Accurate Partial Atomic Charges for High-Energy Molecules Using Class IV Charge Models with the MIDI!

Total Page:16

File Type:pdf, Size:1020Kb

Accurate Partial Atomic Charges for High-Energy Molecules Using Class IV Charge Models with the MIDI! July 16, 2004 Final Author’s Version Accurate Partial Atomic Charges for High-Energy Molecules Using Class IV Charge Models with the MIDI! Basis Set Casey P. Kelly, Christopher J. Cramer*, and Donald G. Truhlar* Department of Chemistry and Supercomputing Institute, 207 Pleasant St. SE, University of Minnesota, Minneapolis, MN 55455-0431 *[email protected], [email protected] Key words: basis set, MIDI! – dipole moments – materials, high-energy – nitramines, inversion barrier – partial charges, class IV Abstract. We have recently developed a new class IV charge model for calculating partial atomic charges in molecules. The new model, called Charge Model 3 (CM3), was parameterized for calculations on molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br by Hartree-Fock theory and by hybrid density functional theory (HDFT) based on the modified Perdew-Wang density functional with several basis sets. In the present article, we extend CM3 for calculating partial atomic charges by Hartree-Fock theory with the economical but well balanced MIDI! basis set. Then, using a test set of accurate dipole moments for molecules containing nitramine functional groups (which include many high-energy materials), we demonstrate the utility of several parameters designed to improve the charges in molecules containing both N and O atoms. We also show that one of our most recently developed CM3 models that is designed for use with wave functions calculated at the mPWXPW91/MIDI! level of theory (where X denotes a variable percentage of Hartree-Fock exchange) gives accurate charge distributions in nitramines without additional parameters for N and O. To demonstrate the reliability of partial atomic charges calculated with CM3, we use these atomic charges to calculate polarization free energies for several nitramines, including the commonly used explosives 1,3,5-trinitro-s-triazine (RDX) and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW), in nitromethane. These polarization energies are large and negative, indicating that electrostatic interactions between the charge distribution of the molecule and the solvent make a large contribution to the free energy of solvation of nitramines. By extension, the same conclusion should apply to solid-state condensation. Also, in contrast to some other charge models, CM3 yields atomic charges that are relatively insensitive to the presence of buried atoms and small conformational changes in the molecule, as well as to the level of treatment of electron correlation. This type of charge model should be useful in the future development of solvation models and force fields designed to estimate intramolecular interactions of nitramines in the condensed phase. 1 Introduction Unlike many other electronic properties that can be extracted from a quantum mechanical wave function, such as electron density, permanent electrical moments, or the molecular electrostatic potential, the partial atomic charge on an atom in a molecule is not a quantum mechanical observable. As a result, the rules for determining partial atomic charges, which involves assigning quantitative values to the amount of electron density belonging to each atom in a molecule, are ambiguous, and many different methods have been developed and evaluated for accomplishing this [1-79]. We have assigned [73] these various methods to four broad categories, or classes. Class I includes all methods for which partial atomic charges can, in principle, be determined without first calculating a quantum mechanical wave function for the given molecule. Examples include assigning partial atomic charges based on X-ray diffraction data [3], IR stretching frequencies [2,4-8], or, for the case of a diatomic molecule, calculating them directly by dividing the dipole moment by the bond length. Some class I charge models have been proposed that use only the molecular topology of the given molecule to assign 2 its partial atomic charges [11-14], while other class I charge models [15-30] assign partial atomic charges based on the concept of electronegativity equalization [80,81]. Class II includes methods that use a population analysis of a molecular wave function to assign charges, and include Mulliken [31-33], Löwdin [34], and natural [47] population analyses, as well as Bader’s “atoms in molecules” (AIM) method [49]. Another class II charge model, called redistributed Löwdin population analysis [35] (RLPA), is designed to alleviate some of the sensitivity to the inclusion of diffuse functions when calculating partial atomic charges from a Löwdin population analysis. Class III charge models include those methods that assign partial atomic charges by a fit to a wave-function-dependent physical observable. Models that assign partial atomic charges from a least-squares fit to the electrostatic potential calculated at a number of points around the molecule of interest, such as ChElP [60], ChElPG [65], and the Merz-Singh-Kollman scheme [60,66], are examples of class III charge models. Class IV charge models, which include charge model 1 (CM1) [73] and CM2 [74,75], differ from class III charge models in that they map partial atomic charges obtained from some other charge-assigning scheme in order to reproduce experimental or converged theoretical charge-dependent observables. One of the major motivations behind the development of class IV charge models by our group [73- 79] was to remedy two major deficiencies of class III models. First, the partial atomic charges obtained from class III charge models are necessarily dependent on the quality of the wave function used to calculate the physical observable against which the partial atomic charges are fit. In many cases, such as for large molecules or for large libraries of molecules, this approach is not practical, since it is often the case that high-level wave functions are required in order to deliver relatively accurate physical observables. Second, for many class III charge models, some partial atomic charges in a given molecule are less well-determined than others (i.e. large fluctuations in the values of some charges may have only a small effect on the error function against which the atomic charges are fit). As a result of this second deficiency, class III charge models can in some cases deliver partial atomic charges that are less 3 transferable than those calculated with other models and that also depend too strongly on the conformation of the molecule. Recently, several molecular mechanics force fields that use partial atomic charges as quantum chemical descriptors have been developed in order to model the solid-state properties of various molecules containing nitramine functionality. For example, Sorescu and coworkers have used partial atomic charges obtained from the ChElPG fitting procedure to investigate the solid-state properties of several commonly used explosives, including 1,3,5-trinitro-s-triazine (RDX) [82], 2,4,6,8,10,12- hexanitrohexaazaisowurtzitane (HNIW) [83], and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) [84] in the solid phase, as well as a variety of other molecules containing nitro-group functionality [85,86]. Smith and coworkers have developed a similar type of force field for dimethylnitramine (DMNA) in the solid phase; these workers used partial atomic charges that were obtained from a modified electrostatic fitting procedure subject to the additional constraint that the partial atomic charges of equivalent atoms remain equal during the fit [87]. The charge model used by these workers is similar in spirit to Bayly et al.’s restrained electrostatic potential (RESP) charge fitting scheme [71], in which hyperbolic penalty functions are associated with each atom during the electrostatic fitting procedure. Recently, we developed a new class IV charge model called charge model 3 (CM3) [77]. This new model has several advantages compared to the models developed earlier within our group [73-76]. First, the functional form is less sensitive to unphysical fluctuations (when one changes the basis set or level of treatment of electron correlation) in calculated bond orders. Second, the model is based on RLPA charges, which [35] are more suitable for use with diffuse basis functions. This is important because the use of diffuse basis functions is often required for accurate calculations of conformational energies and barrier heights [88]. Third, the CM3 model is based on a larger and more diverse training set than used for previous models. Fourth, it includes an additional term that improves the charges on N and O when these atoms are in the same molecule. 4 We report in this article a new set of parameters that, when combined with wave functions calculated at the HF/MIDI! [89-91] level of theory, yield accurate partial atomic charges for molecules containing H, Li, C, N, O, F, Si, S, P, Cl, and Br, as judged by comparison of point-charge-derived molecular dipole moments to accurate values. We also show that this model, along with a previously developed CM3 model [76] that is based on wave functions calculated at the mPW1PW91/MIDI! level of theory, where mPW1PW91 is the hybrid density functional of Adamo and Barone [92], and the “1” denotes 25% Hartree-Fock exchange, can both be used to obtain accurate partial atomic charges for nitramines in the gas phase. Specifically, we show that the partial atomic charges for a test set of molecules containing nitramine functionality are invariant to the level of treatment of electron correlation relative to those atomic charges calculated using several other charge models. In addition, we also show that the partial atomic charges obtained with class IV charge models are less conformation dependent and are far more consistent for atoms sharing similar local molecular environments than are those partial atomic charges obtained using the ChElPG fitting procedure (a class III model). The models presented in this work, which are designed to use economical wave functions to give reliable partial atomic charges for molecules, should be useful in future force fields designed to investigate the solid-state properties and solubility of high-energy materials.
