Scientists Slam Rationale Behind Largest HIV Vaccine Trial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluation of T-Cell and B-Cell Epitopes and Design of Multivalent Vaccines Against Htlv-1 Diseases
EVALUATION OF T-CELL AND B-CELL EPITOPES AND DESIGN OF MULTIVALENT VACCINES AGAINST HTLV-1 DISEASES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Roshni Sundaram, M.S. * * * * * The Ohio State University 2003 Dissertation Committee: Approved by Professor Pravin T.P. Kaumaya, Adviser Professor Christopher M. Walker Adviser Professor Neil R. Baker Department of Microbiology Professor Marshall V. Williams ABSTRACT Human T-cell lymphotropic virus type I (HTLV-1) is a C type retrovirus that is the causative agent of an aggressive T-cell malignancy, adult T-cell leukemia/lymphoma (ATLL). The virus is also implicated in a number of inflammatory disorders, the most prominent among them being HTLV-1 associated myelopathy or tropical spastic paraparesis (HAM/TSP). HTLV-1, like many viruses that cause chronic infection, has adapted to persist in the face of an active immune response in infected individuals. The viral transactivator Tax is the primary target of the cellular immune response and humoral responses are mainly directed against the envelope protein. Vaccination against HTLV-1 is a feasible option as there is very little genetic and antigenic variability. Vaccination regimes against chronic viruses must be aimed at augmenting the immune response to a level that is sufficient to clear the virus. This requires that the vaccine delivers a potent stimulus to the immune system that closely resembles natural infection to activate both the humoral arm and the cellular arm. It is also clear that multicomponent vaccines may be more beneficial in terms of increasing the breadth of the immune response as well as being applicable in an outbred population. -
Evolution of the PRD1-Adenovirus Lineage: a Viral Tree of Life Incongruent with the Cellular 3 Universal Tree of Life 4 5 Authors 6 Anthony C
bioRxiv preprint doi: https://doi.org/10.1101/741942; this version posted August 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title 2 Evolution of the PRD1-adenovirus lineage: a viral tree of life incongruent with the cellular 3 universal tree of life 4 5 Authors 6 Anthony C. Woo1,2*, Morgan Gaia1,2, Julien Guglielmini3, Violette Da Cunha1,2 and Patrick 7 Forterre1,2* 8 9 Affiliations 1 10 Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Department of 11 Microbiology, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France. 2 12 Department of Microbiology, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 13 Institute for Integrative Biology of the Cell (I2BC), Bâtiment 21, Avenue de la Terrasse, 14 91190 Gif-sur-Yvette cedex, France. 3 15 HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, Institut Pasteur, 25-28 16 Rue du Docteur Roux, 75015 Paris, France 17 *corresponding authors: 18 Anthony Woo: [email protected] 19 Patrick Forterre: [email protected] 20 21 Abstract 22 Double-stranded DNA viruses of the PRD1-adenovirus lineage are characterized by 23 homologous major capsid proteins containing one or two β-barrel domains known as the jelly 24 roll folds. Most of them also share homologous packaging ATPases of the FtsK/HerA 25 superfamily P-loop ATPases. Remarkably, members of this lineage infect hosts from the three 26 domains of life, suggesting that viruses from this lineage could be very ancient and share a 27 common ancestor. -
A Brief Speculative History of Avipoxvirus in New Zealand
A brief, speculative history of avipoxvirus in New Zealand Brett Gartrell, Laryssa Howe, Maurice Alley, Hye-Jeong Ha Intro to avipoxvirus (APV) • Global distribution • Reports in >280 bird species, 70 families, 20 orders globally • Economic losses in domestic poultry • Biodiversity losses in island ecosystems (Hawaii, Galapagos, Canary Islands) in conjunction with avian malaria (vaccinia virus, copyright E. Niles). APV infection characteristics • Excellent environmental stability • Need a break in the epithelium for infection to establish • Insect and mechanical vectors are main route of infection • Host specificity varies between strains APV