New Insights Into the Immune System Using Dirty Mice Sara E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Exploration Across Biomedical Databases
1 Visual Exploration Across Biomedical Databases Michael D. Lieberman∗†‡ Sima Taheri∗ Huimin Guo∗ Fatemeh Mir-Rashed∗ [email protected] [email protected] [email protected] [email protected] Inbal Yahav§ Aleks Aris∗ Ben Shneiderman∗† [email protected] [email protected] [email protected] Abstract—Though biomedical research often draws on knowl- mentioned in d. d may also have associations with other edge from a wide variety of fields, few visualization methods PubMed documents that cite d as a reference, as well as for biomedical data incorporate meaningful cross-database ex- associations to the PubMed documents that d itself cites. ploration. A new approach is offered for visualizing and explor- ∈ ing a query-based subset of multiple heterogeneous biomedical Furthermore, each gene g G could have associations with databases. Databases are modeled as an entity-relation graph the proteins for which g codes, or the DNA sequences in containing nodes (database records) and links (relationships which g’s code appears. Usually, the various types of records between records). Users specify a keyword search string to in these databases also have many attributes associated with retrieve an initial set of nodes, and then explore intra- and inter- them. For example, PubMed documents might be annotated database links. Results are visualized with user-defined semantic substrates to take advantage of the rich set of attributes usually with the date of publication, authors, and general topics, while present in biomedical data. Comments from domain experts gene records could be annotated with the relevant species, indicate that this visualization method is potentially advantageous location on chromosome, or function. -
A Novel Transmembrane Glycoprotein Cancer Biomarker Present in the X Chromosome ANA PAULA DELGADO, SHEILIN HAMID, PAMELA BRANDAO and RAMASWAMY NARAYANAN
CANCER GENOMICS & PROTEOMICS 11 : 81-92 (2014) A Novel Transmembrane Glycoprotein Cancer Biomarker Present in the X Chromosome ANA PAULA DELGADO, SHEILIN HAMID, PAMELA BRANDAO and RAMASWAMY NARAYANAN Department of Biological Sciences, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL, U.S.A. Abstract. Background: The uncharacterized proteins of the genome are of unknown nature (10). These proteins and the human proteome offer an untapped potential for cancer non-coding RNAs are called the ‘dark matter’ of the genome biomarker discovery. Numerous predicted open reading (11-13). Whereas in the past most gene discovery has frames (ORFs) are present in diverse chromosomes. The revolved around known genes due to the ease of follow-up mRNA and protein expression data, as well as the mutational studies (14-17), the dark matter of the genome offers an and variant information for these ORF proteins are available untapped potential (18). Realizing the importance of this area, in the cancer-related bioinformatics databases. Materials the US National Cancer Institute has recently announced a and Methods: ORF proteins were mined using bioinformatics major initiative called illuminating the dark matter for and proteomic tools to predict motifs and domains, and druggable targets (http://commonfund.nih.gov/idg/index). cancer relevance was established using cancer genome, Establishing cancer relevance for novel or uncharacterized transcriptome and proteome analysis tools. Results: A novel proteins is a crucial first step in lead discovery. The cancer testis-restricted ORF protein present in chromosome X called genomes of patients from around the world can be readily CXorf66 was detected in the serum, plasma and neutrophils. -
BIOINFORMATICS ORIGINAL PAPER Doi:10.1093/Bioinformatics/Btu524
CORE Metadata, citation and similar papers at core.ac.uk Provided by Open Repository and Bibliography - LuxembourgBioinformatics Advance Access published August 26, 2014 2014, pages 1–8 BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu524 Data and text mining Advance Access publication August 6, 2014 BioTextQuest+: a knowledge integration platform for literature mining and concept discovery Nikolas Papanikolaou1,y, Georgios A. Pavlopoulos1,y, Evangelos Pafilis2, Theodosios Theodosiou1,ReinhardSchneider3, Venkata P. Satagopam3, Christos A. Ouzounis4,5, Aristides G. Eliopoulos1,6, Vasilis J. Promponas7 and Ioannis Iliopoulos1,* 1Division of Basic Sciences, University of Crete, Medical School, Heraklion 71110, Greece, 2Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), Heraklion, Greece, 3Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, 7, avenue des Hauts-Fourneaux, L-4362 Esch sur Alzette, Luxembourg, 4Biological Computation & Process Laboratory (BCPL), Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), PO Box 361, GR-57001 Downloaded from Thessalonica, Greece, 5Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Ontario, Canada, 6Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece and 7Department of Biological Sciences, Bioinformatics Research Laboratory, University of Cyprus, PO Box 20537, CY 1678, Nicosia, Cyprus http://bioinformatics.oxfordjournals.org/ Associate Editor: Alfonso Valencia ABSTRACT Contact: [email protected] or georgios.pavlopoulos@esat. Summary: The iterative process of finding relevant information in kuleuven.be biomedical literature and performing bioinformatics analyses might Supplementary information: Supplementary data are available at result in an endless loop for an inexperienced user, considering the Bioinformatics online. -
Structure and Function of the Human Genome
Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Perspective Structure and function of the human genome Peter F.R. Little School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2074, New South Wales, Australia The human genome project has had an impact on both biological research and its political organization; this review focuses primarily on the scientific novelty that has emerged from the project but also touches on its political dimensions. The project has generated both anticipated and novel information; in the later category are the description of the unusual distribution of genes, the prevalence of non-protein-coding genes, and the extraordinary evolutionary conservation of some regions of the genome. The applications of the sequence data are just starting to be felt in basic, rather than therapeutic, biomedical research and in the vibrant human origins and variation debates. The political impact of the project is in the unprecedented extent to which directed funding programs have emerged as drivers of basic research and the organization of the multidisciplinary groups that are needed to utilize the human DNA sequence. The past decade in biological research has surely been the decade If the biomedical goals of the HGP are in the future, the of genome research—from the scientific perspective, in the pub- immediate outcomes expected by the scientific community were lic imagination, and even in the minds of international politi- perhaps more pragmatic; a description of the gross structure of cians. It is therefore timely to use this 10th anniversary of Genome the human DNA sequence, the number of genes, and the pro- Research to take stock of where we are and where we might be in teins these might encode. -