Recommended publications
  • Quantum-Chemical Descriptors in QSAR/QSPR Studies
    1027 Quantum-Chemical Descriptors in QSAR/QSPR Studies Mati Karelson* and Victor S. Lobanov Department of Chemistry, University of Tartu, 2 Jakobi Str., Tartu, EE 2400, Estonia Alan R. Katritzky Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611-7200 Received August 21, 1995 (Revised Manuscript Received February 26, 1996) Contents Recent progress in computational hardware and the development of efficient algorithms has assisted I. Introduction 1027 the routine development of molecular quantum- II. Quantum Chemical Methods 1027 mechanical calculations. New semiempirical meth- III. Quantum Chemical Descriptors 1029 ods supply realistic quantum-chemical molecular IV. QSAR/QSPR Results 1033 quantities in a relatively short computational time A. Biological Activities 1033 frame. Quantum chemical calculations are thus an B. Chemical Reactivities 1035 attractive source of new molecular descriptors, which C. Partition Coefficients 1036 can, in principle, express all of the electronic and D. Chromatographic Retention Indexes and 1036 geometric properties of molecules and their interac- Response Factors tions. Indeed, many recent QSAR/QSPR studies E. Other Physicochemical Properties 1037 have employed quantum chemical descriptors alone F. Substituent Constants 1038 or in combination with conventional descriptors. Quantum chemistry provides a more accurate and G. Solvational Characteristics 1038 detailed description of electronic effects than empiri- H. CoMFA 1040 cal methods.1
    [Show full text]
  • Electron Paramagnetic Resonance of Radicals and Metal Complexes. 2. International Conference of the Polish EPR Association. Wars
    ! U t S - PL — voZ, PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW VGL 2 8 Hi 1 2 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. Jacek Michalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 11 15 32; e-mail: [email protected] .waw.pl Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Broker Analytische Messtechnik, Div. ESR/MINISPEC, Germany 3 CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Eiger, M. Fuhs, A Wiehe, J.
    [Show full text]
  • Arxiv:1711.08955V1 [Cond-Mat.Mes-Hall] 24 Nov 2017
    Theory of excitation transfer between two-dimensional semiconductor and molecular layers Judith Specht,1, ∗ Eike Verdenhalven,1 Bj¨ornBieniek,2 Patrick Rinke,2, 3 Andreas Knorr,1 and Marten Richter1, y 1Institut f¨urTheoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universit¨atBerlin, Hardenbergstr. 36, 10623 Berlin, Germany 2Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany 3COMP Department of Applied Physics, Aalto University, P.O. Box 11100, Aalto FI-00076, Finland (Dated: July 13, 2018) Abstract The geometry-dependent energy transfer rate from an electrically pumped inorganic semicon- ductor quantum well into an organic molecular layer is studied theoretically. We focus on F¨orster- type nonradiative excitation transfer between the organic and inorganic layer and include quasi- momentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic/organic system. For instance, the transfer effi- ciency is improved by orders of magnitude by tuning the relative orientation and positioning of the molecules. Also, the operating regime is identified where in-scattering dominates over unwanted back-scattering from the molecular layer into the substrate. arXiv:1711.08955v1 [cond-mat.mes-hall] 24 Nov 2017 ∗ [email protected] y [email protected] 1 I. INTRODUCTION A potential advantage of hybrid inorganic/organic systems over their individual con- stituents is that a synergistic combination can lead to novel optoelectronic properties and tunable functionality [1{9].
    [Show full text]
  • Charge-Density Analysis of a Protein Structure at Subatomic Resolution
    Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case Benoit Guillot, Christian Jelsch, Alberto Podjarny, Claude Lecomte To cite this version: Benoit Guillot, Christian Jelsch, Alberto Podjarny, Claude Lecomte. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case. Acta Crystallographica Section D: Biological Crystallography, International Union of Crystallography, 2008, 64 (5), pp.567- 588. 10.1107/S0907444908006082. hal-02918883 HAL Id: hal-02918883 https://hal.archives-ouvertes.fr/hal-02918883 Submitted on 25 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. electronic reprint Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449 Editors: E. N. Baker and Z. Dauter Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case Benoˆıt Guillot, Christian Jelsch, Alberto Podjarny and Claude Lecomte Acta Cryst. (2008). D64, 567–588 Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr.
