Sequencing of the Tyrosine Decarboxylase

Total Page:16

File Type:pdf, Size:1020Kb

Sequencing of the Tyrosine Decarboxylase 2521 Journal of Food Protection, Vol. 67, No. 11, 2004, Pages 2521±2529 Copyright Q, International Association for Food Protection Sequencing of the Tyrosine Decarboxylase Cluster of Lactococcus lactis IPLA 655 and the Development of a PCR Method for Detecting Tyrosine Decarboxylating Lactic Acid Bacteria MARIÂA FERNAÂ NDEZ, DANIEL M. LINARES, AND MIGUEL A. ALVAREZ* Instituto de Productos LaÂcteos de Asturias, Carretera de In®esto s/n, 33300 Villaviciosa, Asturias, Spain Downloaded from http://meridian.allenpress.com/jfp/article-pdf/67/11/2521/1674402/0362-028x-67_11_2521.pdf by guest on 01 October 2021 MS 04-109: Received 12 March 2004/Accepted 9 June 2004 ABSTRACT The enzymatic decarboxylation of tyrosine produces tyramine, the most abundant biogenic amine in dairy productsÐ especially in cheeses. The screening of lactic acid bacteria isolated from different artisanal cheeses and a number of microbial collections identi®ed 22 tyramine-producing strains belonging to different genera. The Lactococcus lactis strain IPLA 655 was selected, and the genes encoding a putative tyrosyl tRNA synthetase, a tyrosine decarboxylase (tdcA), and a tyrosine-tyramine antiporter, found together as a cluster, were sequenced. The disruption of tdcA yielded a strain unable to produce tyramine. Comparison of the L. lactis IPLA 655 tdcA gene with database tdcA sequences led to the design of two primers for use in a PCR method that identi®ed potential tyramine-producing strains. The proposed method can use puri®ed DNA, isolated colonies, milk, curd, and even cheese as a template. Molecular tools for the rapid detection of tyramine-producing bacteria at any time during the fermentation process could help prevent tyramine accumulation in fermented foods. The proposed technique could be of great use to the food industry. Lactic acid bacteria (LAB) are widely used in a variety tures. It is therefore useful to determine which strains pro- of food fermentation processes. These gram-positive bac- duce undesirable compounds so that these are not part of teria play an important role in the quality of the ®nal prod- starter cultures. ucts because they contribute to ¯avor formation, texture Histamine and tyramine are the most studied of the BA development, and biopreservation (the prevention of spoil- because they have toxicological effects that derive from age by undesirable and pathogenic microorganisms). Some their vasoactive and psychoactive properties (44). These strains even have probiotic properties. LAB metabolism compounds are formed from histidine and tyrosine, respec- strongly in¯uences the properties of fermented foods. Ami- tively, via an enzymatic decarboxylation reaction. The his- no acid catabolism is particularly important because it helps tidine decarboxylase genes (hdcA) of different gram-posi- produce desired ¯avor molecules (methylbutanal, isovaler- tive bacterial strainsÐLactobacillus sp. strain 30a (10, 53), ate, etc.), but it can also produce off-¯avor molecules (phe- Lactobacillus buchneri (26), Clostridium perfringens (26, nol, p-cresol, etc.) and even toxic compounds such as bio- 51), Micrococcus sp. (52), and Leuconostoc oenos (11)Ð genic amines (BA). BA are organic bases of low molecular have been characterized. The biochemical properties of his- mass that are formed and degraded during the normal me- tidine decarboxylase from Lactobacillus 30a have been tabolism of microorganisms, plants, and animals. They are studied extensively by van Poejie and Snell (51) and Schelp necessary for several physiological functions in humans. et al. (43). However, although tyrosine decarboxylase However, they are toxic if high concentrations are ingested (TDC) enzymes have been well characterized in eukary- or if the detoxi®cation process is inhibited (either geneti- otes, little is known about their prokaryotic counterparts. cally or by drugs) (2). Foods likely to contain high levels The puri®cation and characterization of this enzyme has of BA include ®shery products and fermented foods such been reported only for Enterococcus faecalis (4) and Lac- as cheese, wine, beer, and cured sausages (48). tobacillus brevis IOEB 9809 (33, 37). In addition, the E. BA form via the decarboxylation of their correspond- faecalis JH2-2 gene encoding the enzyme tyrosine decar- ing amino acids through the action of enzymes produced boxylase (tdcA) has been cloned (9), and the sequence for by microorganisms present in the food (48) (e.g., Entero- L. brevis IOEB 9809 is available (32, 33). In both strains, bacteriae, Pseudomonas spp., enterococci, and some LAB the tdcA gene is part of a cluster with a gene encoding a (21)). Nonetheless, production is more related to strain than putative tyrosine-tyramine antiporter (tyrP) and a tyrosyl species. Producer strains can appear as contaminants of fer- mented foods, but they can also form part of starter cul- tRNA synthetase gene (tyrS). Lactococcus lactis is the most widely used starter cul- * Author for correspondence. Tel: 134985893352; Fax: 134985892233; ture in the manufacture of cheese, other dairy products, and E-mail: [email protected]. fermented foods. Although some strains have been identi- 2522 FERNAÂ NDEZ ET AL. J. Food Prot., Vol. 67, No. 11 TABLE 1. Strains and plasmids used in this study DNA isolation and manipulation. Escherichia coli DH5a was used as an intermediate host. Cloning was performed accord- Strain/plasmid Relevant characteristica Source ing to standard procedures (42). The isolation of E. coli plasmid Strain DNA and the recombinant techniques used were those described E. coli by Sambrook et al. (42). Large-scale isolation of E. coli plasmids for nucleotide sequence analysis was performed with the Plasmid INVaF9 Invitrogen Midi Kit (Qiagen, Hilden, Germany) according to the manufac- DH5a (22) turer's instructions. Plasmid and chromosomal DNA of L. lactis L. lactis were isolated and transformed as described previously (15). IPLA 655 Isolated from artisanal chees- (13) Southern blot hybridization was performed at 658C, and blots es. IPLA collection. were washed with 0.13 SSC (i.e., 0.15 M NaCl 1 0.0015 M Plasmid sodium citrate) before autoradiography. The probes used for hy- bridization were radiolabeled with [a-32P]dATP by nick transla- pCR2.1 Ampr Invitrogen tion. pUC18Ery Eryr, 3.8-kb pUC19 carrying Downloaded from http://meridian.allenpress.com/jfp/article-pdf/67/11/2521/1674402/0362-028x-67_11_2521.pdf by guest on 01 October 2021 the ery gene of plL253 (51) Construction of plasmids. An internal fragment of the tdc 4 pM20 Amp , 4.7-kb derivative of gene (820 bp) from L. lactis IPLA 655 was obtained directly from pCR2.1 containing a 0.8-kb genomic DNA by PCR ampli®cation with the use of the degen- fragment of tdcA from erate oligonucleotides P2 (59-GAYATIATIGGIATIGGIYTIGAY L. lactis IPLA 655 This work CARG-39), and P1 (59-CCRTARTCIGGIATIGCRAARTCIGTRTG r pM24 Ery , 5.8-kb derivative of 39), where Y is C or T, R is A or G, and I is inosine (Table 2). pM20 containing the ery The design of these oligonucleotides was based on the sequence gene of pUC18Ery This work of tdcA from L. brevis IOEB 9809 (33). The PCR product ob- tained was cloned in pCR2.1 (Invitrogen, Carlsbad, Calif.), gen- a Ampr, ampicillin resistant; Eryr, erythromycin resistant. erating the plasmid pM20. The erythromycin resistance gene (ery) from pUC18Ery (50) was cloned as a BamHI-HindIII fragment into pM20, previously digested with the same enzymes, to yield ®ed as tyramine producers (20), the tdcA gene has not been pM24. This was used to construct a knock-out strain. characterized. Nucleotide sequence analysis. Nucleotide sequences were Although several qualitative and quantitative methods analyzed with an ABI Prism 373 A Strech automated sequencer have been developed to determine BA production, consum- at the DNA Sequencing Department (Centro de Investigaciones er demand for better and healthier foods has increased in- BioloÂgicas, Consejo Superior de Investigaciones Cienti®cas). Se- terest in the development of rapid and sensitive methods quences were assembled and analyzed with the CLONE program for detecting BA producers in food. Molecular methods (v. 5) and compared with those in the SwissProt library (February have been used for the detection of gram-positive hista- 2004 release) with the TFASTA program. The Clustal method (25) mine-producing strains (31) and, more recently, for gram- was used for the multiple alignment of sequences. negative strains (47). This paper reports the sequencing of the tdc cluster of Oligonucleotide design and PCR reaction conditions. Primers Tdc1 and Tdc2 (Table 2) were designed by comparing genes from L. lactis IPLA 655 (13), a strain isolated from the tdcA sequences of the gram-positive bacteria E. faecalis JH2- artisanal cheese. Besides tdcA, the cluster includes a puta- 2 (9), L. brevis IOEB 9809 (33), and L. lactis IPLA 655 with the tive tyrosine-tyramine antiporter gene and an aminoacyl Clustal program. DNA was ampli®ed in an iCycler thermal cycler tRNA synthetase