molecular characteristics • Fowlpox virus is the type species of the Avipoxvirus genus • complete genomic sequences of Fowlpox virus and Canarypox virus • The two genomes are highly diverged, sharing only ca. 70% sequence identity • The 365-kbp genome of Canarypox virus is larger than that of Fowlpox virus (288 kbp) and shows significant differences in gene content APV phylogeny • Initially assigned strain/species status on host affected but confused by multi-host pathogenic strains • DNA sequences of the 4b core protein coding genomic region currently used. • Wide variation in genome has limited other pan-genus PCR primers • the vast majority of avian poxvirus isolates clustered into three major clades, represented by the Fowlpox virus (clade A), the Canarypox virus (clade B), and the Psittacinepox virus (clade C) APV phylogeny from NZ birds (HJ Ha PhD) Silvereye © P Sorrell Ha, H.J., Howe, L., Alley, M., Gartrell, B. 2011. The phylogenetic analysis of avipoxvirus in New Zealand. Veterinary Microbiology 150: 80–87 APV distribution in NZ Ha, H.J., Howe, L., Alley, M., Gartrell, B. -
Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes Antipodes)
viruses Article Genomic Characterisation of a Novel Avipoxvirus Isolated from an Endangered Yellow-Eyed Penguin (Megadyptes antipodes) Subir Sarker 1,* , Ajani Athukorala 1, Timothy R. Bowden 2,† and David B. Boyle 2 1 Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; [email protected] 2 CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia; [email protected] (T.R.B.); [email protected] (D.B.B.) * Correspondence: [email protected]; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222 † Present address: CSIRO Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, Geelong, VIC 3220, Australia. Abstract: Emerging viral diseases have become a significant concern due to their potential con- sequences for animal and environmental health. Over the past few decades, it has become clear that viruses emerging in wildlife may pose a major threat to vulnerable or endangered species. Diphtheritic stomatitis, likely to be caused by an avipoxvirus, has been recognised as a signifi- cant cause of mortality for the endangered yellow-eyed penguin (Megadyptes antipodes) in New Zealand. However, the avipoxvirus that infects yellow-eyed penguins has remained uncharacterised. Here, we report the complete genome of a novel avipoxvirus, penguinpox virus 2 (PEPV2), which was derived from a virus isolate obtained from a skin lesion of a yellow-eyed penguin. The PEPV2 genome is 349.8 kbp in length and contains 327 predicted genes; five of these genes were found to be unique, while a further two genes were absent compared to shearwaterpox virus 2 (SWPV2). -
A Media Handbook for HIV Vaccine Trials for Africa Acknowledgements
A Media Handbook for HIV Vaccine Trials for Africa Acknowledgements The Media Handbook for HIV Vaccine Trials for Africa was written by Yinka Adeyemi with guidance and direction from Bunmi Makinwa of the department of Policy, Strategy and Research, Dr Jose Esparza, Dr Saladin Osmanov, Claire Pattou, and Coumba Touré of the World Health Organization (WHO)/Joint United Nations Programme on HIV/AIDS (UNAIDS), HIV Vaccine Initiative. We would like to acknowledge the following individuals for their valuable comments and contributions to this handbook: Dr Alashle Abimiku, Dr Omu Anzala, Dr Carlos Arnaldo, Dr Courtney Batholomew, Janet Frohlich, Dr D. A. Gangakhedar, Dr Rodney Hoff. Patrick Jabani, Bachi Karkaria, Dr Tom LaSalvia, Dr Chewe Luo, Nebat Mbewe, Dr Rosemary Musonda, Binod Mahanty, Dr Roy Mugerwa, Ronaldo Mussauer de Lima, Omololu Falobi, Otula Owuor, Kirk Pereira, Dr John Rwomushana, Mario Scheffer, Jaya Shreedhar, Judith Soal, Dr Prasert Thongcharoen, Kathy Ann Waterman and Victor Zonana. The section on Communication and vaccine trials in Thailand (Appendix 1) is based on a UNAIDS report by Nusara Thaitawat, while that on Communication issues in vaccine trials in Uganda (Appendix 2) is based on a UNAIDS report by Ann Fieldler. The section on Communication and preparations for HIV vaccine trials in Kenya (Appendix 3) is by Otula Owuor. A number of fictitious people and organizations are used for illustrative purposes within the text. Any reference to actual persons or organizations is purely coincidental. UNAIDS/01.05E (English original, February 2001) ISBN 92-9173-021-1 © Joint United Nations Programme on HIV/AIDS The designations employed and the presentation of the (UNAIDS) 2001. -
