Technical Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quarterly Journal of the All India Glass Manufacturers' Federation
Vol. 3 | No. 4 | January - March 2016 Quarterly Journal of The All India Glass Manufacturers’ Federation Bi-lingual www.aigmf.com Technical Articles Prof. (Dr.) A. K. Bandyopadhyay Prof. (Dr.) A Sustainable 50 for postage postage for 50 ` ASS ASS www.aigmf.com Building and Packaging material An Publication - GlASS Gl Gl 500 (within India) + + India) (within 500 ` ` Kanch | Vol. 3 | No. 4 | January-March 2016 2 Overseas: US$ 60 (including postage and bank charges) bank and postage (including 60 US$ Overseas: Order Print Copies: Print Order Price: Price: www.aigmf.com President SANJAY GANJOO Sr. Vice President ARUN KUMAR DUKKIPATI Vice President RAJ KUMAR MITTAL Hon. General Secretary BHARAT SOMANY Hon. Treasurer SANJAY AGARWAL Member Editorial Board A K Bandyopadhyay Quarterly Journal of THE ALL INDIA GLASS MANUFACTURERS’ FEDERATION Former Principal, Govt. College of Engineering & Ceramic Technology-GCECT, Kolkata DEVENDRA KUMAR Prof. & HOD, Dept. of Ceramic, Indian Institute of Technology (Banaras Hindu University) Vol. 3 | No. 4 | January-March 2016 K K SHARMA President, NIGMA and Plant Head, HNG Neemrana, Rajasthan MEMBER ASSOCIatIONS EASTERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (EIGMA) Contents c/o La Opala RG Ltd. Chitrakoot, 10th Floor, 230 A, A.J.C. Bose Road From President's Desk 5 Kolkata - 700 020 President - Sushil Jhunjhunwala Glass as Vital Building Material for Smart / Solar Cities NORTHERN INDIA GLASS MANUFACTURERS’ ASSOCIATION (NIGMA) & c/o Hindustan National Glass & Industries Limited 6 Post Office - Bahadurgarh, Jhajjar, Haryana-124 507 Book Launch: “Glass - A Sustainable Building and Packaging President - KK Sharma Material” Vice President - Jimmy Tyagi Honorary General Secretary - NN Goyal Glass News 13 Secretary & Treasurer - JB Bhardwaj SOUTH INDIA GLASS MANUFACTURERS’ ASSOCIATION (SIGMA) Smart City and Glasses for Flat-Screen Products – Part II 21 c/o AGI Glasspac (An SBU of HSIL Ltd.) Glass Factory Road, Off. -
Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass
Envelopes in Architecture (A4113) Designing holistic envelopes for contemporary buildings Silvia Prandelli, Werner Sobek New York A4113 ENVELOPES IN ARCHITECTURE - FALL 2016 Supply chain for holistic facades 2 Systems Door systems Media Facades Rainscreen facades Dynamic facades Mesh System Structural glass/Cable Glass floors Multiple skins Shading systems Green facades Panelized systems Stick/Unitized systems 3 Curtain wall facades 4 What are the components of a façade system? 5 What are the components of a façade system? 6 What are the components of a façade system? 7 Glass 8 Glass Types Base Glass (float glass) Heat Treated Glass Laminated Glass Insulating Glass Fire Rated Glass Burglar Resistant Glass Sound Protection Glass Decorative Glass Curved Glass 9 Base Glass (Float Glass) 10 3500 BC Glass Making: Man-made glass objects, mainly non-transparent glass beads, finds in Egypt and Eastern Mesopotamia 1500 BC Early hollow glass production: Evidence of the origins of the hollow glass industry, finds in Egypt 11 27 BC - 14 AD Glass Blowing: Discovery of glassblowing, attributed to Syrian craftsmen from the Sidon- Babylon area. > The blowing process has changed very little since then. 12 Flat Glass Blown sheet 13 15th century Lead Crystal Glass: During the 15th century in Venice, the first clear glass called cristallo was invented. In 1675, glassmaker George Ravenscroft invented lead crystal glass by adding lead oxide to Venetian glass. 14 16th century Sheet Glass: Larger sheets of glass were made by blowing large cylinders which were cut open and flattened, then cut into panes 19th century Sheet Glass: The first advances in automating glass manufacturing were patented in 1848 by Henry Bessemer, an English engineer. -
Glass and Ceramics MARKET & OPPORTUNITIES
