Expression of Mrnas, Mirnas, and Lncrnas in Human Trabecular Meshwork Cells Upon Mechanical Stretch
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microarray Expression Profile Analysis of Long Non-Coding Rnas in Optineurin E50K Mutant Transgenic Mice
MOLECULAR MEDICINE REPORTS 16: 1255-1261, 2017 Microarray expression profile analysis of long non-coding RNAs in optineurin E50K mutant transgenic mice YUANYUAN LI, LIN JIN, AIMENG DONG, XINRONG ZHOU and HUIPING YUAN Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China Received April 12, 2016; Accepted March 23, 2017 DOI: 10.3892/mmr.2017.6722 Abstract. The biological role of long non-coding RNAs this may be important in the pathogenesis of POAG caused by (lncRNAs) involves various cellular processes and leads to the OPTN (E50K) mutation. human diseases. Mutations in the optineurin (OPTN) gene, including E50K, which encodes an amino acid substitution, Introduction have been associated with primary open angle glaucoma (POAG). The present study was designed to identify lncRNAs Glaucoma is a neurodegenerative ocular disease, which is associated with OPTN (E50K) transgenic mice and investi- recognized worldwide as the key causal factor in irreversible gate its functions in the pathogenesis of POAG. The retinas blindness (1). The predominant form of glaucoma is primary from six OPTN (E50K) transgenic and wild-type mice were open-angle glaucoma (POAG). There are multiple genetic collected separately, and lncRNA expression profiling was factors, which are significant in the etiology of glaucoma. performed using microarray analysis. Based on Pearson's There are >20 genetic loci associated with POAG, however, correlation analysis, an lncRNA and mRNA co-expression only a few of these have been identified, including myocilin, network was constructed. Gene Ontology (GO) and Kyoto WD-repeat domain 36, optineurin (OPTN), and TANK-binding Encyclopedia of Genes and Genomes enrichment analysis of kinase-1 (2,3). -
Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN. -
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
A CRISPR-Based Screen for Hedgehog Signaling Provides Insights Into Ciliary Function and Ciliopathies
ARTICLES https://doi.org/10.1038/s41588-018-0054-7 A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies David K. Breslow 1,2,7*, Sascha Hoogendoorn 3,7, Adam R. Kopp2, David W. Morgens4, Brandon K. Vu2, Margaret C. Kennedy1, Kyuho Han4, Amy Li4, Gaelen T. Hess4, Michael C. Bassik4, James K. Chen 3,5* and Maxence V. Nachury 2,6* Primary cilia organize Hedgehog signaling and shape embryonic development, and their dysregulation is the unifying cause of ciliopathies. We conducted a functional genomic screen for Hedgehog signaling by engineering antibiotic-based selection of Hedgehog-responsive cells and applying genome-wide CRISPR-mediated gene disruption. The screen can robustly identify factors required for ciliary signaling with few false positives or false negatives. Characterization of hit genes uncovered novel components of several ciliary structures, including a protein complex that contains δ -tubulin and ε -tubulin and is required for centriole maintenance. The screen also provides an unbiased tool for classifying ciliopathies and showed that many congenital heart disorders are caused by loss of ciliary signaling. Collectively, our study enables a systematic analysis of ciliary function and of ciliopathies, and also defines a versatile platform for dissecting signaling pathways through CRISPR-based screening. he primary cilium is a surface-exposed microtubule-based approach. Indeed, most studies to date have searched for genes that compartment that serves as an organizing center for diverse either intrinsically affect cell growth or affect sensitivity to applied Tsignaling pathways1–3. Mutations affecting cilia cause ciliopa- perturbations16–23. thies, a group of developmental disorders including Joubert syn- Here, we engineered a Hh-pathway-sensitive reporter to enable drome, Meckel syndrome (MKS), nephronophthisis (NPHP), and an antibiotic-based selection platform. -
A Human Genome-Wide Rnai Screen Reveals Diverse Modulators That Mediate Ire1a–XBP1 Activation Zhifen Yang1, Jing Zhang1, Dadi Jiang2, Purvesh Khatri3, David E
