Lecture 17 Mirrors and Thin Lens Equation

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 17 Mirrors and Thin Lens Equation LECTURE 17 MIRRORS AND THIN LENS EQUATION Instructor: Kazumi Tolich Lecture 17 2 ¨ 18.6 Image formation with spherical mirrors ¤ Concave mirrors ¤ Convex mirrors ¨ 18.7 The thin-lens equation ¤ Sign conventions for lenses and mirrors 18.6 Image formation with spherical mirrors ¨ Spherical mirrors (concave mirrors and convex mirrors) can be used to form images. Quiz: 18.6-1 4 18.6 Concave mirrors ¨ The special rays for a concave mirror: 18.6 Concave mirrors ¨ For the ray trace, incoming rays are drawn as if they are reflect off the mirror plane, not off the curved surface of the mirror. ¨ The image is real if rays converge at the image point. 18.6 Convex mirrors ¨ The special rays for a convex mirror: 18.6 Convex mirrors ¨ Diverging rays appear to diverge from the virtual image. 18.7 The thin-lens equation & Sign conventions for lenses and mirrors ¨ The thin-lens equation (for thin ¨ Focal length, �: lenses and mirrors): ¤ + for a converging lens or a concave mirror ¤ − for a diverging lens or a convex mirror 1 1 1 ¨ Magnification, �: + = ¤ + for upright image � �$ � ¤ − for inverted image $ ¨ Image distance, � : ¤ + for a real images ¤ − for a virtual images ¨ Object distance, �: ¤ + always Quiz: 18.7-1 through 18.7-4 10 Demo: lens equation applied for a lens 11 ¨ Image Formation ¤ Demonstration of a double convex lens forming an inverted and diminished or enlarged image. ) ) ) n + = * *+ , ) ) ) n + = , where � is the distance between the light source and the screen. * -.* , 3 -± -1.2-, n � = 4 Quiz: 18.7-5 Example: 18.7-1 (Knight P18.27, modified) 13 ¨ A dentist uses a curved mirror to view the back side of teeth on the upper jaw. Suppose she wants an erect image with a magnification of 2.0 when the mirror is 1.2 cm from a tooth. (Treat this problem as though the object and image lie along a straight line.) A. What is its focal length? B. Is it a convex or concave mirror?.
Recommended publications
  • The Telescope Lenses, Which Turned the Image Upside Down but Improved the Clarity Dramatically
    The image produced by the first refracting telescope was Name right side up. However, the clarity of the image was less than ideal. Johannes Kepler worked to improve the image produced by the refracting telescope. He used two convex The Telescope lenses, which turned the image upside down but improved the clarity dramatically. His design soon became popular By Phyllis Naegeli and remains in use today. Do you like to lie on your back and gaze One problem associated with the refracting telescope was at the stars? What constellations can you the rainbow halo it produced around the object in view. Sir name? Have you ever used a telescope to Isaac Newton did not care for the halo produced by the get a closer look at the universe? Do you refracting telescope. He set out to improve the design, know how a telescope works? which led him to work on the reflecting telescope. The design used a curved mirror to collect light from an object. A telescope is used to see distant objects A secondary flat mirror reflected the image to the side of up close. There are two basic types of the tube where it is viewed through an eyepiece. Newton telescopes - the refracting telescope and also used a shorter, fatter tube allowing magnification to be the reflecting telescope. Each will help increased by using larger mirrors. Newton's design you to see the planets, moon, or stars. Both eliminated the rainbow halo produced by the convex lenses use a tube and have an eyepiece to focus the image for you of the refracting telescope.