gene. Disruption of the tdcA gene yielded (Bio-Rad, Hercules, Calif.). The PCR conditions involved an ini- a strain unable to produce tyramine. The comparison of the tial denaturation step (958C for 5 min), 35 ampli®cation cycles cluster sequence with those held in databases led to the (958C for 45 s, 508C for 1 min, and 728C for 1 min), and a ®nal design of speci®c oligonucleotides that ampli®ed an inter- extension step at 728C for 7 min. All ampli®cations were per- nal fragment of the tdcA gene of different LAB genera. To formed with the use of puRe Taq Ready-To-Go PCR beads fol- our knowledge, this is the ®rst PCR method to detect ty- lowing the manufacturer's instructions (Amersham-Biosciences, ramine-producing bacteria in foods. Buckinghamshire, UK) and 200 nM of oligonucleotides as prim- ers. MATERIAL AND METHODS When DNA was used as a template, 10 ng was diluted in 25 ml of MilliQ water and used directly in the reaction.
Recommended publications
  • Decarboxylation What Is Decarboxylation?
    Decarboxylation What is decarboxylation? Decarboxylation is the removal of a carboxyl group when a compound is exposed to light or heat. A carboxyl group is a grouping of carbon, oxygen, and hydrogen atoms in the form of COOH. When a compound is decarboxylated, this group is released in the form of carbon dioxide. Decarboxylation of cannabinoids When considering the decarboxylation of cannabinoids, it is important to note that this reaction is what causes the neutral acidic cannabinoids to turn into the active cannabinoids found in most products on the market. Both the neutral and acidic cannabinoids are naturally found in the cannabis plant. The active cannabinoids that have psychoactive properties are what occur after decarboxylation. Below is the mechanism for the conversion of THCA to THC. https://www.leafscience.com/2017/04/13/what-is-thca/ Heating THCA converts it to THC by kicking off the carboxyl group seen on the right side of the THCA molecule. Once the carboxyl group is released from the THCA it forms carbon dioxide and the THC compound. The THC is now ready for use in different products and will provide the psychoactive effects that popularized this compound. This simple reaction is all it takes to convert the acidic cannabinoids to their active counterparts. Cannabinolic acid (CBDA) and CBD are both another example of this process. Decarboxylation process Light can start the decarboxylation process after a period of time, but heat is the more common element used. There are different methods to decarboxylate cannabis depending on user preference. In the industry, dabs, vapes and joints decarboxylate instantly when heat is applied to the product.
    [Show full text]
  • Optimization of the Decarboxylation Reaction in Cannabis
    APPLICATION NOTE FT-IR Spectroscopy Authors: Dr. Markus Roggen1 Antonio M. Marelli1 Doug Townsend2 Ariel Bohman2 1Outco SanDiego, CA 2PerkinElmer, Inc. Shelton, CT. Optimization of the Decarboxylation Reaction Introduction The production of cannabis in Cannabis Extract extracts and oils for medicinal and recreational products has increased significantly in North America. This growth has been driven by both market demand in newly legalized states and patient demand for a greater diversity in cannabis products.1,2,3 Most cannabis extraction processes, independent of solvent or instrument choice, undergo a decarboxylation step whereby the carboxylic acid functional group is removed from the cannabinoids. The decarboxylation reaction converts the naturally occurring acid forms of the cannabinoids, e.g. tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA), to their more potent neutral forms, e.g. tetrahydrocannabinol (THC) and cannabidiol (CBD). Because the carboxylic acid group is thermally labile, the industry typically applies a heat source, and at times a catalyst, to decarboxylate the cannabinoids. The heat-promoted decarboxylation reaction has been Decarboxylation Reaction discussed at length within the industry, but an extensive Decarboxylation was achieved by heating the cannabis extract in 4, 5, 6 literature search reveals very few papers on the process. a oil bath with a programmable hot plate. An overhead stirrer The data available represents a large spectrum of reaction was utilized to promote even heat distribution throughout the conditions, including a range in reaction temperature, time experiment. Oil bath and extract temperatures were recorded and instrumental setup. As such, there is a lack of universal every five minutes throughout the 80-minute heating process.