Published OnlineFirst February 9, 2018; DOI: 10.1158/1541-7786.MCR-17-0307 Molecular Cancer Research A Human Genome-Wide RNAi Screen Reveals Diverse Modulators that Mediate IRE1a–XBP1 Activation Zhifen Yang1, Jing Zhang1, Dadi Jiang2, Purvesh Khatri3, David E. Solow-Cordero4, Diego A.S. Toesca1, Constantinos Koumenis5, Nicholas C. Denko6, Amato J. Giaccia1, Quynh-Thu Le1, and Albert C. Koong2 Abstract Activation of the unfolded protein response (UPR) signaling pathways is linked to multiple human diseases, including cancer. The inositol-requiring kinase 1a (IRE1a)–X-box binding protein 1 (XBP1) pathway is the most evo- lutionarily conserved of the three major signaling branches of the UPR. Here, we performed a genome-wide siRNA screen to obtain a systematic assessment of genes integrated in the IRE1a– XBP1 axis. We monitored the expression of an XBP1-luciferase chimeric protein in which lucifer- ase was fused in-frame with the spliced (active) form of XBP1. Using cellsexpressingthis reporter construct, we identified 162 genes for which siRNA inhibition re- sulted in alteration in XBP1 splic- ing. These genes express diverse types of proteins modulating a wide range of cellular processes. Pathway analysis identified a set of genes implicated in the pathogenesis of breast cancer. Several genes, including BCL10, GCLM,andIGF1R, correlated with worse relapse-free survival (RFS) in an analysis of patients with triple-negative breast cancer (TNBC). However, in this cohort of 1,908 patients, only high GCLM expression correlated with worse RFS in both TNBC and non-TNBC patients. Altogether, our study revealed unidentified roles of novel pathwaysregulating the UPR, and these findings may serve as a paradigm for exploring novel therapeutic opportunities based on modulating the UPR. -
Human Lectins, Their Carbohydrate Affinities and Where to Find Them
biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body. -
Prognostic Values of F-Box Members in Breast Cancer: an Online Database Analysis and Literature Review
Bioscience Reports (2019) 39 BSR20180949 https://doi.org/10.1042/BSR20180949 Research Article Prognostic values of F-box members in breast cancer: an online database analysis and literature review Xiaochen Wang1,2,*, Tao Zhang1,4,*, Shizhen Zhang3,* and Jinlan Shan1,2 1Department of Surgical Oncology, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China; 2Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences), Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88, Jiefang Road, Hangzhou, Zhejiang 310009, China; 3Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, Zhejiang, China; 4Department of oncology, The Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang, China Correspondence: Xiaochen Wang ([email protected]) Introduction: F-box proteins are the substrate-recognizing subunits of SKP1 (S-phase kinase-associated protein 1)–cullin1–F-box protein (SCF) E3 ligase complexes that play pivotal roles in multiple cellular processes, including cell proliferation, apoptosis, angio- genesis, invasion, and metastasis. Dysregulation of F-box proteins may lead to an un- balanced proteolysis of numerous protein substrates, contributing to progression of hu- man malignancies. However, the prognostic values of F-box members, especially at mRNA levels, in breast cancer (BC) are elusive. Methods: An online database, which is con- structed based on the gene expression data and survival information downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/), was used to investigate the prognostic values of 15 members of F-box mRNA expression in BC. Results: We found that higher mRNA ex- pression levels of FBXO1, FBXO31, SKP2, and FBXO5 were significantly associated with worse prognosis for BC patients. -
WNT16 Is a New Marker of Senescence
Table S1. A. Complete list of 177 genes overexpressed in replicative senescence Value Gene Description UniGene RefSeq 2.440 WNT16 wingless-type MMTV integration site family, member 16 (WNT16), transcript variant 2, mRNA. Hs.272375 NM_016087 2.355 MMP10 matrix metallopeptidase 10 (stromelysin 2) (MMP10), mRNA. Hs.2258 NM_002425 2.344 MMP3 matrix metallopeptidase 3 (stromelysin 1, progelatinase) (MMP3), mRNA. Hs.375129 NM_002422 2.300 HIST1H2AC Histone cluster 1, H2ac Hs.484950 2.134 CLDN1 claudin 1 (CLDN1), mRNA. Hs.439060 NM_021101 2.119 TSPAN13 tetraspanin 13 (TSPAN13), mRNA. Hs.364544 NM_014399 2.112 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.070 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 2.026 DCBLD2 discoidin, CUB and LCCL domain containing 2 (DCBLD2), mRNA. Hs.203691 NM_080927 2.007 SERPINB2 serpin peptidase inhibitor, clade B (ovalbumin), member 2 (SERPINB2), mRNA. Hs.594481 NM_002575 2.004 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.989 OBFC2A Oligonucleotide/oligosaccharide-binding fold containing 2A Hs.591610 1.962 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.947 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 2, mRNA. Hs.472101 NM_182797 1.934 PLCB4 phospholipase C, beta 4 (PLCB4), transcript variant 1, mRNA. Hs.472101 NM_000933 1.933 KRTAP1-5 keratin associated protein 1-5 (KRTAP1-5), mRNA. Hs.534499 NM_031957 1.894 HIST2H2BE histone cluster 2, H2be (HIST2H2BE), mRNA. Hs.2178 NM_003528 1.884 CYTL1 cytokine-like 1 (CYTL1), mRNA. Hs.13872 NM_018659 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain (TNFRSF10D), 1.848 TNFRSF10D Hs.213467 NM_003840 mRNA. -
Transcriptional Consequences of Genomic Structural Aberrations in Breast Cancer
Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research Transcriptional consequences of genomic structural aberrations in breast cancer Koichiro Inaki,1,10 Axel M. Hillmer,2,10 Leena Ukil,1,10 Fei Yao,2,3 Xing Yi Woo,4 Leah A. Vardy,5 Kelson Folkvard Braaten Zawack,4 Charlie Wah Heng Lee,4 Pramila Nuwantha Ariyaratne,4 Yang Sun Chan,1 Kartiki Vasant Desai,1 Jonas Bergh,6 Per Hall,7 Thomas Choudary Putti,8 Wai Loon Ong,9 Atif Shahab,9 Valere Cacheux-Rataboul,1 Radha Krishna Murthy Karuturi,4 Wing-Kin Sung,4 Xiaoan Ruan,2 Guillaume Bourque,4 Yijun Ruan,2 and Edison T. Liu1,11 1Cancer Biology and Pharmacology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 2Genome Technology and Biology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 3Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; 4Computational and Mathematical Biology, Genome Institute of Singapore, Genome, Singapore 138672, Singapore; 5Institute of Medical Biology, Immunos, Singapore 138648, Singapore; 6Department of Oncology–Pathology, Karolinska Institute, SE-17177 Stockholm, Sweden; 7Department of Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden; 8Department of Pathology, National University of Singapore, Singapore 119077, Singapore; 9Research Computing, Genome Institute of Singapore, Genome, Singapore 138672, Singapore Using a long-span, paired-end deep sequencing strategy, we have comprehensively identified cancer genome rear- rangements in eight breast cancer genomes. Herein, we show that 40%–54% of these structural genomic rearrangements result in different forms of fusion transcripts and that 44% are potentially translated. -
Spink2 Modulates Apoptotic Susceptibility and Is a Candidate Gene in the Rgcs1 QTL That Affects Retinal Ganglion Cell Death After Optic Nerve Damage
Spink2 Modulates Apoptotic Susceptibility and Is a Candidate Gene in the Rgcs1 QTL That Affects Retinal Ganglion Cell Death after Optic Nerve Damage Joel A. Dietz1., Margaret E. Maes1., Shuang Huang2, Brian S. Yandell2, Cassandra L. Schlamp1, Angela D. Montgomery1, R. Rand Allingham3, Michael A. Hauser3, Robert W. Nickells1* 1 Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America, 2 Department of Biostatistics, University of Wisconsin, Madison, Wisconsin, United States of America, 3 Center for Human Genetics, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America Abstract The Rgcs1 quantitative trait locus, on mouse chromosome 5, influences susceptibility of retinal ganglion cells to acute damage of the optic nerve. Normally resistant mice (DBA/2J) congenic for the susceptible allele from BALB/cByJ mice exhibit susceptibility to ganglion cells, not only in acute optic nerve crush, but also to chronic inherited glaucoma that is characteristic of the DBA/2J strain as they age. SNP mapping of this QTL has narrowed the region of interest to 1 Mb. In this region, a single gene (Spink2) is the most likely candidate for this effect. Spink2 is expressed in retinal ganglion cells and is increased after optic nerve damage. This gene is also polymorphic between resistant and susceptible strains, containing a single conserved amino acid change (threonine to serine) and a 220 bp deletion in intron 1 that may quantitatively alter endogenous expression levels between strains. Overexpression of the different variants of Spink2 in D407 tissue culture cells also increases their susceptibility to the apoptosis-inducing agent staurosporine in a manner consistent with the differential susceptibility between the DBA/2J and BALB/cByJ strains. -
Investigating Reptin Function in Acute Myeloid Leukaemia
INVESTIGATING REPTIN FUNCTION IN ACUTE MYELOID LEUKAEMIA Elena Armenteros Monterroso Developmental Biology and Cancer Section Institute of Child Health University College London A thesis submitted for the Degree of Doctor of Philosophy 2017 DECLARATION I, Elena Armenteros Monterroso, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signature …………………………………….. 2 ACKNOWLEDGEMENTS Firstly, I would like to express my sincere gratitude to my principal supervisor, Dr. Owen Williams, for his excellent advice, support and motivation during the past 4 years. I am extremely grateful for his guidance, but also for the freedom he has given me to pursue my own research. I could not have imagined having a better supervisor. I would also like to extend my gratitude to my second supervisor, Dr. Jasper de Boer. His help and advice have been invaluable. But also the fun environment he has provided in the lab, which made it easier to carry on during stressful times. I am also thankful to all the inspirational people working at the Cancer Section, particularly all the members of my lab, for their help and friendship during the past years. My sincere thanks also goes to all the members of the UCL Genomics team for their efficient work and their help with my sequencing experiments. I am also truly thankful to all my friends, both in the UK and in Spain, for providing the enthusiasm and support that I needed during my studies. I would like to specially thank Miriam, Clare and Heike for their friendship and fun times together.