Université Du Québec INRS-Lnstitut Armand-Frappier Étude Sur La

Total Page:16

File Type:pdf, Size:1020Kb

Université Du Québec INRS-Lnstitut Armand-Frappier Étude Sur La Université du Québec INRS-lnstitut Armand-Frappier Étude sur la biogenèse et le mouvement des usines virales induites par le virus de la mosaïque du navet Par Romain Grangeon Thèse présentée pour l’obtention du grade de philosophiae doctor (PhD) Jury d’évaluation Président du jury Patrick Labonté Examinateurs externes Peter Moffett (université de Sherbrooke) Guy Lemay (Université de Montréal) Directeur de recherche Jean-François La liberté RÉSUMÉ La capacité infectieuse d’un virus réside dans les interactions qu’il doit réaliser avec des protéines hôtes cibles. Sans ces interactions, il ne peut accomplir son cycle viral qui lui permettra d’infecter son hôte. Les virus à ARN de polarité positive (+) se répliquent en association avec des membranes et provoquent des changements cellulaires. Ces changements conduisent à la formation d’usines virales impliquées dans la réplication des virus. Le virus de la mosaïque du navet (TuMV, turnip mosaic virus), un virus à ARN(+) dont la taille du génome est d’environ 10kb, n’échappe pas à cette règle. Dans ce projet de doctorat, je me suis intéressé à la biogenèse de ces usines virales induites par le TuMV et de l’impact sur la cellule de la formation de telles structures. Je me suis également attardé au rôle que pouvaient jouer ces usines dans le transport intercellulaire du virus. Dans des travaux publiés dans Journal of Virology (Oct. 2009, Vol.83 n° 20 p. 10460— 10471), en collaboration avec Sophie Cotton, nous avons montré que la protéine virale 6K2 est responsable de la formation des usines et que plusieurs protéines de l’hôte impliquées dans la traduction sont présentes dans celles-ci. Nous y avons aussi identifié des protéines virales impliquées dans la réplication et la présence d’ARN viral. J’ai contribué à montrer que les usines virales sont mobiles et localisées le long des microfilaments d’actines. Le mouvement intracellulaire de ces vésicules est inhibé lorsque les cellules sont traitées avec de la latrunculin B, une drogue qui dépolymérise les microfilaments. Les résultats obtenus dans cet article suggèrent un couplage de la réplication et de la traduction. Dans un deuxième article publié également dans Journal of Virology (Sept. 2012 vol. 86 no. 17 p. 9255-9265), j’ai ensuite observé minutieusement la formation des usines virales au cours de l’infection. II existe deux types de structures bien distinctes: une structure périnucléaire d’environ lOpm de diamètre et de nombreuses vésicules de petites tailles. La structure périnucléaire est un amalgame de membranes issues du système sécrétoire, tandis que les vésicules de petites tailles sont localisées le long du réticulum endoplasmique (RE) du cortex et bougent rapidement. Il existe un lien fonctionnel entre ces deux types de structures, la structure périnucléaire est à l’origine des usines virales mobiles. Bien que les membranes du système sécrétoire se retrouvent dans la structure périnucléaire, le réseau du RE et les corps de Golgi ne semblent pas affectés. La structure périnucléaire est cependant en continuité avec les membranes du système sécrétoire. De plus, nous avons constaté que le TuMV bloque la sécrétion des protéines dans l’apoplaste. L’implication des usines virales dans le mouvement intercellulaire du TuMV a été étudiée et les résultats ont été soumis pour publication dans le journal “Proceedings of the National Academy of Sciences. J’ai observé que les vésicules 6K2 traversent les plasmodesmes pour se rendre dans les cellules adjacentes. Ce phénomène est rendu possible par l’action de facteurs viraux qui augmentent la taille limite d’exclusion des plasmodesmes et facilitent le passage des vésicules. En collaboration avec Juan Wan, nous avons retrouvé des agrégats membranaires marqués avec 6K2 et contenant de l’ARN viral dans le xylème. Ces données suggèrent que le transport symplasmique et vasculaire implique un complexe viral associé à des membranes. Un clone infectieux permettant de visualiser le site de la réplication virale a été inséré dans un plasmide qui exprime un marqueur du RE. Cette construction permet de suivre les mouvements intercellulaires du TuMV. Grâce à cet outil, avec la collaboration de Maxime Agbeci, nous avons déterminé que le système sécrétoire précoce et tardif est requis pour le mouvement du TuMV. L’endocytose n’est en revanche pas sollicitée. Dans ce travail qui a été soumis à PLoS