Glass and Ceramics MARKET & OPPORTUNITIES Glass and Ceramics MARKET & OPPORTUNITIES CONTENTS Glass and Ceramics Industry in India 2 Conclusion 9 Appendix 10 A report by KPMG for IBEF 2 MARKET & OPPORTUNITIES Glass and Ceramics Industry in India GLass Global Glass Industry Glass is an inorganic product that is typically produced by 6% melting a mixture of silica (sand, 75 per cent), soda (around 15 per cent) and calcium compound (lime, 10 per cent) 16% with the desired metallic oxides that serve as colouring agents. The glass industry covers products such as flat glass 45% (including sheet glass, float glass, figured and wired glass, safety glass and mirror), glass hollow wares and containers, vacuum flasks, laboratory glassware and fibre glass. Glass products are used widely in households, construction, 33% laboratories and consumer items such as bangles, beads, pearls, etc. n Container Glass n Specialty Glass n Flat Glass n Fibre Glass THE GLass INDustrY Consists OF Four segments glass, rolled glass, cast glass and other flat glasses which are used mainly for architectural and automotive applications. Container Glass The global market for flat glass was estimated at 41 million tonnes in 2005, with a value of US$ 19 billion at the This is the largest segment in the glass sector and primary manufacturers’ level. Out of the total production, comprises of glass packaging for drinks, food, perfumes 70 per cent was consumed in windows for buildings, 10 and pharmaceuticals. per cent in glazing products for automotive applications and 20 per cent was used in furniture and other Specialty Glass interior applications. -
What Is Toughened Glass
“Toughened or tempered glass is a type of safety glass processed by controlled thermal or chemical treatments to increase its strength compared with normal glass. Tempering creates imbalanced internal stresses which cause the glass, when broken, to crumble into small granular chunks instead of splintering into jagged shards. The granular chunks are less likely to cause injury. As a result of its safety and strength, tempered glass is used in a variety of demanding applications, including passenger vehicle windows, shower doors, architectural glass doors and tables, refrigerator trays, as a component of bulletproof glass, for diving masks, and various types of plates and cookware. Toughened glass is physically and thermally stronger than regular glass. The greater contraction of the inner layer during manufacturing induces compressive stresses in the surface of the glass balanced by tensile stresses in the body of the glass. For glass to be considered toughened, this compressive stress on the surface of the glass should be a minimum of 69 MPa. For it to be considered safety glass, the surface compressive stress should exceed 100 MPa. The greater the surface stress, the smaller the glass particles will be when broken. It is this compressive stress that gives the toughened glass increased strength. This is because any surface flaws tend to be pressed closed by the retained compressive forces, while the core layer remains relatively free of the defects which could cause a crack to begin. Any cutting or grinding must be done prior to tempering. Cutting, grinding, sharp impacts and sometimes even scratches after tempering will cause the glass to fracture. -
Technical Glasses
Technical Glasses Physical and Technical Properties 2 SCHOTT is an international technology group with 130 years of ex perience in the areas of specialty glasses and materials and advanced technologies. With our highquality products and intelligent solutions, we contribute to our customers’ success and make SCHOTT part of everyone’s life. For 130 years, SCHOTT has been shaping the future of glass technol ogy. The Otto Schott Research Center in Mainz is one of the world’s leading glass research institutions. With our development center in Duryea, Pennsylvania (USA), and technical support centers in Asia, North America and Europe, we are present in close proximity to our customers around the globe. 