    [Show full text]
  • Citric Acid Cycle
    CHEM464 / Medh, J.D. The Citric Acid Cycle Citric Acid Cycle: Central Role in Catabolism • Stage II of catabolism involves the conversion of carbohydrates, fats and aminoacids into acetylCoA • In aerobic organisms, citric acid cycle makes up the final stage of catabolism when acetyl CoA is completely oxidized to CO2. • Also called Krebs cycle or tricarboxylic acid (TCA) cycle. • It is a central integrative pathway that harvests chemical energy from biological fuel in the form of electrons in NADH and FADH2 (oxidation is loss of electrons). • NADH and FADH2 transfer electrons via the electron transport chain to final electron acceptor, O2, to form H2O. Entry of Pyruvate into the TCA cycle • Pyruvate is formed in the cytosol as a product of glycolysis • For entry into the TCA cycle, it has to be converted to Acetyl CoA. • Oxidation of pyruvate to acetyl CoA is catalyzed by the pyruvate dehydrogenase complex in the mitochondria • Mitochondria consist of inner and outer membranes and the matrix • Enzymes of the PDH complex and the TCA cycle (except succinate dehydrogenase) are in the matrix • Pyruvate translocase is an antiporter present in the inner mitochondrial membrane that allows entry of a molecule of pyruvate in exchange for a hydroxide ion. 1 CHEM464 / Medh, J.D. The Citric Acid Cycle The Pyruvate Dehydrogenase (PDH) complex • The PDH complex consists of 3 enzymes. They are: pyruvate dehydrogenase (E1), Dihydrolipoyl transacetylase (E2) and dihydrolipoyl dehydrogenase (E3). • It has 5 cofactors: CoASH, NAD+, lipoamide, TPP and FAD. CoASH and NAD+ participate stoichiometrically in the reaction, the other 3 cofactors have catalytic functions.
    [Show full text]
  • Lecture: 28 TRANSAMINATION, DEAMINATION and DECARBOXYLATION
    Lecture: 28 TRANSAMINATION, DEAMINATION AND DECARBOXYLATION Protein metabolism is a key physiological process in all forms of life. Proteins are converted to amino acids and then catabolised. The complete hydrolysis of a polypeptide requires mixture of peptidases because individual peptidases do not cleave all peptide bonds. Both exopeptidases and endopeptidases are required for complete conversion of protein to amino acids. Amino acid metabolism The amino acids not only function as energy metabolites but also used as precursors of many physiologically important compounds such as heme, bioactive amines, small peptides, nucleotides and nucleotide coenzymes. In normal human beings about 90% of the energy requirement is met by oxidation of carbohydrates and fats. The remaining 10% comes from oxidation of the carbon skeleton of amino acids. Since the 20 common protein amino acids are distinctive in terms of their carbon skeletons, amino acids require unique degradative pathway. The degradation of the carbon skeletons of 20 amino acids converges to just seven metabolic intermediates namely. i. Pyruvate ii. Acetyl CoA iii. Acetoacetyl CoA iv. -Ketoglutarate v. Succinyl CoA vi. Fumarate vii. Oxaloacetate Pyruvate, -ketoglutarate, succinyl CoA, fumarate and oxaloacetate can serve as precursors for glucose synthesis through gluconeogenesis.Amino acids giving rise to these intermediates are termed as glucogenic. Those amino acids degraded to yield acetyl CoA or acetoacetate are termed ketogenic since these compounds are used to synthesize ketone bodies. Some amino acids are both glucogenic and ketogenic (For example, phenylalanine, tyrosine, tryptophan and threonine. Catabolism of amino acids The important reaction commonly employed in the breakdown of an amino acid is always the removal of its -amino group.