Safety of Intravenous Administration of a Canarypox Virus Encoding The
Cancer Gene Therapy (2003) 10, 509–517 r 2003 Nature Publishing Group All rights reserved 0929-1903/03 $25.00 www.nature.com/cgt Safety of intravenous administration of a canarypox virus encoding the human wild-type p53 gene in colorectal cancer patients Anand G Menon,1 Peter JK Kuppen,1 Sjoerd H van der Burg,2 Rienk Offringa,2 Marie Claude Bonnet,5 Bert IJ Harinck,1 Rob AEM Tollenaar,1 Anke Redeker,2 Hein Putter,4 Philippe Moingeon,5 Hans Morreau,3 Cornelis JM Melief,2 and Cornelis JH van de Velde1 1Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands; 2Department of Immunohematology and Bloodbank, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; 4Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands; and 5Aventis Pasteur, Lyon, France. Overexpression of p53 occurs in more than 50% of colorectal cancers. Therefore, p53 represents an attractive target antigen for immunotherapy. We assessed the safety of a canarypox virus encoding the human wild-type p53 gene given intravenously to end- stage colorectal cancer patients in a three-step dose escalation study aimed at inducing p53 immune responses. Patients with metastatic disease of p53-overexpressing colorectal cancers were vaccinated three times at 3-week intervals, each time with 106.5 7.0 7.5 CCID50 (CCID50 ¼ cell culture infectious dose 50%; group 1, n ¼ 5), 10 CCID50 (group 2, n ¼ 5) or 10 CCID50 (group 3, n ¼ 6). Vital signs and the occurrence of adverse events were monitored and blood was analyzed for biochemical and hematological parameters as well as signs of auto-immune safety. -
Avian Pox in Shearwaters on Lord Howe Island
Association of Avian Veterinarians Australasian Committee Ltd. Annual Conference Proceedings Auckland New Zealand 2017. 25: 63-68. Avian Pox in Shearwaters on Lord Howe Island Subir Sarker1, Shubhagata Das2, Jennifer L. Lavers3, Ian Hutton4, Karla Helbig1, Chris Upton5, Jacob Imbery5, and Shane R. Raidal2 1. Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, 3086 2. School of Animal and Veterinary Sciences, Charles Sturt University, NSW 2678 3. Institute for Marine and Antarctic Studies, University of Tasmania, TAS 7004 4. Lord Howe Island Museum, Lord Howe Island, NSW 2898 5. Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada. Abstract fungal infections are common and contribute to mortality (van Riper and Forrester, 2007). Until recently six avipox- Avipoxvirus infections occur in a wide range of bird spe- virus genomes were published; a pathogenic American cies worldwide. In Australia pox is common in the Aus- strain of Fowlpox virus (Afonso et al., 2000), an attenuat- tralian magpie (Cracticus tibicen), Currawongs (Strepera ed European strain of Fowlpox virus (Laidlaw and Skinner spp.) and Silvereyes (Zosterops lateralis) but very little , 2004), a virulent Canarypox virus (Tulman et al., 2004), a is known about the evolution of this family of viruses pathogenic South African strain of Pigeonpox virus, a Pen- or the disease ecology of avian poxviruses in seabirds. guinpox virus (Offerman et al., 2014) and a pathogenic Pox lesions have been seen in colonies of Shy Albatross Hungarian strain of Turkeypox virus (Banyai et al., 2015). (Thalassarche cauta) in Bass Strait but the epidemiology of pox in pelagic birds is not very well elucidated. -
HIV VACCINE RESEARCH and DEVELOPMENT CD8 Group
