [we talked about how to do this in earlier lectures] Robert Collins CSE586 Steps in Similarity Alignment Given a set of K points: Configuration Translation normalization:
    [Show full text]
  • Riemannian Procrustes Analysis: Transfer
    Riemannian Procrustes Analysis : Transfer Learning for Brain-Computer Interfaces Pedro Luiz Coelho Rodrigues, Christian Jutten, Marco Congedo To cite this version: Pedro Luiz Coelho Rodrigues, Christian Jutten, Marco Congedo. Riemannian Procrustes Anal- ysis : Transfer Learning for Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2018, 66 (8), pp.2390 - 2401. 10.1109/TBME.2018.2889705. hal-01971856 HAL Id: hal-01971856 https://hal.archives-ouvertes.fr/hal-01971856 Submitted on 7 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL, NO. 1 Riemannian Procrustes Analysis : Transfer Learning for Brain-Computer Interfaces Pedro L. C. Rodrigues, Member, IEEE, Christian Jutten, Fellow, IEEE, and Marco Congedo, Member, IEEE Abstract—Objective: This paper presents a Transfer Learning with low signal-to-noise ratio, low spatial resolution [1], and approach for dealing with the statistical variability of EEG high cross-session and cross-subject variability [2]. signals recorded on different sessions and/or from different While many signal processing techniques have been devel- subjects. This is a common problem faced by Brain-Computer Interfaces (BCI) and poses a challenge for systems that try to oped to ameliorate the quality of EEG signals and improve reuse data from previous recordings to avoid a calibration phase its spatial resolution [3], the cross-session and cross-subject for new users or new sessions for the same user.
    [Show full text]