    [Show full text]
  • Modeling Organic Electronic Materials: Bridging Length and Time Scales
    UC Davis UC Davis Previously Published Works Title Modeling organic electronic materials: bridging length and time scales Permalink https://escholarship.org/uc/item/6jv1c5zk Journal Molecular Simulation, 43(10-11) ISSN 0892-7022 Authors Harrelson, TF Moulé, AJ Faller, R Publication Date 2017-07-03 DOI 10.1080/08927022.2016.1273526 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Molecular Simulation ISSN: 0892-7022 (Print) 1029-0435 (Online) Journal homepage: http://www.tandfonline.com/loi/gmos20 Modeling organic electronic materials: bridging length and time scales Thomas F. Harrelson, Adam J. Moulé & Roland Faller To cite this article: Thomas F. Harrelson, Adam J. Moulé & Roland Faller (2017): Modeling organic electronic materials: bridging length and time scales, Molecular Simulation To link to this article: http://dx.doi.org/10.1080/08927022.2016.1273526 Published online: 02 Mar 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=gmos20 Download by: [The UC Davis Libraries] Date: 02 March 2017, At: 08:51 MOLECULAR SIMULATION, 2017 http://dx.doi.org/10.1080/08927022.2016.1273526 ENERGY APPLICATIONS Modeling organic electronic materials: bridging length and time scales Thomas F. Harrelson, Adam J. Moulé, Roland Faller Chemical Engineering, UC Davis, Davis, USA ABSTRACT ARTICLE HISTORY Organic electronics is a popular and rapidly growing field of research. The optical, electrical and mechanical Received 2 October 2016 properties of organic molecules and materials can be tailored using increasingly well controlled synthetic Accepted 10 December 2016 methods.
    [Show full text]
  • Effects of Partial Charge-Transfer Solute – Solvent Interactions in Absorption Spectra of Aromatic Hydrocarbons in Aqueous and Alcoholic Solutions
    Effects of partial charge-transfer solute – solvent interactions in absorption spectra of aromatic hydrocarbons in aqueous and alcoholic solutions I.A. Ar’ev*, N.I. Lebovka, E.A. Solovieva Institute of Biocolloid Chemistry, Ukraine, 03142, Kyiv, bulv. Vernadskogo, 42 A method for study of charge-transfer interactions between solute molecules and solvent based on the comparison of the ratios of spectral shifts of different electronic transitions in solute molecules in chemically inert solvent is proposed. The method is applicable to molecules that do not change their dipole moment on excitation. As an example, a presence of charge transfer interactions in higher electronic states of aromatic hydrocarbons (benzene, phenanthrene, and naphthalene) dissolved in water and alcohols was demonstrated. Keywords: partial electron transfer; spectral shifts; high energy states 1. Introduction Many of chemical reactions pass through an intermediate excited complex, or the exciplex stage [1-3]. In a solute-solvent system, the electronic interactions of various electronically excited states of the solute and solvent molecules may be also substantial. A very important question is to find out how strong is the interaction between the electronic systems of the solute and the solvent. In this work, a useful method for detection of such charge transfer interactions is proposed. The method lies in comparison of the ratios of spectral shifts of different electronic transitions of solute molecules in a chemically inert solvent and in the target solvent. As an example, a presence of charge transfer interactions in higher electronic states of aromatic hydrocarbons (benzene, phenanthrene, and naphthalene) dissolved in water and alcohols was demonstrated.
    [Show full text]
  • Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi
    molecules Article Optimized Atomic Partial Charges and Radii Defined by Radical Voronoi Tessellation of Bulk Phase Simulations Martin Brehm * and Martin Thomas Institut für Chemie, Martin-Luther-Universität Halle–Wittenberg, von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany * Correspondence: [email protected] Abstract: We present a novel method for the computation of well-defined optimized atomic partial charges and radii from the total electron density. Our method is based on a two-step radical Voronoi tessellation of the (possibly periodic) system and subsequent integration of the total electron density within each Voronoi cell. First, the total electron density is partitioned into the contributions of each molecule, and subsequently the electron density within each molecule is assigned to the individual atoms using a second set of atomic radii for the radical Voronoi tessellation. The radii are optimized on-the-fly to minimize the fluctuation (variance) of molecular and atomic charges. Therefore, our method is completely free of empirical parameters. As a by-product, two sets of optimized atomic radii are produced in each run, which take into account many specific properties of the system investigated. The application of an on-the-fly interpolation scheme reduces discretization noise in the Voronoi integration. The approach is particularly well suited for the calculation of partial charges in periodic bulk phase systems. We apply the method to five exemplary liquid phase simulations and show how the optimized charges can help to understand the interactions in the systems. Well-known effects such as reduced ion charges below unity in ionic liquid systems are correctly predicted without Citation: Brehm, M.; Thomas, M.