Pathogens, j’ai calculé que la vitesse de migration du virus est d’une cellule infectée en moyenne toutes les 3 heures. Dans son ensemble, ce projet apporte des avancées significatives sur la compréhension des mécanismes de réplication des phytovirus et des virus à ARN(+). Romain grangeon Jean-François Laliberté Directeur de recherche 11 REMERCIEMENTS pr Tout d’abord, je tiens à remercier chaleureusement le Jean-François Laliberté, d’une aide mon directeur de recherche, de m’avoir accueilli dans son laboratoire. Il a été constante, sans sa disponibilité et sa patience je ne pense pas que j’aurais pu mener à bien garde, en ce projet. Quand j’ai commencé en septembre 2008, il m’a tout de suite mis en me disant que je ne m’étais pas engagé dans une course de sprinteurs, mais plutôt dans à chaque moment où une course de fond, un marathon. Il a su me pousser et m’encourager j’en avais besoin. Je me rappelle notamment une de ses fameuses phrases qu’il m’a souvent répétée “If it’s ain’t broken, DON’T fix it”. Sa bonne humeur, et son enthousiasme perpétuel face aux difficultés que l’on a pu rencontrer, ont été pour moi une source de sur ce point il a été bien plus motivation. Il m’a aussi fait découvrir un pays, une culture, et qu’un simple directeur de recherche. Je tiens également à remercier les nombreux collègues du laboratoire, Sophie Cotton, Isabelle Mathieu qui étaient déjà présentes dans le laboratoire à mon arrivée. Mais également les collègues avec qui j’ai cohabité plusieurs années en partageant leur quotidien, Maxime Agbeci, Jun Jiang, Juan Wan, et plus récemment Daniel Garcia. Je remercie également les collaborateurs qui ont contribué à ce projet notamment le pr Hugo Zheng de l’université McGill, Gilles Grondin de l’université de Sherbrooke, ainsi que Marcel Desrosiers et Jessy Tremblay de l’IAF pour leur aide irremplaçable au microscope confocal. Un grand merci aux étudiants du campus avec qui j’ai partagé de bons moments, dans le bus en se rendant à l’IAF le matin, au détour d’un couloir, ou bien tout simplement autour d’un café. Finalement, je tiens à remercier les membres de ma famille dont le soutien a été sans faille depuis le début dans mes études universitaires. 111 TABLE DES MATIÈRES RÉSUMÉ REMERCIEMENTS III TABLE DES MATIÈRES IV TABLE DES ILLUSTRATIONS VIII LISTE DES ABRÉVIATIONS X CHAPITRE 1: INTRODUCTION I 1. Généralités sur les virus de plantes 2 2. Les Potyvirus 6 2.1 Généralités et taxonomie 6 2.2 Structure génomique 8 2.3 Interaction protéines-protéines 13 3. Remodelage cellulaire par les phytovirus 16 3.1 Morphologie générale d’une cellule végétale 16 3.2 Réplication des virus de polarité positive chez les plantes 17 3.3 Les usines virales 21 a) Usines associées aux peroxisomes et aux mitochondries 22 b) Usines associées aux chloroplastes 22 c) Usines dérivées du réticulum endoplasmique 23 d) Protéines virales impliquées dans la biogenèse des usines virales 25 3.4 Cibles cellulaires 27 3.5 Impact sur le métabolisme de la cellule végétale 29 3.6 Mouvement intracellulaire des virus 29 3.7 Modification des PD 31 3.8 Couplage entre la réplication et mouvement du virus 34 3.9 Modèle de réplication et de transport viral 35 4. Problématique, hypothèses et objectifs de travail 37 CHAPITRE 2: PUBLICATIONS 39 Publication n°1 40 Contribution 41 Résumé 41 iv Summary .42 Introduction .43 Materials and Methods 45 Plasmid constructions 45 Antibodies 45 Protein expression in plants 46 Drug treatments 46 Protoplast isolation and immunofluorescence labeling 46 In vivo RNA labeling 47 Immunoblot analysis 47 Confocal microscopy 48 Resuits 48 Movement of replication complex vesicles 48 Vesicle alignment with microfilaments 51 TuMV infection is inhibited by LatB treatment 53 Vesicles derive from single genome 54 Localization of host and viral proteins within virus replication complexes 54 Discussion 56 Acknowledgements 59 References 60 Figures legends 65 Figures 68 Publication n°2 75 Contribution 76 Résumé 76 Summary 77 Introduction 77 Materials and Methods 80 Fluorescent proteins and molecular clones 80 Protein expression in plants 81 Confocal microscopy 81 Electron microscopy 82 Resu Its 82 ER, Golgi bodies, COPII coatamers, and chloroplasts are amalgamated in a perinuclear globular structure during TuMV infection 82 TuMV infection inhibits protein secretion at the ER-Golgi interface 84 The globular structure is not an isolated subcellular compartment 85 The globular structure is functionally linked (o motile peripheral 6K2 vesicles 87 Brefeldin A does not abrogate the formation of the perinuclear globular structure 87 Discussion 89 Acknowledgements 92 References 92 Figures legends 97 Figures 101 Publication n°3 109 Contribution 110 Résumé 110 V Summary .111 Introduction .111 . 113 Resuits 6K2-induced vesicles use transvacuolar strands to reach the plasma membrane and dock at plasmodesmata 113 TuMV infection leads to an increase of PD size exclusion limit 114 2-tagged vesicles move intercellularly 115 TuMV-induced 6K The viral RNA-dependent RNA polymerase is found within cortical motile 6K2 vesicles 116 Membranous viral complexes associated with 6K2 are found in xylem vessels 116 Discussion 117 Materials