    [Show full text]
  • Gut Bacterial Tyrosine Decarboxylases Restrict the Bioavailability Of
    bioRxiv preprint doi: https://doi.org/10.1101/356246; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Gut bacterial tyrosine decarboxylases restrict the bioavailability of levodopa, the primary treatment in Parkinson’s disease Authors: Sebastiaan P. van Kessel1, Alexandra K. Frye1, Ahmed O. El-Gendy1,2, Maria Castejon1, Ali Keshavarzian3, Gertjan van Dijk4, Sahar El Aidy1*† Affiliations: 1 Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands. 2 Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt 3 Division of Digestive Disease and Nutrition, Section of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois. 4 Department of Behavioral Neuroscience, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands. * Corresponding author. Email: [email protected] † Present address: Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborg 7, 9747 AG Groningen, The Netherlands. P:+31(0)503632201. 1 bioRxiv preprint doi: https://doi.org/10.1101/356246; this version posted August 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Summary Human gut bacteria play a critical role in the regulation of immune and metabolic systems, as well as in the function of the nervous system. The microbiota senses its environment and responds by releasing metabolites, some of which are key regulators of human health and disease.
    [Show full text]
  • Dopa Decarboxylase Activity of the Living Human Brain
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 2721-2725, April 1991 Neurobiology Dopa decarboxylase activity of the living human brain (dopamine/dopamine synthesis/6-['8F]fluoro-L-dopa/Parkinson disease/positron emission tomography) ALBERT GJEDDE, JAKOB REITH, SUZAN DYVE, GABRIEL MGER, MARK GUTTMAN, MiRKo DIKSIC, ALAN EVANS, AND HIROTO KUWABARA Positron Imaging Laboratories, Montreal Neurological Institute, 3801 University Street, Montreal, Quebec H3A 2B4, Canada Communicated by Alfred P. Wolf, December 10, 1990 (received for review July 23, 1990) ABSTRACT Monoamiergic neurons use dopa decarbox- loss of methyl-Fdopa from the circulation, the methylation of ylase (DDC; aromatic-L-amino-acid carboxy-lyase, EC Fdopa in brain tissue, the exchange of Fdopa and methyl- 4.1.1.28) to form dopamine from L-3,4-dihydroxyphenylala- Fdopa between the circulation and brain tissue, and the nine (L-dopa). We measured regional dopa decarboxylase decarboxylation of Fdopa in the tissue. The model has too activity in brains of six healthy volunteers with 6-[18F]fluoro- many compartments to be evaluated by PET. We used known L-dopa and positron emission tomography. We calculated the relationships between the parameters to reduce the number enzyme activity, relative to its K., with a kinetic model that of compartments to three and the number of parameters to yielded the relative rate of conversion of 6['8Flfluoro-L-dopa four: We incorporated into each study (i) the ratio (0.43) to [18Fjfluorodopamine. Regional values of relative dopa de- between the blood-brain barrier transport rates ofFdopa and carboxylase activity ranged from nil in occipital cortex to 1.9 methyl-Fdopa in rat (5), (ii) the rate of conversion of Fdopa h-1 in caudate nucleus and putamen, in agreement with values to methyl-Fdopa and the rate of loss of methyl-Fdopa from obtained in vitro.
    [Show full text]
  • Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
    Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders.