    [Show full text]
  • Determination of Focal Length of a Converging Lens and Mirror
    Physics 41- Lab 5 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and mirror. Apparatus: Biconvex glass lens, spherical concave mirror, meter ruler, optical bench, lens holder, self-illuminated object (generally a vertical arrow), screen. Background In class you have studied the physics of thin lenses and spherical mirrors. In today's lab, we will analyze several physical configurations using both biconvex lenses and concave mirrors. The components of the experiment, that is, the optics device (lens or mirror), object and image screen, will be placed on a meter stick and may be repositioned easily. The meter stick is used to determine the position of each component. For our object, we will make use of a light source with some distinguishing marking, such as an arrow or visible filament. Light from the object passes through the lens and the resulting image is focused onto a white screen. One characteristic feature of all thin lenses and concave mirrors is the focal length, f, and is defined as the image distance of an object that is positioned infinitely far way. The focal lengths of a biconvex lens and a concave mirror are shown in Figures 1 and 2, respectively. Notice the incoming light rays from the object are parallel, indicating the object is very far away. The point, C, in Figure 2 marks the center of curvature of the mirror. The distance from C to any point on the mirror is known as the radius of curvature, R.
    [Show full text]
  • 5 10 15 20 25 30 35 Class 359 Optical: Systems And
    CLASS 359 OPTICAL: SYSTEMS AND ELEMENTS 359 - 1 359 OPTICAL: SYSTEMS AND ELEMENTS 1 HOLOGRAPHIC SYSTEM OR ELEMENT 197.1 .Using a periodically moving 2 .Authentication element 3 .Having particular recording 198.1 ..With particular mount or driver medium for element 4 ..Recyclable 199.1 ...Oscillating driver 5 ...Magnetic material 199.2 ....Electrostatically driven 6 ...Sandwich having photoconductor 199.3 ....Electromagnetically driven 7 ...Crystalline material 199.4 ....Electromechanically driven 8 ..Having nonplanar recording 200.1 ...Bearing or shaft for rotary medium surface driver 9 .For synthetically generating a 200.2 ....Specific shaft material or hologram structure (e.g., ceramic ring) 10 .Using modulated or plural 200.3 .....Grooved shaft reference beams 200.4 ....Fluid pressure bearing 11 ..Spatial, phase or amplitude 200.5 .....Dynamic fluid bearing modulation 200.6 ...Electrostatic driver 12 .Copying by holographic means 200.7 ...Electromagnetic driver 13 .Head up display 200.8 ...Electromechanical driver 14 ..Holograph on curved substrate 201.1 ..With multiple scanning elements 15 .Using a hologram as an optical (e.g., plural lenses, lens and element prism, etc.) 16 ..With aberration correction 201.2 ...Reflective element (e.g., 17 ..Scanner mirror, reflector, etc.) 18 ...Flat rotating disk 202.1 ...X-Y scanners 19 ..Lens 203.1 ...Having a common axis or 20 ...Multiple point hologram (e.g., rotation fly-eye lens, etc.) 204.1 ..Utilizing multiple light beams 21 .Having defined page composer 204.2 ...Including modulated light
    [Show full text]
  • How Does the Light Adjustable Lens Work? What Should I Expect in The
    How does the Light Adjustable Lens work? The unique feature of the Light Adjustable Lens is that the shape and focusing characteristics can be changed after implantation in the eye using an office-based UV light source called a Light Delivery Device or LDD. The Light Adjustable Lens itself has special particles (called macromers), which are distributed throughout the lens. When ultraviolet (UV) light from the LDD is directed to a specific area of the lens, the particles in the path of the light connect with other particles (forming polymers). The remaining unconnected particles then move to the exposed area. This movement causes a highly predictable change in the curvature of the lens. The new shape of the lens will match the prescription you selected during your eye exam. What should I expect in the period after cataract surgery? Please follow all instructions provided to you by your eye doctor and staff, including wearing of the UV-blocking glasses that will be provided to you. As with any cataract surgery, your vision may not be perfect after surgery. While your eye doctor selected the lens he or she anticipated would give you the best possible vision, it was only an estimate. Fortunately, you have selected the Light Adjustable Lens! In the next weeks, you and your eye doctor will work together to optimize your vision. Please make sure to pay close attention to your vision and be prepared to discuss preferences with your eye doctor. Why do I have to wear UV-blocking glasses? The UV-blocking glasses you are provided with protect the Light Adjustable Lens from UV light sources other than the LDD that your doctor will use to optimize your vision.