Recommended publications
  • Wheat Streak Mosaic Virus on Wheat: Biology and Management
    Wheat Streak Mosaic Virus on Wheat: Biology and Management B.A.R. Hadi,1 M.A.C. Langham, L. Osborne, and K. J. Tilmon Plant Science Department, South Dakota State University, Brookings, SD 57006 1Corresponding author, e-mail: [email protected]. J. Integ. Pest Mngmt. 1(2): 2011; DOI: 10.1603/IPM10017 ABSTRACT. Wheat streak mosaic virus is a virus that infects wheat and is transmitted by the wheat curl mite. This virus is responsible for wheat streak mosaic, a widely distributed disease of wheat that can cause economically important yield losses. The current viral taxonomy, vector biology, disease cycle, and management options of Wheat streak mosaic virus are reviewed in this article. Key Words: Wheat streak mosaic virus; wheat curl mite Downloaded from https://academic.oup.com/jipm/article/2/1/J1/2194262 by guest on 23 September 2021 Wheat streak mosaic virus infects both winter and spring wheat Wheat streak mosaic virus was originally placed in the genus Rymo- (Triticum aestivum L.) in the United States and abroad. Depending on virus with other mite-transmitted viruses of Potyviridae. A phyloge- environmental conditions (wet, dry, cool, or hot weather), yield loss netic analysis of Wheat streak mosaic virus using its completed because of Wheat streak mosaic virus infections can surpass 60% nucleotide sequence demonstrated that it shares most recent common (Langham et al. 2001a). Wheat streak mosaic virus is transmitted by ancestry with the whitefly-transmitted Sweet potato mild mottle virus the wheat curl mite, Aceria tosichella Keifer (Acari: Eriophyidae). and not with Ryegrass mosaic virus, the type member of genus Wheat is the preferred host for wheat curl mite and an excellent host Rymovirus.
    [Show full text]
  • Changes to Virus Taxonomy 2004
    Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Plant Virus Evolution
    Marilyn J. Roossinck Editor Plant Virus Evolution Plant Virus Evolution Marilyn J. Roossinck Editor Plant Virus Evolution Dr. Marilyn J. Roossinck The Samuel Roberts Noble Foundation Plant Biology Division P.O. Box 2180 Ardmore, OK 73402 USA Cover Photo: Integrated sequences of Petunia vein cleaning virus (in red) are seen in a chromosome spread of Petunia hybrida (see Chapter 4). ISBN: 978-3-540-75762-7 e-ISBN: 978-3-540-75763-4 Library of Congress Control Number: 2007940847 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface The evolution of viruses has been a topic of intense investigation and theoretical development over the past several decades. Numerous workshops, review articles, and books have been devoted to the subject.
    [Show full text]
  • Tritimovirus P1 Functions As a Suppressor of RNA Silencing and an Enhancer of Disease Symptoms Brock A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2012 Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms Brock A. Young USDA-ARS Drake C. Stenger USDA-ARS, [email protected] Feng Qu Ohio State University, [email protected] T. Jack Morris University of Nebraska-Lincoln, [email protected] Satyanarayana Tatineni USDA-ARS, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Young, Brock A.; Stenger, Drake C.; Qu, Feng; Morris, T. Jack; Tatineni, Satyanarayana; and French, Roy, "Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms" (2012). Papers in Plant Pathology. 474. https://digitalcommons.unl.edu/plantpathpapers/474 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Brock A. Young, Drake C. Stenger, Feng Qu, T. Jack Morris, Satyanarayana Tatineni, and Roy French This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/plantpathpapers/474 Virus Research 163 (2012) 672–677 Contents lists available at SciVerse ScienceDirect Virus Research journa l homepage: www.elsevier.com/locate/virusres Short communication Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms a,b,c a,b,1 c,2 c a,b Brock A.