GLOSSARY OF KEY HIV VACCINE TERMS Immunogenicity – when attributed to a test vaccine, defines the • Since 2001, USAID has contributed $134 million to help discover an HIV vaccine. Currently, USAID is committing annual product’s ability to cause the body to produce antibodies or T-cells funding of $28 million through 2011 for HIV vaccine R&D. that may protect against an infection, disease, or foreign substance. • USAID provides support for all phases of HIV vaccine applied R&D, infrastructure, and capacity building for clinical trial Innate Immunity – a relatively nonspecific response that protects conduct, public communications, and policy analysis through a partnership with the International AIDS Vaccine Initiative. against a whole class or type of invaders but does not generate USAID does not support basic research. TECHNICAL ISSUE BRIEF immune memory (see adaptive immune response). Killer T-cells – a group of T-cells that is activated by helper T-cells • USAID plans involvement with the Global HIV/AIDS Vaccine Enterprise. PATHWAYS OF DISCOVERY: and has the ability to destroy cells infected by foreign invaders (such as viruses). Also known as cytotoxic T-cells, they may belong to the • USAID facilitates coordination between HIV vaccine clinical trial activities and HIV/AIDS prevention, care, and treatment HIV VACCINE RESEARCH AND DEVELOPMENT CD8 group. programs in developing countries. Lymphocytes – the diverse set of white blood cells (each with different functions) that are responsible for immune responses. virologists convenes twice a year to review the R&D portfolio activities. As the Global HIV/AIDS Vaccine Enterprise evolves Introduction There are two main types: B-cells (responsible for producing anti- under consideration by the organization. -
Phase III HIV Vaccine Trial—Thailand
HIV Vaccine Efficacy Trials; Lessons and Opportunities for Future Research Hannah Kibuuka Makerere University Walter Reed Project, Uganda INTEREST Conference Harare, Zimbabwe Outline . Need for an HIV Vaccine . Efficacy Trials up to date . Lessons from failed Efficacy trials and opportunities for Research . Lessons form RV 144 and P5 follow up studies Before After vaccines vaccines Vaccines work really well! Vaccines are among the most successful medical interventions (eradicated or controlled smallpox, polio, measles…) A Vaccine Is Essential to End AIDS Potential impact of an AIDS vaccine as part of the UNAIDS Enhanced Investment Framework (IFE) Cumulative infections 2.000.000 avoided 2027-70 Current Trend 42.7M Current Trend + Vaccine* 1.500.000 50% Scale-up 27.1M 1.000.000 50% Scale-up + Vaccine* New Infections with HIV HIV with Infections New 500.000 IFE 16.2M IFE + Vaccine* 0 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 * Illustrative vaccine with an assumed efficacy of 70%, not representative of any specific candidate. Coverage in generalized epidemics: routine 10 years old 70%, catch-up 11-14 years old 60%, 15-17 years old 55%, 18-49 years old 50%; in high risk populations in concentrated epidemics: 50% Modeling project – UNAIDS, Futures Institute, IAVI, AVAC [funded by USAID] 3 Need….. Several new prevention measures have been realized in the last few years. Although efficacious, the interventions are faced with potential challenges of access and adherence . HIV vaccine has potential to address some of these -
HPV Vaccination to Prevent HIV Infection: Time for Randomized Controlled Trials Maarten F
COMMENTARY HPV Vaccination to Prevent HIV Infection: Time for Randomized Controlled Trials Maarten F. Schim van der Loeff, MD, PhD,*† Alan G. Nyitray, PhD,‡ and Anna R. Giuliano, PhD‡ Despite many years of rigorous evaluation of a variety of interventions, HIV incidence rates in parts of Africa remain unacceptably high. A recent review identified 37 randomized controlled trials testing interventions to reduce HIV incidence.1 Except for 3 randomized controlled trials of male circumcision2–4 and 1 trial of syndromic treatment of sexually transmitted diseases,5 and, recently, 1 trial of a vaginal microbicide,6 no significant reductions in HIV incidence were observed. In some trials of vaginal microbicides, trial participants in the active treatment arm actually had increased HIV incidence rates.7 Trials with candidate vaccines have been equally disappointing.8 A recently completed trial of a prime-boost strategy conducted in Thailand showed statistically significant, but limited, protection against HIV.9 Nevertheless, even vaccine optimists think that a preventive HIV vaccine is many years away. Sexually transmitted infections (STIs) were identified as important cofactors for HIV trans- mission early in the epidemic.10,11 Many prospective observational studies showed that the presence of ulcerative and nonulcerative STIs increased the likelihood of HIV transmission.10,11 Several interventions were based on this observation including mass treatment with antibiotics,12 improved syndromic management of STIs,5,13 and herpes simplex virus (HSV)-2 suppressive treatment.14 Null findings of these interventions should be interpreted with caution. Failure to show an effect does not necessarily mean that the STI is not causally associated with HIV. -
