Let's Review Last Week

Total Page:16

File Type:pdf, Size:1020Kb

Let's Review Last Week Let’s review last week: The Distance Ladder: compu9ng distance to anything in the Universe, a Universe filled with galaxies, each galaxy filled with stars Our important rule: if we know how Bright something is when its at a know distance,, and we see a similar oBject that is much fainter (thus farther) we can compute the distance of the fainter oBject We call these oBjects “standard candles” Today we will look at a series of related “standard candles” that can Be linked to find distances to the farthest galaxies Review: how do we measure distance to nearBy stars in our galaxy? The Pleiades (SuBaru in Japanese, the Homeless Women in an O’odham story), a cluster of stars visiBle to the naked eye The HR diagram for the Pleiades: we can measure the distance to these stars By parallax, and compute how Bright they would Be compared to the sun, above. Consider a more distant open cluster – too far for parallax! We can measure the apparent Brightness of Chi Persei, the each star: since the stars are all in a cluster, at double cluster the same distance, we can plot this versus the color of each star. When we compare the HR diagrams, we can compute how much fainter Chi Persei is compared to the Pleiades – thus how much farther it is. This is possiBle due to the inverse square law for light: an oBject twice as far away will Be only one fourth as Bright Pleiades Chi Persei For those taking algebra: our “black box” calculator for three quan88es m –M = 5 log (distance) – 5 Distance ladder: 1. Parallax of nearBy stars to find their distance 2. HR diagram of clusters, and comparison with stars we know allows us to find distances (using a property of light known as the inverse square law). Now, we can get preWy good idea of distance to any star who colors and spectrum are known The solar system is surrounded By the Band of the Milky Way We see the nearBy stars in all direc9ons, But the more distant stars merge into the Band we call the Milky Way Suppose we ask what it would look like if we could fly far above and view it. How can we figure out what we would see? We can make a map since we know the distance and direc9on of a star What do we find when we measure distances to lots of open clusters? We already found that they are all within the plane of the Milky Way. But since we are inside the Milky Way, we will measure around in a circle – like azimuth around our local horizon. Here is what we find What do you suppose this is showing us? Hint: The direc9on to 0 degrees is toward the constellaon SagiWarius So we can now draw a “cartoon” of our Milky Way galaxy showing spiral arms RememBer, this is only a cartoon: we have only sent spacecras to the outer edge of our solar system Young stars in open clusters define mulple spiral arms And there is a very massive Black hole in center (Gautham’s lecture) Now, let’s look at gloBular clusters: (where did we find them in the sky?) M2, Izzy & Angel, 0.9m image ( Black and white image – why?) From the HR diagram, what color do you think many of the stars are? They cluster in the direc9on of the constellaon SagiWarius… And if we compute distances to the gloBular clusters (using Bright stars) we find they form a halo around galac9c center But just relying on what we know about the Brightest stars isn’t a great way to es9mate distance – we need another tool! One more method of finding distance: variable stars The Brightness of some stars changes, geng Brighter and fainter, regularly like clockwork, with a period of a few to hundreds of days. Among them, the Cepheids are named aer a Bright variable in the constellaon Cepheus This en9re star is pulsang as it passes through an unstable phase of its lifeme And what makes them a standard candle is that the period of pulsaon is related to the star’s intrinsic Brightness (and if we can determine the intrinsic Brightness, what else can we find?) Bright Cepheids can Be used to get distance to some nearBy galaxies! M33, at 0.9m , Dana, Eli, Francina …from a research paper, measuring Cepheids in M33 Distance ladder: 1. Parallax of nearBy stars to find their distance 2. HR diagram of clusters, and comparison with stars we know allows us to find distances (using a property of light known as the inverse square law). Now, we can get preWy good idea of distance to any star who colors and spectrum are known 3. Variable stars known as Cepheids: period of pulsaon is related to their intrinsic Brightness – can Be used to get distances to other galaxies And now we reach the final step on our distance ladder: supernova! Supernova in M 101, the Pinwheel galaxy (…the distance to M 101 is alreadyknown from Cepheid variable stars) Where are supernova in the life of a star? If star was < 8 x sun In par9cular, supernova in Binary systems always reach about the same intrinsic Brightness: so when we see one, we can compute its distance Ar9st concep9on of a supernova in a Binary star system All supernova in Binary