    [Show full text]
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo
    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
    [Show full text]
  • Molecular Analysis of Vanilla Mosaic Virus from the Cook Islands
    Molecular Analysis of Vanilla mosaic virus from the Cook Islands Christopher Puli’uvea A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (MSc) 2017 School of Science I Abstract Vanilla was first introduced to French Polynesia in 1848 and from 1899-1966 was a major export for French Polynesia who then produced an average of 158 tonnes of cured Vanilla tahitensis beans annually. In 1967, vanilla production declined rapidly to a low of 0.6 tonnes by 1981, which prompted a nation-wide investigation with the aim of restoring vanilla production to its former levels. As a result, a mosaic-inducing virus was discovered infecting V. tahitensis that was distinct from Cymbidium mosaic virus (CyMV) and Odontoglossum ringspot virus (ORSV) but serologically related to dasheen mosaic virus (DsMV). The potyvirus was subsequently named vanilla mosaic virus (VanMV) and was later reported to infect V. tahitensis in the Cook Islands and V. planifolia in Fiji and Vanuatu. Attempts were made to mechanically inoculate VanMV to a number of plants that are susceptible to DsMV, but with no success. Based on a partial sequence analysis, VanMV-FP (French Polynesian isolate) and VanMV-CI (Cook Islands isolate) were later characterised as strains of DsMV exclusively infecting vanilla. Since its discovery, little information is known about how VanMV-CI acquired the ability to exclusively infect vanilla and lose its ability to infect natural hosts of DsMV or vice versa. The aims of this research were to characterise the VanMV genome and attempt to determine the molecular basis for host range specificity of VanMV-CI.
    [Show full text]
  • Structure of Flexible Filamentous Plant Virusesᰔ Amy Kendall,1 Michele Mcdonald,1 Wen Bian,1 Timothy Bowles,1 Sarah C
    JOURNAL OF VIROLOGY, Oct. 2008, p. 9546–9554 Vol. 82, No. 19 0022-538X/08/$08.00ϩ0 doi:10.1128/JVI.00895-08 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Structure of Flexible Filamentous Plant Virusesᰔ Amy Kendall,1 Michele McDonald,1 Wen Bian,1 Timothy Bowles,1 Sarah C. Baumgarten,1 Jian Shi,2† Phoebe L. Stewart,2 Esther Bullitt,3 David Gore,4 Thomas C. Irving,4 Wendy M. Havens,5 Said A. Ghabrial,5 Joseph S. Wall,6 and Gerald Stubbs1* Department of Biological Sciences and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 372351; Department of Molecular Physiology and Biophysics and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 372322; Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 021183; BioCAT, CSRRI, and BCPS, Illinois Institute of Technology, Chicago, Illinois 604394; Plant Pathology Department, University of Kentucky, Lexington, Kentucky 405465; and Biology Department, Brookhaven National Laboratory, Upton, New York 119736 Received 29 April 2008/Accepted 17 July 2008 Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.
    [Show full text]
  • Wheat Streak Mosaic Virus: a Century Old Virus with Rising Importance Worldwide
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2018 Wheat streak mosaic virus: a century old virus with rising importance worldwide Khushwant Singh Stephen N. Wegulo Anna Skoracka Jiban Kumar Kundu Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. bs_bs_banner MOLECULAR PLANT PATHOLOGY (2018) 19(9 ), 219 3–2206 DOI: 10.1111/mpp.12683 Review Wheat streak mosaic virus: a century old virus with rising importance worldwide KHUSHWANT SINGH1 ,STEPHENN.WEGULO2 , ANNA SKORACKA3 AND JIBAN KUMAR KUNDU 1,* 1Crop Research Institute, Division of Crop Protection and Plant Health, 161 06 Prague 6, Czech Republic 2Department of Plant Pathology, University of Nebraska-Lincoln, 406H Plant Sciences Hall, Lincoln, NE 68583, USA 3Population Ecology Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, Poznan 61-614, Poland INTRODUCTION SUMMARY Wheat streak mosaic virus (WSMV) was first observed by Peltier Wheat streak mosaic virus (WSMV) causes wheat streak mosaic, in Nebraska in the Central Great Plains of the USA in 1922 and a disease of cereals and grasses that threatens wheat production described as ‘yellow mosaic’ (McKinney, 1937; Staples and worldwide.