    [Show full text]
  • Structure and Ligands Interactions of Citrus Tryptophan Decarboxylase by Molecular Modeling and Docking Simulations
    Communication Structure and Ligands Interactions of Citrus Tryptophan Decarboxylase by Molecular Modeling and Docking Simulations Angelo Facchiano 1,*, Domenico Pignone 2, Luigi Servillo 3, Domenico Castaldo 4 and Luigi De Masi 5,* 1 Consiglio Nazionale delle Ricerche (CNR), Istituto di Scienze dell’Alimentazione (ISA), 83100 Avellino, Italy; [email protected] 2 CNR, Istituto di Bioscienze e BioRisorse (IBBR), 70126 Bari, Italy; [email protected] 3 Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; [email protected] 4 Stazione Sperimentale per le Industrie delle Essenze e dei Derivati dagli Agrumi (SSEA), Azienda Speciale della Camera di Commercio di Reggio Calabria, 89125 Reggio Calabria, Italy; [email protected] 5 CNR, IBBR, 80055 Portici, Italy; [email protected] * Correspondence: [email protected] (A.F.); [email protected] (L.D.M.). Received: 29 December 2019; Accepted: 22 March 2019; Published: 26 March 2019 Abstract: In a previous work, we in silico annotated protein sequences of Citrus genus plants as putative tryptophan decarboxylase (pTDC). Here, we investigated the structural properties of Citrus pTDCs by using the TDC sequence of Catharanthus roseus as an experimentally annotated reference to carry out comparative modeling and substrate docking analyses. The functional annotation as TDC was verified by combining 3D molecular modeling and docking simulations, evidencing the peculiarities and the structural similarities with C. roseus TDC. Docking with L-tryptophan as a ligand showed specificity of pTDC for this substrate. These combined results confirm our previous in silico annotation of the examined protein sequences of Citrus as TDC and provide support for TDC activity in this plant genus.
    [Show full text]
  • Pyruvate Dehydrogenase Complex Deficiency
    Pavlu‑Pereira et al. Orphanet J Rare Dis (2020) 15:298 https://doi.org/10.1186/s13023‑020‑01586‑3 RESEARCH Open Access Pyruvate dehydrogenase complex defciency: updating the clinical, metabolic and mutational landscapes in a cohort of Portuguese patients Hana Pavlu‑Pereira1, Maria João Silva1,2, Cristina Florindo1, Sílvia Sequeira3, Ana Cristina Ferreira3, Sofa Duarte3, Ana Luísa Rodrigues4, Patrícia Janeiro4, Anabela Oliveira5, Daniel Gomes5, Anabela Bandeira6, Esmeralda Martins6, Roseli Gomes7, Sérgia Soares7, Isabel Tavares de Almeida1,2, João B. Vicente8* and Isabel Rivera1,2* Abstract Background: The pyruvate dehydrogenase complex (PDC) catalyzes the irreversible decarboxylation of pyruvate into acetyl‑CoA. PDC defciency can be caused by alterations in any of the genes encoding its several subunits. The resulting phenotype, though very heterogeneous, mainly afects the central nervous system. The aim of this study is to describe and discuss the clinical, biochemical and genotypic information from thirteen PDC defcient patients, thus seeking to establish possible genotype–phenotype correlations. Results: The mutational spectrum showed that seven patients carry mutations in the PDHA1 gene encoding the E1α subunit, fve patients carry mutations in the PDHX gene encoding the E3 binding protein, and the remaining patient carries mutations in the DLD gene encoding the E3 subunit. These data corroborate earlier reports describing PDHA1 mutations as the predominant cause of PDC defciency but also reveal a notable prevalence of PDHX mutations among Portuguese patients, most of them carrying what seems to be a private mutation (p.R284X). The biochemical analyses revealed high lactate and pyruvate plasma levels whereas the lactate/pyruvate ratio was below 16; enzy‑ matic activities, when compared to control values, indicated to be independent from the genotype and ranged from 8.5% to 30%, the latter being considered a cut‑of value for primary PDC defciency.
    [Show full text]
  • Ontogeny of L-Glutamic Acid Decarboxylase and 7 -Aminobutyric Acid Concentration in Human Kidney
    Pediat. Res. 9: 484-487 (1975) a-Aminobutyric acid human kidney glutamic acid decarboxylase pyridoxal phosphate Ontogeny of L-Glutamic Acid Decarboxylase and 7 -Aminobutyric Acid Concentration in Human Kidney G. A. LANCASTER,'27' F. MOHYUDDIN, AND C. R. SCRIVER LIeBelle Laboratorv for Biochemical Genetics and the Medical Research Council Genetics Group. McGill University-Montreal Children's Hospital Research Institute, Montreal, Quebec. Canada Extract particular importance in man, who extracts glutamine from the plasma to generate ammonia in kidney (10). Under such condi- Mature human renal cortex contains y-aminobutyric acid tions, the net intrarenal burden of glutamate requiring disposal is (GABA) at concentrations on the order of 0.2 pnol/g wet wt and greater than in those species, such as the rat, in which intrarenal about half of that concentration in fetal kidney. glutamate is consumed to synthesize the glutamine used for The pyridoxal-5'-phosphate (PLP)-dependent enzyme, L- ammoniagenesis. Renal GABA is low in rat kidney relative to glutamic acid decarboxylase (GAD), catalyzes the conversion of human kidney (8), a finding we considered to be supportive of our L-glutamate to GABA. The PLP-saturated GAD activity in hypothesis concerning the role of the GABA pathway in kidney. post-term (1 day-9 years) renal cortex homogenate is 0.94 A 0.38 We have examined the ontogeny of L-glutamic acid decarboxyl- pnol CO, formed/g wet wt/hr (Table 1). The corresponding GAD ase, the initial enzyme committing glutamate to the GABA activity in fetal renal cortex, in the midtrimester and early third (P pathway.