system (astronomers call them type Ia supernova) reach the same maximum Brightness: this makes them a standard candle When we oBserve one, and measure its apparent Brightness, we can then compute its distance. Let’s try an exercise and see what sort of distances we find We start with this galaxy, NGC 4414, whose distance is known from Cepheid variables to Be 60 million ly away In 1974, a supernova was oBserved in it Our table, completed: can you no9ce any paerns? NGC 4414, our first galaxy, whose distance is known from Cepheid variables to Be 60 million ly ( image is 2.9 arc minutes long) sn 1993ac in galaxy LEDA 17787 (0.8 arc min long) SN 1994S in NGC 4495… (1.4 arc minutes long) Suppose we sort the And then make a graph… table By the distance: let’s make a graph of distance versus redshi]. What does this graph suggest to you? Distance ladder, complete: 1. Parallax of nearBy stars to find their distance 2. HR diagram of clusters, and comparison with stars we know allows us to find distances (using a property of light known as the inverse square law). Now, we can get preWy good idea of distance to any star who colors and spectrum are known 3. Variable stars known as Cepheids: period of pulsaon is related to their intrinsic Brightness – can Be used to get distances to other galaxies 4. Supernova at maximum Brightness are all the same (at least the Binary type Ia) so we can use them to get distances to far galaxies – and we find something very interesng! How many galaxies are there in the oBservable universe? HuBBle telescope: an orBi9ng 2 meter telescope, launched in 1990. In 2006 it stared at a Blank piece of sky near the Big Dipper for 10 days to create this image. note: The area of the sky that the camera can image is less than the angular size of one of the dark craters on the moon: about 3.5 arc minutes on a side Let’s do an exercise: How many galaxies are there in the observable universe? The HuBBle Space Telescope images an area about xxx that of the field we imaged with the 0.9m telescope at KiW Peak. In2006, the HST exposed its camera to a very Blank part of the sky – Blank, Because there were almost no stars there. But there were galaxies. we can expect that the numBer of galaxies in this image will Be about the same as in any other direc9on. And since from geometry we know the area of the image, compared to the total area of the sky, we can count the galaxies int his image and mul9ply to find the total numBer of galaxies int eh universe we observe. Each person or team has an image of the HuBBle Deep Field. Begin my making an es9mate of the total numBer of galaxies in this image.. Enter it here: Es9mate of numBer of galaxies in this image: ____________________ Review of this class: Astronomers use different methods to get distance to stars, clusters and finally galaxies – each method Builds on the last • Parallax • Cluster fing, and HR diagram – knowledge of star’s intrinsic Brightness • Variable stars called Cepeids -period of variaon isrelated to intrinsic Brightness • Supernova – all type Ia reach the same Brightness From this, we find: • Our Milky Way galaxy, containing all the stars we see without a telescope, is only one of Billions of galaxies in the universe. • The most distant galaxies we see are so far that light has Been traveling for millions, even Billions of years to reach earth. .
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • The Local Galaxy Volume
    11-1 How Far Away Is It – The Local Galaxy Volume The Local Galaxy Volume {Abstract – In this segment of our “How far away is it” video book, we cover the local galaxy volume compiled by the Spitzer Local Volume Legacy Survey team. The survey covered 258 galaxies within 36 million light years. We take a look at just a few of them including: Dwingeloo 1, NGC 4214, Centaurus A, NGC 5128 Jets, NGC 1569, majestic M81, Holmberg IX, M82, NGC 2976,the unusual Circinus, M83, NGC 2787, the Pinwheel Galaxy M101, the Sombrero Galaxy M104 including Spitzer’s infrared view, NGC 1512, the Whirlpool Galaxy M51, M74, M66, and M96. We end with a look at the tuning fork diagram created by Edwin Hubble with its description of spiral, elliptical, lenticular and irregular galaxies.} Introduction [Music: Johann Pachelbel – “Canon in D” – This is Pachelbel's most famous composition. It was written in the 1680s between the times of Galileo and Newton. The term 'canon' originates from the Greek kanon, which literally means "ruler" or "a measuring stick." In music, this refers to timing. In astronomy, "a measuring stick" refers to distance. We now proceed to galaxies more distant than the ones in our Local Group.] The Local volume is the set of galaxies covered in the Local Volume Legacy survey or LVL, for short, conducted by the Spitzer team. It is a complete sample of 258 galaxies within 36 million light years. This montage of images shows the ensemble of galaxies as observed by Spitzer. The galaxies are randomly arranged but their relative sizes are as they appear on the sky.