    [Show full text]
  • RNA Silencing Suppression Mechanisms of Triticum Mosaic Virus P1: Dsrna Binding Property and Mapping Functional Motifs T ⁎ Adarsh K
    Virus Research 269 (2019) 197640 Contents lists available at ScienceDirect Virus Research journal homepage: www.elsevier.com/locate/virusres RNA silencing suppression mechanisms of Triticum mosaic virus P1: dsRNA binding property and mapping functional motifs T ⁎ Adarsh K. Guptaa,1, Satyanarayana Tatinenib, a Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States b United States Department of Agriculture-Agricultural Research Service and Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68583, United States ARTICLE INFO ABSTRACT Keywords: Triticum mosaic virus (TriMV) is the exemplar strain of the type species of the genus Poacevirus in the family Triticum mosaic virus Potyviridae infecting wheat in the Great Plains region of the USA. Previously, we reported that the P1 protein of Poacevirus TriMV is a viral suppressor of RNA silencing. Mutational analyses of P1 showed that deletion of 55 N-terminal P1 amino acids, and a single amino acid at the C-terminus retained its ability to suppress ssGFP-induced RNA RNA silencing suppressor silencing. These data suggest that the N-terminal region but not the C-terminal region of P1 is flexible for dsRNA binding suppression of RNA silencing activity. Computational analyses revealed that TriMV P1 contains LXK/RA and zinc GW-motif fi Zinc-finger motif nger motifs at the N-terminal region and a domain containing the GW motif at the C-terminal region. Mutational analysis of TriMV P1 suggested functional roles for these motifs in suppression of RNA silencing. Electrophoretic mobility shift assays with bacterially expressed P1 protein revealed that P1 binds to 180-nt and 21- and 24-nt ds-siRNAs derived from green fluorescent protein sequence.
    [Show full text]
  • Tritimovirus P1 Functions As a Suppressor of RNA Silencing and an Enhancer of Disease Symptoms Brock A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UNL | Libraries University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 2012 Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms Brock A. Young USDA-ARS Drake C. Stenger USDA-ARS, [email protected] Feng Qu Ohio State University, [email protected] T. Jack Morris University of Nebraska-Lincoln, [email protected] Satyanarayana Tatineni USDA-ARS, [email protected] See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons Young, Brock A.; Stenger, Drake C.; Qu, Feng; Morris, T. Jack; Tatineni, Satyanarayana; and French, Roy, "Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms" (2012). Papers in Plant Pathology. 474. https://digitalcommons.unl.edu/plantpathpapers/474 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Brock A. Young, Drake C. Stenger, Feng Qu, T. Jack Morris, Satyanarayana Tatineni, and Roy French This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/plantpathpapers/474 Virus Research 163 (2012) 672–677 Contents lists available at SciVerse ScienceDirect Virus Research journa l homepage: www.elsevier.com/locate/virusres Short communication Tritimovirus P1 functions as a suppressor of RNA silencing and an enhancer of disease symptoms a,b,c a,b,1 c,2 c a,b Brock A.
    [Show full text]
  • Population Dynamics of Triticum Mosaic Virus in Various Host Species Melissa S
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research in Agronomy and Horticulture Department Agronomy and Horticulture Spring 5-2014 Population Dynamics of Triticum Mosaic Virus in Various Host Species Melissa S. Bartels University of Nebraska-Lincoln Follow this and additional works at: http://digitalcommons.unl.edu/agronhortdiss Part of the Agronomy and Crop Sciences Commons, Plant Pathology Commons, and the Virology Commons Bartels, Melissa S., "Population Dynamics of Triticum Mosaic Virus in Various Host Species" (2014). Theses, Dissertations, and Student Research in Agronomy and Horticulture. 74. http://digitalcommons.unl.edu/agronhortdiss/74 This Article is brought to you for free and open access by the Agronomy and Horticulture Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research in Agronomy and Horticulture by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. POPULATION DYNAMICS OF TRITICUM MOSAIC VIRUS IN VARIOUS HOST SPECIES by Melissa Sue Bartels A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Agronomy Under the Supervision of Professor T. Jack Morris Lincoln, Nebraska May, 2014 POPULATION DYNAMICS OF TRITICUM MOSAIC VIRUS IN VARIOUS HOST SPECIES Melissa Sue Bartels, Ph.D. University of Nebraska, 2014 Advisor: T. Jack Morris It has been established that RNA viruses should be genetically diverse, due to the high error rate of their RNA-dependent RNA polymerases and the lack of proof- reading capabilities. Plant RNA viruses are not as genetically diverse as expected.
    [Show full text]