3 Foreword Apart from its application in optics, glass as a technical ma SCHOTT Technical Glasses offers pertinent information in terial has exerted a formative influence on the development concise form. It contains general information for the deter of important technological fields such as chemistry, pharma mination and evaluation of important glass properties and ceutics, automotive, optics, optoelectronics and information also informs about specific chemical and physical character technology. Traditional areas of technical application for istics and possible applications of the commercial technical glass, such as laboratory apparatuses, flat panel displays and glasses produced by SCHOTT. With this brochure, we hope light sources with their various requirements on chemical to assist scientists, engineers, and designers in making the physical properties, have led to the development of a great appropriate choice and make optimum use of SCHOTT variety of special glass types. Through new fields of appli products. cation, particularly in optoelectronics, this variety of glass types and their modes of application have been continually Users should keep in mind that the curves or sets of curves enhanced, and new forming processes have been devel shown in the diagrams are not based on precision measure oped. -
Float Glass Inspection and Measurement Phone: +1-651-730-4090 Fax: +1-651-730-1955 for Highest Quality and Optimized Yields
Germany Phone: +49-89-85695-0 Fax: +49-89-85695-200 USA Float Glass Inspection and Measurement Phone: +1-651-730-4090 Fax: +1-651-730-1955 for Highest Quality and Optimized Yields Korea Phone: +82-2-527-1633 Fax: +82-2-527-1635 Taiwan Phone: +886-2-2920-7899 Fax: +886-2-2920-8198 Dr. Schenk’s production site Hong Kong Phone: +852-2425-1860 Fax: +852-2425-6775 China-Beijing Dr. Schenk GmbH, established in 1985, is an innovative Phone: +86-10-6503-2159 high-tech company based near Munich, Germany. Fax: +86-10-6503-2161 Dr. Schenk develops, produces and markets optical surface inspection and measurement solutions for automated China-Shanghai quality assurance and production process monitoring. Phone: +86-21-5836-6700 The systems are a key success factor in the making and Fax: +86-21-5836-6701 converting of many materials, e.g. plastics, glass, metal, PV modules, wovens & nonwovens, and the semiconduc- tor industry. Throughout the world Dr. Schenk’s 220 employees con- For further regional sales & tinue to set new standards for the inspection of surfaces. service representatives please refer Over 10,000 m² of modern production and testing facili- to www.drschenk.com ties are available to research, development and production to apply cutting-edge optics and electronics to customer applications. The company’s objective is complete customer satisfaction. This is achieved through innovative and practical solutions that can be implemented into new and existing production lines. Local sales and service facilities around the world ensure fast support, technical service, training and consult- ing at any phase of a project. -
ENABLING WONDERS. INSPIRING AWE. AIS Architectural Product Profile
ENABLING WONDERS. INSPIRING AWE. AIS Architectural Product Profile 1 FROM ART TO ARCHITECTURE Architecture is an emotional experience that begins in the mind of the architect. It starts from a vision that transforms into an art. Just like any artist, the architect gets to play with various materials and ideas. Glass is the latest material that is allowing architects to interpret space in a whole new way, inspire creative designs, and create structures that reflect beauty. AIS has the knowledge, expertise, and an unmatched array of products to bring an artistic idea from a vision to a masterpiece. 2 Cummins, Pune 3 ENABLING A FUTURE THAT SEES MORE AIS is India’s leading integrated glass company. Being a leader, AIS delivers top-of-the-line products and solutions through three Strategic Business Units (SBUs) of Automotive Glass, Architectural Glass and Consumer Glass. We use our glass product portfolio – which is the biggest in the country – to meet functional needs in an aesthetic and contemporary manner. With products that provide next-generation solutions, AIS brings new ideas to life – enabling an age of ‘green buildings’ and the dawn of a truly sustainable future. Taking the versatility of glass to the next level, AIS today has unmatched glass processing capabilities, including the processing of special glass products, that enables us to meet your every need, and fulfil every requirement. And help you realise your dream house in glass. 4 ARCHITECTURAL GLASS Architectural Glass, or float glass, is manufactured by floating the molten glass on a bed of molten metal, typically tin. This method gives the glass product uniform thickness and a very flat surface. -