    [Show full text]
  • Cooperative Interactions in Glutamic Acid Decarboxylase David Lavern Witte Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1971 Cooperative interactions in glutamic acid decarboxylase David Lavern Witte Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons Recommended Citation Witte, David Lavern, "Cooperative interactions in glutamic acid decarboxylase " (1971). Retrospective Theses and Dissertations. 4930. https://lib.dr.iastate.edu/rtd/4930 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. 71-26,904 WITTE, David Lavem, 1943- COOPERATIVE INTERACTIONS IN GLUTAMIC ACID DECARBOXYLASE. Iowa State University, Ph.D., 1971 Biochemistiy University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEQf MICROFILMED EXACTLY AS RECEIVED Cooperative interactions in glutamic acid decarboxylase by David Lavern Witte A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Biochemistry Approved: Signature was redacted for privacy. Signature was redacted for privacy. H tment Signature was redacted for privacy. f Graduée College Iowa State University Of Science and Technology Ames, Iowa 1971 ii TABLE OF CONTENTS Page DEDICATION i i i ABBREVIATIONS iv INTRODUCTION 1 LITERATURE REVIEW 2 EXPERIMENTAL 15 RESULTS AND DISCUSSION 27 LITERATURE CITED 75 ACKNOWLEDGMENTS 78 APPENDIX 79 DEDICATION To iny wife iv ABBREVIATIONS ATCC - American Type Culture Collection CD - circular dichroistn DEAE - diethyl amino ethyl DTT - dithio threitol (CIel and's reagent) E.
    [Show full text]
  • Screening Method to Evaluate Amino Acid-Decarboxylase Activity of Bacteria Present in Spanish Artisanal Ripened Cheeses
    foods Article Screening Method to Evaluate Amino Acid-Decarboxylase Activity of Bacteria Present in Spanish Artisanal Ripened Cheeses Diana Espinosa-Pesqueira, Artur X. Roig-Sagués * and M. Manuela Hernández-Herrero CIRTTA—Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Travessera dels Turons S/N, 08193 Barcelona, Spain; [email protected] (D.E.-P.); [email protected] (M.M.H.-H.) * Correspondence: [email protected]; Tel.: +34-935-812-582 Received: 13 September 2018; Accepted: 31 October 2018; Published: 6 November 2018 Abstract: A qualitative microplate screening method, using both low nitrogen (LND) and low glucose (LGD) decarboxylase broths, was used to evaluate the biogenic amine (BA) forming capacity of bacteria present in two types of Spanish ripened cheeses, some of them treated by high hydrostatic pressure. BA formation in decarboxylase broths was later confirmed by High Performance Liquid Chromatography (HPLC). An optimal cut off between 10–25 mg/L with a sensitivity of 84% and a specificity of 92% was obtained when detecting putrescine (PU), tyramine (TY) and cadaverine (CA) formation capability, although these broths showed less capacity detecting histamine forming bacteria. TY forming bacteria were the most frequent among the isolated BA forming strains showing a strong production capability (exceeding 100 mg/L), followed by CA and PU formers. Lactococcus, Lactobacillus, Enterococcus and Leuconostoc groups were found as the main TY producers, and some strains were also able to produce diamines at a level above 100 mg/L, and probably ruled the BA formation during ripening. Enterobacteriaceae and Staphylococcus spp., as well as some Bacillus spp.
    [Show full text]