    [Show full text]
  • Lens Equation – Thin Lens
    h s’ s f h’ Refraction on Spherical Surface θa=α +φ ; φ = β +θb ⎫ an sinθ a= n bsinθ b n⎬aα + n bβ = ( n b− )φ n a anθ a≅ n b θ b ⎭ h h h tanα = ; tanβ = ; tanφ = s + δ s'−δ R − δ h h h n n n− n ≅α ; β ≅; φ ≅ ⇒a+ b = b a s s' R s s' R Refraction on Spherical Surface n n n− n a+ b = b a Magnification s s' R R positive if C on transmission side; negative otherwise y − y′ tanθ = tanθ = na y nb y′ a b = − s s′ s s′ nasinθ a= n bsin θ b y′ na ′ s esl angallFor sm m = = − y n s tanθ≅ sin θ b Refraction on Spherical Surface n n n− n a+ b = b a . A fish is 7.5Example: Fish bowl s s' R cm from the front of the bowl. y′ n′ s Find the location and magnification of the m = = − a fish as seen by the cat.bowl. Ignore effect of y nb s Radius of bowl = 15 cm. na = 1.33 R negative b O n n n− n n n− n n I s’ a+ b =b a b = b a− a s s' R s' R s s n 1 s′ = b = =6 .− 44cm n− n n 0− . 331 . 33 a b a− a − R s −cm15 7 . 5 cm n′ s 1 .( 33 6− . 44cm ) The fish appears closer and larger. m= − a= − ∗ 1= . 14 nb s 1 7 .cm 5 Lenses • A lens is a piece of transparent material shaped such that parallel light rays are refracted towards a point, a focus: – Convergent Lens Positive f » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » real focus Negative f – Divergent Lens » light moving from air into glass will move toward the normal » light moving from glass back into air will move away from the normal » virtual focus Lens Equation – thin lens n n n− n n n n− n a b+ b = a b+ a = a b 1s s 1' R 1 2s s 2' R2 For air, na=1 and glass, nb=n, and s2=-s1’.
    [Show full text]
  • Spherical Mirror Parabolic Mirror Ray Diagrams for Mirrors
    Ray Diagrams for Mirrors September 8, 2015 1:24 PM Light rays travel in straight lines and so when we see one we assume it is coming straight towards us. But as physics students we know that light can be refracted and bent. Plane Mirror Object Image Plane mirrors form images at the same distance to the mirror as the object. This image is a virtual image as it is behind the mirror and impossible to project on a piece of paper in the real world. Question: Do we see more of ourselves as we get closer to the mirror or less? Question: What size of mirror do we need to see all of ourselves? Question: In a plane mirror is the images height larger, smaller or equal to the objects? Plane Mirrors: Are flat reflective surfaces that create a virtual image with the same height as the object and at the same distance from the mirror as the object. Concave Mirrors These are mirrors that are curved with their outer edges closer to you then their centers. Just like a parenthesis ")". They reflect light towards their focal points. The most ideal curved mirror is a Parabolic Mirror but these are extremely difficult to produce accurately. Most Parabolic Mirrors are approximations created from taking a small portion of a spherical mirror. Parabolic Mirror Spherical Mirror Optics Page 1 Parabolic Mirror Spherical Mirror Principal Axis = focal point = center of circle Convex Mirrors Convex Mirrors are just the opposite of a concave mirror. They are like a backwards parenthesis "(". They reflect light away from the mirrors focal point, which is located on the back side of the mirror.