High-Precision Micro-Machining of Glass for Mass-Personalization and Submitted in Partial Fulfillment of the Requirements for the Degree Of
High-precision micro-machining of glass for mass-personalization Lucas Abia Hof A Thesis In the Department of Mechanical, Industrial and Aerospace Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy (Mechanical Engineering) at Concordia University Montreal, Québec, Canada June 2018 © Lucas Abia Hof, 2018 CONCORDIA UNIVERSITY School of Graduate Studies This is to certify that the thesis prepared By: Lucas Abia Hof Entitled: High-precision micro-machining of glass for mass-personalization and submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mechanical Engineering) complies with the regulations of the University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: ______________________________________ Chair Dr. K. Schmitt ______________________________________ External Examiner Dr. P. Koshy ______________________________________ External to Program Dr. M. Nokken ______________________________________ Examiner Dr. C. Moreau ______________________________________ Examiner Dr. R. Sedaghati ______________________________________ Thesis Supervisor Dr. R. Wüthrich Approved by: ___________________________________________________ Dr. A. Dolatabadi, Graduate Program Director August 14, 2018 __________________________________________________ Dr. A. Asif, Dean Faculty of Engineering and Computer Science Abstract High-precision micro-machining of glass for mass- personalization Lucas Abia Hof, -
Mechanical Properties and Robustness Evaluation of Glass Materials in Building
Mechanical properties and Robustness evaluation of glass materials in building Prof. Yiwang Bao State Key Lab. Of Green Building Materials China Building Materials Academy, 100024, Beijing Why glass? • Admit daylight • Provide external views • Achieve feeling of spaciousness • Functionality: self-cleaning, solar-energy Photo-voltaic,….. • Create durable weatherproof building envelope • New structural materials Structural glass application All-glass building 深圳三鑫公司所建的结构玻璃建筑 Structural/functional Combination BIPV glass components • applications 日本Sanyo太阳光电公司 德国柏林中央车站 BIPV glass components • Applications Beijing South station Energy saving building in Qinghua Univ. Dangerous glass from high building Shanghai daily 2nd Aug. 2006:A glass curtain wall fall down from 36th floor of Shanghai Jingjiang shopping center. Debris and splinters covers 40 square meter. No body injured Spontaneous breakage of glass curtain wall Glass rain glass: typical brittle material Brittle feature: no plastic deformation, low critical strain, high crack growth speed, stress concentration strong Stress Brittle breakage Perfectly elastic Strain Comparison of the deformation of metal and glass Three modes of failure of building glass 1. Spontaneous breakage (tempered glass) 2. Fracture due to strength degradation 3. Fall dawn of whole glass due to loosed support or sealant. Annealed glass • Breaks in to large dagger like shards • Sharp edges • Dangerous to fall through • Danger if falls This kind of glass is not safe building material Safety glass: laminated glass; tempered -
Glass Shaping
MIT 3.071 Amorphous Materials 6: Glass Shaping Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 20 Introduction to Glass Science and Technology Ch. 13 2 Image @ MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. “Viscosity makes things happen essentially in slow motion. If you are trying to melt a crystalline solid (like ice or an aluminum oxide ceramic), as soon as you reach the melting point, a drop of liquid forms and falls away from the melting surface. Glass, on the other hand, … gradually transforms from a hard solid to a slowly softening liquid. This soft liquid gradually stiffens as it cools (because of its increasing viscosity), allowing glass blower time to shape and manipulate the glass.” http://madsci.org/posts/archives/2007-09/1188944613.Ph.r.html 3 Viscosity reference points Working range PGM Glass blowing Lehr annealing Fiber drawing Float glass Pitch: 2.3 × 108 h 101 103 106.6 1012 1013.5 (Pa·s) Melting Working Softening Annealing Straining point point point point (Tg) point 4 Basic properties of common silicate glasses Soda-lime Borosilicate Fused silica CTE (ppm/°C) 9.2 3.2 0.5 Working point 1005 1252 N/A (°C) Softening point 696 821 1650 (°C) Annealing point 510 560 1140 (°C) Strain point (°C) 475 510 1070 5 Flat glass manufacturing: float glass process Forming of a continuous ribbon of glass using a molten tin bath Melting and refining (homogenization and bubble removal) Float bath: glass thickness controlled by flow speed Annealing: stress release Inspection, cutting and shipping 1 2.5 12 15 10 Pa·s 10 Pa·s 10 Pa·s > 10 Pa·s © H.S. -