    [Show full text]
  • Electron Paramagnetic Resonance of Radicals and Metal Complexes
    PL -- PL9700944 Warsaw, 9-13 September 1996 ELECTRON PARAMAGNETIC RESONANCE OF RADICALS AND METAL COMPLEXES 2nd International Conference of the Polish EPR Association INSTITUTE OF NUCLEAR CHEMISTRY AND TECHNOLOGY UNIVERSITY OF WARSAW 28*12 ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology Prof. Andrzej G. Chmielewski, Ph.D., D.Sc. Assoc. Prof. Hanna B. Ambroz, Ph.D., D.Sc. Assoc. Prof. JacekMichalik, Ph.D., D.Sc. Dr Zbigniew Zimek University of Warsaw Prof. Zbigniew Kqcki, Ph.D., D.Sc. ADDRESS OF ORGANIZING COMMITTEE Institute of Nuclear Chemistry and Technology, Dorodna 16,03-195 Warsaw, Poland phone: (0-4822) 11 23 47; telex: 813027 ichtj pi; fax: (0-4822) 1115 32; e-mail: [email protected] Abstracts are published in the form as received from the Authors SPONSORS The organizers would like to thank the following sponsors for their financial support: » State Committee of Scientific Research » Stiftung fur Deutsch-Polnische Zusammenarbeit » National Atomic Energy Agency, Warsaw, Poland » Committee of Chemistry, Polish Academy of Sciences, Warsaw, Poland » Committee of Physics, Polish Academy of Sciences, Poznan, Poland » The British Council, Warsaw, Poland » CIECH S.A. » ELEKTRIM S.A. » Bruker Analytische Messtechnik, Div. ESR/MINISPEC, Germany - 3 - CONTENTS CONFERENCE PROGRAM 9 LECTURES 15 RADICALS IN DNA AS SEEN BY ESR SPECTROSCOPY M.C.R. Symons 17 ELECTRON AND HOLE TRANSFER WITHIN DNA AND ITS HYDRATION LAYER M.D. Sevilla, D. Becker, Y. Razskazovskii 18 MODELS FOR PHOTOSYNTHETIC REACTION CENTER: STEADY STATE AND TIME RESOLVED EPR SPECTROSCOPY H. Kurreck, G. Elger, M. Fuhs, A. Wiehe, J. von Gersdorff, P. Tian 19 FREE RADICAL FORMATION IN RED BLOOD CELL COMPONENTS UPON PARAQUAT TREATMENT K.
    [Show full text]
  • Thomas W. Shattuck Department of Chemistry Colby College Waterville, Maine 04901 2
    Thomas W. Shattuck Department of Chemistry Colby College Waterville, Maine 04901 2 Colby College Molecular Mechanics Tutorial Introduction September 2008 Thomas W. Shattuck Department of Chemistry Colby College Waterville, Maine 04901 Please, feel free to use this tutorial in any way you wish , provided that you acknowledge the source and you notify us of your usage. Please notify us by e-mail at [email protected] or at the above address. This material is supplied as is, with no guarantee of correctness. If you find any errors, please send us a note. 3 Table of Contents Introduction to Molecular Mechanics Section 1: Steric Energy Section 2: Enthalpy of Formation Section 3: Comparing Steric Energies Section 4: Energy Minimization Section 5: Molecular Dynamics Section 6: Distance Geometry and 2D to 3D Model Conversion Section 7: Free Energy Perturbation Theory, FEP Section 8: Continuum Solvation Electrostatics Section 9: Normal Mode Analysis Section 10: Partial Atomic Charges An accompanying manual with exercises specific to MOE is available at: http://www.colby.edu/chemistry/CompChem/MOEtutor.pdf 4 Introduction to Molecular Mechanics Section 1 Summary The goal of molecular mechanics is to predict the detailed structure and physical properties of molecules. Examples of physical properties that can be calculated include enthalpies of formation, entropies, dipole moments, and strain energies. Molecular mechanics calculates the energy of a molecule and then adjusts the energy through changes in bond lengths and angles to obtain the minimum energy structure. Steric Energy A molecule can possess different kinds of energy such as bond and thermal energy. Molecular mechanics calculates the steric energy of a molecule--the energy due to the geometry or conformation of a molecule.