    [Show full text]
  • Holographic Optics for Thin and Lightweight Virtual Reality
    Holographic Optics for Thin and Lightweight Virtual Reality ANDREW MAIMONE, Facebook Reality Labs JUNREN WANG, Facebook Reality Labs Fig. 1. Left: Photo of full color holographic display in benchtop form factor. Center: Prototype VR display in sunglasses-like form factor with display thickness of 8.9 mm. Driving electronics and light sources are external. Right: Photo of content displayed on prototype in center image. Car scenes by komba/Shutterstock. We present a class of display designs combining holographic optics, direc- small text near the limit of human visual acuity. This use case also tional backlighting, laser illumination, and polarization-based optical folding brings VR out of the home and in to work and public spaces where to achieve thin, lightweight, and high performance near-eye displays for socially acceptable sunglasses and eyeglasses form factors prevail. virtual reality. Several design alternatives are proposed, compared, and ex- VR has made good progress in the past few years, and entirely perimentally validated as prototypes. Using only thin, flat films as optical self-contained head-worn systems are now commercially available. components, we demonstrate VR displays with thicknesses of less than 9 However, current headsets still have box-like form factors and pro- mm, fields of view of over 90◦ horizontally, and form factors approach- ing sunglasses. In a benchtop form factor, we also demonstrate a full color vide only a fraction of the resolution of the human eye. Emerging display using wavelength-multiplexed holographic lenses that uses laser optical design techniques, such as polarization-based optical folding, illumination to provide a large gamut and highly saturated color.
    [Show full text]
  • 25 Geometric Optics
    CHAPTER 25 | GEOMETRIC OPTICS 887 25 GEOMETRIC OPTICS Figure 25.1 Image seen as a result of reflection of light on a plane smooth surface. (credit: NASA Goddard Photo and Video, via Flickr) Learning Objectives 25.1. The Ray Aspect of Light • List the ways by which light travels from a source to another location. 25.2. The Law of Reflection • Explain reflection of light from polished and rough surfaces. 25.3. The Law of Refraction • Determine the index of refraction, given the speed of light in a medium. 25.4. Total Internal Reflection • Explain the phenomenon of total internal reflection. • Describe the workings and uses of fiber optics. • Analyze the reason for the sparkle of diamonds. 25.5. Dispersion: The Rainbow and Prisms • Explain the phenomenon of dispersion and discuss its advantages and disadvantages. 25.6. Image Formation by Lenses • List the rules for ray tracking for thin lenses. • Illustrate the formation of images using the technique of ray tracking. • Determine power of a lens given the focal length. 25.7. Image Formation by Mirrors • Illustrate image formation in a flat mirror. • Explain with ray diagrams the formation of an image using spherical mirrors. • Determine focal length and magnification given radius of curvature, distance of object and image. Introduction to Geometric Optics Geometric Optics Light from this page or screen is formed into an image by the lens of your eye, much as the lens of the camera that made this photograph. Mirrors, like lenses, can also form images that in turn are captured by your eye. 888 CHAPTER 25 | GEOMETRIC OPTICS Our lives are filled with light.
    [Show full text]
  • Curved Mirror - Wikipedia
    2018/11/5 Curved mirror - Wikipedia Curved mirror A curved mirror is a mirror with a curved reflecting surface. The surface may be either convex (bulging outwards) or concave (bulging inwards). Most curved mirrors have surfaces that are shaped like part of a sphere, but other shapes are sometimes used in optical devices. The most common non-spherical type are parabolic reflectors, found in optical devices such as reflecting telescopes that need to image distant objects, since spherical mirror systems, like spherical lenses, suffer from spherical aberration. Distorting mirrors are used for entertainment. They have convex and concave regions that produce deliberately distorted images. Contents Convex mirrors Uses of convex mirror Image Concave mirrors Reflections in a spherical convex Uses mirror. The photographer is seen Image reflected at top right Mirror shape Analysis Mirror equation, magnification, and focal length Ray tracing Ray transfer matrix of spherical mirrors See also References External links Convex mirrors A convex mirror, diverging mirror, or fish eye mirror is a curved mirror in which the reflective surface bulges toward the light source.[1] Convex mirrors reflect light outwards, therefore they are not used to focus light. Such mirrors always form a virtual image, since the focal point (F) and the centre of curvature (2F) are both imaginary points "inside" the mirror, that cannot be reached. As a result, images formed by these mirrors cannot be projected on a screen, since the image is inside the mirror. The image is smaller than the object, but gets larger as the object approaches the mirror. A collimated (parallel) beam of light diverges (spreads out) after reflection from a convex mirror, since the normal to the surface differs with each spot on the mirror.