    [Show full text]
  • Monthly Observer's Challenge
    MONTHLY OBSERVER’S CHALLENGE Las Vegas Astronomical Society Compiled by: Roger Ivester, Boiling Springs, North Carolina & Fred Rayworth, Las Vegas, Nevada With special assistance from: Rob Lambert, Las Vegas, Nevada JUNE 2015 Introduction The purpose of the Observer’s Challenge is to encourage the pursuit of visual observing. It’s open to everyone that’s interested, and if you’re able to contribute notes, and/or drawings, we’ll be happy to include them in our monthly summary. We also accept digital imaging. Visual astronomy depends on what’s seen through the eyepiece. Not only does it satisfy an innate curiosity, but it allows the visual observer to discover the beauty and the wonderment of the night sky. Before photography, all observations depended on what the astronomer saw in the eyepiece, and how they recorded their observations. This was done through notes and drawings, and that’s the tradition we’re stressing in the Observers Challenge. We’re not excluding those with an interest in astrophotography, either. Your images and notes are just as welcome. The hope is that you’ll read through these reports and become inspired to take more time at the eyepiece, study each object, and look for those subtle details that you might never have noticed before. M83 – NGC-5236 The Southern Pinwheel Galaxy In Hydra M83, also known as NGC-5236, is a face-in barred spiral galaxy in the southern sky, which lies in the constellation of Hydra. Charles Messier added it to his catalogue of non-comets in March 1781, but it was actually discovered by Nicolas Louis de Lacaille on February 23, 1752 from his observatory in the Cape of Good Hope in South Africa.
    [Show full text]
  • Whirlpools and Pinwheels on the Sky
    Whirlpools and pinwheels on the sky Domingos Soares Galaxies exist in many different forms and count by, at least, the hundreds of billions, according to estimations made from the observations of the Hubble Space Telescope. Among all of them, there are no doubts that the most spectacular are the so-called \spiral galaxies". Our own galaxy, the Milky Way galaxy, is a member of that family. Spiral galaxies are so named because of the distinctive aspect they present to the observer, namely, of a spiral-shaped structure similar to a whirlpool or a pinwheel. They are also called \disk galaxies" because the galactic material | stars, gas and interstellar dust | is distributed in the shape of a \thick" disk. The stars constitute the main constituents of galaxies, at least with respect to their visual appearance. They emit the major part of the visible light of a galaxy, be it a spiral or not. The typical visual aspect of spiral galaxies is due to the structures that astronomers call \spiral arms". The most bright stars of a galaxy are those that delineate the arms. These, however, contribute little to the total mass of the galaxy, but due to their extraordinary brightness they are the most noticeable on a visual inspection. The spiral galaxy disks rotate. And this is typical in those galaxies: the galactic material spins around the disk center, which is called \galactic center". But the rotation is not like the spin of a rigid disk, like, for example, a CD, in which all the points make a full turn in the same time interval.
    [Show full text]
  • The Messier Marathon Search Sequence
    2/28/2020 Messier Marathon Search Sequence List This file presents the Messier objects in the order of the Marathon Search Sequence given by Don Machholz in his Messier Marathon Observer's Guide. The Messier Marathon Search Sequence compiled online by Hartmut Frommert, using work of Don Machholz. Depending on geographic location, it may be impossible to find them all, and may be better to slightly modify this list. In case of doubt consult Don Machholz's book. This list should be good for northern latitudes 20 to 40. 1. M77 spiral galaxy in Cetus 2. M74 spiral galaxy in Pisces 3. M33 The Triangulum Galaxy (also Pinwheel) spiral galaxy in Triangulum 4. M31 The Andromeda Galaxy spiral galaxy in Andromeda 5. M32 Satellite galaxy of M31 elliptical galaxy in Andromeda 6. M110 Satellite galaxy of M31 elliptical galaxy in Andromeda 7. M52 open cluster in Cassiopeia 8. M103 open cluster in Cassiopeia 9. M76 The Little Dumbell, Cork, or Butterfly planetary nebula in Perseus 10. M34 open cluster in Perseus 11. M45 Subaru, the Pleiades--the Seven Sisters open cluster in Taurus 12. M79 globular cluster in Lepus 13. M42 The Great Orion Nebula diffuse nebula in Orion 14. M43 part of the Orion Nebula (de Mairan's Nebula) diffuse nebula in Orion 15. M78 diffuse reflection nebula in Orion 16. M1 The Crab Nebula supernova remnant in Taurus 17. M35 open cluster in Gemini 18. M37 open cluster in Auriga 19. M36 open cluster in Auriga 20. M38 open cluster in Auriga 21. M41 open cluster in Canis Major 22.