Impact of Vaccine Type on HIV-1 Vaccine Elicited Antibody Durability
www.nature.com/scientificreports OPEN Impact of vaccine type on HIV‑1 vaccine elicited antibody durability and B cell gene signature Rohith Palli1,2,15, Kelly E. Seaton3,15, Michael S. Piepenbrink4, John Hural5, Paul A. Goepfert4, Fatima Laher6, Susan P. Buchbinder7, Gavin Churchyard8, Glenda E. Gray6,9, Harriet L. Robinson10, Yunda Huang5, Holly Janes5,11, James J. Kobie4, Michael C. Keefer12, Georgia D. Tomaras3 & Juilee Thakar13,14* Efcacious HIV‑1 vaccination requires elicitation of long‑lived antibody responses. However, our understanding of how diferent vaccine types elicit durable antibody responses is lacking. To assess the impact of vaccine type on antibody responses, we measured IgG isotypes against four consensus HIV antigens from 2 weeks to 10 years post HIV‑1 vaccination and used mixed efects models to estimate half‑life of responses in four human clinical trials. Compared to protein‑boosted regimens, half‑lives of gp120‑specifc antibodies were longer but peak magnitudes were lower in Modifed Vaccinia Ankara (MVA)‑boosted regimens. Furthermore, gp120‑specifc B cell transcriptomics from MVA‑boosted and protein‑boosted vaccines revealed a distinct signature at a peak (2 weeks after last vaccination) including CD19, CD40, and FCRL2‑5 activation along with increased B cell receptor signaling. Additional analysis revealed contributions of RIG‑I‑like receptor pathway and genes such as SMAD5 and IL‑32 to antibody durability. Thus, this study provides novel insights into vaccine induced antibody durability and B‑cell receptor signaling. While vaccine-elicited antibody durability has been achieved for licensed vaccines such as yellow fever, measles, smallpox, and Hepatitis B, elicitation of long-lived, functional antibody responses with candidate HIV-1 vac- cine regimens remains elusive1,2. -
Lessons Drawn from Recent HIV Vaccine Efficacy Trials
SUPPLEMENT ARTICLE Lessons Drawn From Recent HIV Vaccine Efficacy Trials Jonathan D. Fuchs, MD, MPH,*† Magda E. Sobieszczyk, MD, MPH,§ Scott M. Hammer, MD,§ and Susan P. Buchbinder, MD*†‡ has not delivered one. A recently completed vaccine efficacy Abstract: A safe and effective HIV vaccine is needed to curtail the trial has inspired new hope that an HIV vaccine is US and global epidemics. However, the search for one has been achievable. Here we describe how the results from these elusive despite more than 25 years of focused research. Results from large clinical studies, some unexpected, are driving vaccine the RV144 Thai efficacy trial have renewed hope that a vaccine may discovery. We also outline important lessons about data protect against HIV acquisition. We can draw several scientific and analysis, dissemination, and recruitment of communities operational lessons from RV144 and other recent tests-of-concept at risk. efficacy trials. Here we describe how trial results, some unexpected, highlight the fundamental role these clinical studies play in HIV vaccine discovery. These trials also teach us that transparency in data HIV VACCINE EFFICACY TRIALS TO DATE analysis and results dissemination can yield substantial rewards and Since the first gp160 vaccine entered clinical testing in that efforts to engage communities, particularly those most heavily 1987, more than 150 trials of different vaccine candidates have affected by the epidemic, are needed to augment research literacy and been conducted.2 These trials reflect 3 distinct waves of trial recruitment. Future efficacy trial designs may incorporate novel, vaccine development, including approaches designed to elicit partially effective prevention strategies.