    [Show full text]
  • Location of Cardinal Points from the ABCD Matrix for the General Optical System
    EE482 Fall 2000 Handout #2 Page 1 Location of Cardinal Points from the ABCD Matrix for the General Optical System I II n1 n2 F1 P1 N1 P2 N2 F2 f1 f2 Figure 1 Cardinal points of a system which is characterized by an ABCD matrix between an input plane I and an output plane II. Cardinal Point Measured Function Special Case From To (n1=n2) First Focal Point P1 F1 -n1/(n2C)-1/C First Principle Point I P1 (n1-n2D)/(n2C)(1-D)/C First Nodal Point I N1 (1-D)/C (1-D)/C Second Focal Point P2 F2 -1/C -1/C Second Principle Point II P2 (1-A)/C (1-A)/C Second Nodal Point II N2 (n1-n2A)/(n2C)(1-A)/C Table 1 When analyzing an optical system, we often are first interested in basic properties of the system such as the focal length (or optical power of the system) and the location of the focal planes, etc. In the limit of paraxial optics, any optical system, from a simple lens to a combination of lenses, mirrors and ducts, can be described in terms of six special surfaces, called the cardinal surfaces of the system. In paraxial optics, these surfaces are planes, normal to the optical axis. The point where the plane intersects the optical axis is the cardinal point corresponding to that cardinal plane. The six special planes are: First Focal Plane Second Focal Plane First Principle Plane Second Principle Plane First Nodal Plane Second Nodal Plane Once we know the location of these special planes, relative to the physical location of the lenses in the system, we can describe all of the paraxial imaging properties of the system.
    [Show full text]
  • Davis Vision's Contact Lens Benefits FAQ's
    Davis Vision’s Contact Lens Benefits FAQ’s for Council of Independent Colleges in Virginia Benefits Consortium, Inc. How your contact lens benefit works when you visit a Davis Vision network provider. As a Davis Vision member, you are entitled to receive contact lenses in lieu of eyeglasses during your benefit period. When you visit a Davis Vision network provider, you will first receive a comprehensive eye exam (which requires a $15 copayment) to determine the health of your eyes and the vision correction needed. If you choose to use your eyewear benefit for contacts, your eye care provider or their staff will need to further evaluate your vision care needs to prescribe the best lens options. Below is a summary of how your contact lens benefit works in the Davis Vision plan. What is the Davis Vision Contact you will have a $60 allowance after a $15 copay plus Lens Collection? 15% discount off of the balance over that amount. You will also receive a $130 allowance toward the cost of As with eyeglass frames, Davis Vision offers a special your contact lenses, plus 15% discount/1 off of the balance Collection of contact lenses to members, which over that amount. You will pay the balance remaining after greatly minimizes out-of-pocket costs. The Collection your allowance and discounts have been applied. is available only at independent network providers that also carry the Davis Vision Collection frames. Members may also choose to utilize their $130 allowance You can confirm which providers carry Davis Vision’s towards Non-Collection contacts through a provider’s own Collection by logging into the member website at supply.
    [Show full text]
  • Laboratory 7: Properties of Lenses and Mirrors
    Laboratory 7: Properties of Lenses and Mirrors Converging and Diverging Lens Focal Lengths: A converging lens is thicker at the center than at the periphery and light from an object at infinity passes through the lens and converges to a real image at the focal point on the other side of the lens. A diverging lens is thinner at the center than at the periphery and light from an object at infinity appears to diverge from a virtual focus point on the same side of the lens as the object. The principal axis of a lens is a line drawn through the center of the lens perpendicular to the face of the lens. The principal focus is a point on the principal axis through which incident rays parallel to the principal axis pass, or appear to pass, after refraction by the lens. There are principle focus points on either side of the lens equidistant from the center (See Figure 1a). Figure 1a: Converging Lens, f>0 Figure 1b: Diverging Lens, f<0 In Fig. 1 the object and image are represented by arrows. Two rays are drawn from the top of the object. One ray is parallel to the principal axis which bends at the lens to pass through the principle focus. The second ray passes through the center of the lens and undeflected. The intersection of these two rays determines the image position. The focal length, f, of a lens is the distance from the optical center of the lens to the principal focus. It is positive for a converging lens, negative for a diverging lens.
    [Show full text]