    [Show full text]
  • Appendix C a List of the Messier Objects
    Appendix C A List of the Messier Objects DS=DoubleStar OC=OpenCluster GC=GlobularCluster EG = Elliptical Galaxy SG = Spiral Galaxy IG = Irregular Galaxy PN = Planetary Nebula DN = Diffuse Nebula SR = Supernova Remnant Object Common Name Type of Object Location mv Dist. (kly) M1 Crab Nebula SR Taurus 9.0 6.3 M2 GC Aquarius 7.5 36 M3 GC Canes Venatici 7.0 31 M4 GC Scorpius 7.5 7 M5 GC Serpens 7.0 23 M6 Butterfly Cluster OC Scorpius 4.5 2 M7 Ptolemy’s Cluster OC Scorpius 3.5 1 M8 Lagoon Nebula DN Sagittarius 5.0 6.5 M9 GC Ophiuchus 9.0 26 M10 GC Ophiuchus 7.5 13 M11 Wild Duck Cluster OC Scutum 7.0 6 M12 GC Ophiuchus 8.0 18 M13 Great Hercules Cluster GC Hercules 5.8 22 M14 GC Ophiuchus 9.5 27 M15 GC Pegasus 7.5 33 M16 Part of Eagle Nebula OC Serpens 6.5 7 M17 Horseshoe Nebula DN Sagittarius 7.0 5 M18 OC Sagittarius 8.0 6 M19 GC Ophiuchus 8.5 27 M20 Trifid Nebula DN Sagittarius 5.0 2.2 M21 OC Sagittarius 7.0 3 M22 GC Sagittarius 6.5 10 M23 OC Sagittarius 6.0 4.5 135 Object Common Name Type of Object Location mv Dist. (kly) M24 Milky Way Patch Star cloud Sagittarius 11.5 10 M25 OC Sagittarius 4.9 2 M26 OC Scutum 9.5 5 M27 Dumbbell Nebula PN Vulpecula 7.5 1.25 M28 GC Sagittarius 8.5 18 M29 OC Cygnus 9.0 7.2 M30 GC Capricornus 8.5 25 M31 Andromeda Galaxy SG Andromeda 3.5 2500 M32 Satellite galaxy of M31 EG Andromeda 10.0 2900 M33 Triangulum Galaxy SG Triangulum 7.0 2590 M34 OC Perseus 6.0 1.4 M35 OC Gemini 5.5 2.8 M36 OC Auriga 6.5 4.1 M37 OC Auriga 6.0 4.6 M38 OC Auriga 7.0 4.2 M39 OC Cygnus 5.5 0.3 M40 Winnecke 4 DS Ursa Major 9.0 M41 OC Canis
    [Show full text]
  • Messier Object Mapping System
    Messier Object Mapping System Messier Object Constellation Map# Messier Object Constellation Map# M1 Taurus 1-6 M56 Lyra 3 M2 Aquarius 8 M57 Lyra 3 M3 Canes Venatici 4-10 M58 Virgo IN2-5 M4 Scorpius 2 M59 Virgo IN2 M5 Scorpius 10 M60 Virgo IN2-5-9-10 M6 Scorpius 2 M61 Virgo IN2-5-8 M7 Scorpius 2 M62 Ophiuchus 2 M8 Sagittarius 2-IN1 M63 Canes Venatici 4 M9 Ophiuchus 2 M64 Coma Berenices 4-5 M10 Ophiuchus 2 M65 Leo 5 M11 Scutum 2 M66 Leo 5 M12 Ophiuchus 2 M67 Cancer 6 M13 Hercules 3 M68 Hydra 9 M14 Ophiuchus 2 M69 Sagittarius 2-IN1-8 M15 Pegasus 8 M70 Sagittarius 2-IN1-8 M16 Serpens 2-IN1 M71 Sagittarius 2 M17 Sagittarius 2-IN1 M72 Aquarius 8 M18 Sagittarius 2-IN1 M73 Aquarius 8 M19 Ophiuchus 2 M74 Pisces 11 M20 Sagittarius 2-IN1-8 M75 Sagittarius 8 M21 Sagittarius 2-IN1-8 M76 Perseus 7 M22 Sagittarius 2-IN1-8 M77 Cetus 11 M23 Sagittarius 2-IN1 M78 Orion 