    [Show full text]
  • Improved Partial Charge Models in Siliceous Zeolites for the Simulation of Adsorption and Identification of Catalytic Sites
    UNLV Theses, Dissertations, Professional Papers, and Capstones August 2017 Improved Partial Charge Models in Siliceous Zeolites for the Simulation of Adsorption and Identification of Catalytic Sites Jarod J. Wolffis University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Inorganic Chemistry Commons, and the Quantum Physics Commons Repository Citation Wolffis, Jarod J., "Improved Partial Charge Models in Siliceous Zeolites for the Simulation of Adsorption and Identification of Catalytic Sites" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3107. http://dx.doi.org/10.34917/11156845 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. IMPROVED PARTIAL CHARGE MODELS IN SILICEOUS ZEOLITES FOR THE SIMULATION OF ADSORPTION AND IDENTIFICATION OF CATALYTIC SITES By Jarod J. Wolffis Bachelor of Science – Chemistry University of Nevada Las Vegas 2013 A thesis submitted in partial fulfillment of the requirements for the Master of Science – Chemistry Department of Chemistry and Biochemistry College of Sciences The Graduate College University of Nevada, Las Vegas August 2017 Thesis Approval The Graduate College The University of Nevada, Las Vegas July 27, 2017 This thesis prepared by Jarod J.
    [Show full text]
  • Ws 3- Dipole Moment.Docx Page 1 of 3 Alscher
    WS 3:Dipole Moment1 In a hydrogen molecule, each nucleus has a unit charge of +1. Electrons are attracted equally to both nuclei. The result is a symmetrical orbital in which electron density near one nucleus is the same as the electron density near the other nucleus. Although a more complicated atom, when fluorine bonds to itself, a similar situation occurs for the formation of the fluorine molecule. In the chemical bond between the two identical atoms, the bonding electrons are shared equally. In contrast to a symmetrical molecule, an unsymmetrical molecule has unsymmetrical attractive forces. The bonding electrons are attracted by different nuclear charges. On the hydrogen atom, we see a +1 nucleus, while on F, there is a +9 nucleus, screened by electrons in 1s, 2s, and 2p orbitals. We have already discussed the shielding abilities of s and p orbitals, so we know the bonding pair don’t feel a full +9 charge, but they feel a positive charge greater than the charge on the hydrogen atom. Unsymmetrical attractive forces lead to an unsymmetrical distribution of electrons. The electron density is concentrated closest to the nucleus with the larger Zeff. The bond is polarized because of this shift in density. The hydrogen is a little positive because it has lost some electron density and the fluorine is more negative because it has gained electron density. This is a polar-covalent bond. Polar covalent bonds are said to arise when there is an electronegativity difference between atoms. This difference is sufficient to cause partial charges on the bonding atoms, but not so large that it produces an ionic bond.
    [Show full text]
  • Electronic Structure and Partial Charge Distribution of Doxorubicin Under Different Molecular Environments
    ELECTRONIC STRUCTURE AND PARTIAL CHARGE DISTRIBUTION OF DOXORUBICIN UNDER DIFFERENT MOLECULAR ENVIRONMENTS A THESIS IN Physics Presented to the Faculty of the University of Missouri-Kansas City in partial fulfillment of the requirements for the degree MASTER IN SCIENCE by LOKENDRA POUDEL B.Sc., Tribhuvan University, Kathmandu, Nepal, 2003 M.Sc., Tribhuvan University, Kathmandu, Nepal, 2005 Kansas City, Missouri 2014 c 2014 LOKENDRA POUDEL ALL RIGHTS RESERVED ELECTRONIC STRUCTURE AND PARTIAL CHARGE DISTRIBUTION OF DOXORUBICIN UNDER DIFFERENT MOLECULAR ENVIRONMENTS Lokendra Poudel, Candidate for the Master in Science Degree University of Missouri-Kansas City, 2014 ABSTRACT Doxorubicin (trade name Adriamycin, abbreviated DOX) is a well-known an- thracyclic chemotherapeutic used in treating a variety of cancers including acute leukemia, lymphoma, multiple myeloma, and a range of stomach, lung, bladder, bone, breast, and ovarian cancers. The purpose of the present work is to study electronic structure, partial charge distribution and interaction energy of DOX under different environments. It provides a framework for better understanding of bioactivity of DOX with DNA. While in this work, we focus on DOX−DNA interactions; the obtained knowledge could be translated to other drug−target interactions or biomolecular in- teractions. The electronic structure and partial charge distribution of DOX in three different molecular environments: isolated, solvated, and intercalated into a DNA complex, were studied by first principles density functional methods. It is shown that the ad- dition of solvating water molecules to DOX and the proximity and interaction with DNA has a significant impact on the electronic structure as well as the partial charge distribution. The calculated total partial charges for DOX in the three models are 0.0, +0.123 and -0.06 electrons for the isolated, solvated, and intercalated state, re- spectively.
    [Show full text]