Where Safety Meets Style™
® ® Where Safety ™ Meets Style www.GatewaySafety.com Table of Contents Founded in 1944, Gateway Safety has been designing and manufacturing high-quality personal Eye Protection . .3 protection equipment for more than sixty years. In an industry that’s filled with competition, many people have come to view safety products – such as safety glasses and hard hats – as commodities. Gateway Safety Glasses . .4-11 Safety does not subscribe to this point of view. Visitor Spectacles . .12 Bifocal & OTG Safety Glasses . 13 Unlike many of our competitors, Gateway Safety Eyewear Accessories . .14-15 invests significant time and resources in the design and development of our industrial safety products. Impact & Splash Goggles . .16-17 Rather than simply copying the Welding Eyewear . .18-19 designs of competitors, Gateway Face Protection . .20-21 Safety works very hard to develop Head Protection . .22-23 superior safety products that look better, fit better, and achieve Hearing Protection . .24-25 better compliance. Respiratory Protection . .26-27 Workplace Security . .28 This approach is a lot harder and takes a lot longer. However, the results are definitely worth it. And, clearly, the rest of the industry is taking notice. Over the past few years, Gateway Safety has received Emergency Eyewash Stations . 29 several awards and obtained several patents for the designs of our newest safety products. Product Customization . .30 Product Imprinting . .30 At the same time, while many of our competitors face skyrocketing overhead Private Label Products . .30 costs and bloated marketing budgets – which you pay for – Gateway Safety runs a lean operation. We work very hard to create as many operating Marketing Tools . -
Precision Sensors & Applications Glass Industry
Sensors & Applications Glass Industry More Precision Sensors and measuring systems confocalDT 2421 / 2422 Confocal chromatic sensors for for glass production distance and thickness measurements Modern glass production is increasin- One-sided thickness measurement of gly determined by maximum efficiency. transparent materials Therefore, rapid access to fundamental Synchronous 2-channel measurement process variables is required in order to with max. measuring rate ensure fast control of the process. With Best price/performance ratio in its class products such as container glass, flat glass or special glasses, tight manufac- turing tolerances must be adhered to while maintaining the shortest possible cycle times. colorCONTROL ACS Sensors for color measurement of transparent materials Due to the high degree of integration as Ideal for integration into processing lines well as the high accuracy and measure- due to high measuring rates ment speed, sensors from Micro-Epsilon are used in the glass industry for different High accuracy measurement tasks: robust eddy current Robust and suitable for industrial applications sensors are integrated into machines in order to detect machine movements while optical sensors monitor glass products in processing lines. Typical measured para- meters include displacement, position, thermoIMAGER / thermoMETER thickness, color and temperature. Thermal imaging cameras and infrared pyrometers for non-contact temperature measurement Fast and precise temperature measurement Real-time process monitoring and system control Compact design & extensive range of interfaces optoNCDT 1420 Compact laser triangulation displacement sensor for high speed, precision measurements Non-contact displacement and distance measurements with large measuring ranges from 10mm to 500mm High accuracy High measuring rate for dynamic measurements Compact design and easy to install Flat glass Temperature measurement of float glass After the tin bath, flat glass has a temperature of approx.