1 M24 Sagittarius 2-IN1 M79 Lepus 1 M25 Sagittarius 2-IN1-8 M80 Scorpius 2 M26 Scutum 2 M81 Ursa Major 4 M27 Vupecula 3 M82 Ursa Major 4 M28 Sagittarius 2-IN1-8 M83 Hydra 9 M29 Cygnus 3 M84 Virgo IN2-5 M30 Capricornus 8 M85 Coma Berenices 4-5 M31 Andromeda 7-11 M86 Virgo IN2-5 M32 Andromeda 7-11 M87 Virgo IN2-5 M33 Triangulum 7-11 M88 Coma Berenices IN2-5 M34 Perseus 7-11 M89 Virgo IN2 M35 Gemini 1-6 M90 Virgo IN2-5 M36 Auriga 1-6 M91 Virgo IN2-5 M37 Auriga 1-6 M92 Hercules 3 M38 Auriga 1 M93 Puppis 1-6 M39 Cygnus 3-7 M94 Canes Venatici 4-5 M40 Ursa Major 4 M95 Leo 5 M41 Canis Major 1 M96 Leo 5 M42 Orion 1 M97 Ursa Major 4 M43 Orion 1 M98 Coma Berenices IN2-4-5 M44 Sagittarius 6 M99 Coma Berenices IN2-4-5 M45 Taurus 1-11 M100 Coma Berenices IN2-4-5 M46 Puppis 1-6 M101 Ursa Major 4 M47 Puppis 1-6 M102 Draco 4 M48 Hydra 6 M103 Cassiopeia 7 M49 Virgo 2-IN1-8 M104 Virgo 5-9-10 M50 Monoceros 1-6 M105 Leo 5 M51 Canes Venatici 4-10 M106 Canes Venatici 4-5 M52 Cassiopeia 7 M107 Ophiuchus 2 M53 Coma Berenices 4-5-10 M108 Ursa Major 4 M54 Sagittarius 2-IN1-8 M109 Ursa Major 4-5 M55 Sagittarius 2-8 M110 Andromeda 7-11 Messier Object List # NGC# Constellation Type Name, If Any Mag.
    [Show full text]
  • Messier Checklist and Charts
    Map and Constallation Key to Messier Objects for TELRAD Finders Messier Telrad Common Distance Other Object Constallation Map #'s Name Type Light Years Data M1 Taurus Map 1, 2 Crab Nebula Supernova 6,000 M2 Aquarius Map 11 Glob. Cluster M3 Canies Venatici Map 6, 7 Glob. Cluster 30,000 44500 Stars M4 Scorpius Map 13 Glob. Cluster M5 Serpens Map 6 Glob. Cluster M6 Scorpius Map 10, 13 Butterfly Cluster Open Cluster 2,000 M7 Scorpius Map 10, 13 Open Cluster M8 Sagittarius Map 10 Lagoon Nebula Emmi. Nebula 2,500 M9 Ophiuchus Map 12,10,13 Glob. Cluster M10 Ophiuchus Map 12 Glob. Cluster M11 Scutum Map 12 Wild Duck Cluster Open Cluster M12 Ophiuchus Map 12 Glob. Cluster M13 Hercules Map 9 Glob. Cluster 25,000 M14 Ophiuchus Map 12, 10 Glob. Cluster M15 Pegasus Map 11 Glob. Cluster M16 Serpens Map 10 Star-Queen/Eagle Emmi. Nebula M17 Sagittarius Map 10 Swan/Omega Nebula Emmi. Nebula 35 Stars M18 Sagittarius Map 10 Open Cluster 6,000 M19 Ophiuchus Map 13 Glob. Cluster M20 Sagittarius Map 10 Trifid Nebula Emmi. Nebula 2,200 M21 Sagittarius Map 10 Open Cluster 3,000 M22 Sagittarius Map 10 Glob. Cluster 10,000 70,000 Stars M23 Sagittarius Map 10, 12 Open Cluster 4,500 M24 Sagittarius Map 10 Star Cloud M25 Sagittarius Map 10 Open Cluster M26 Scutum Map 10 Glob. Cluster 5,000 M27 Vupecula Map 8 Dumbell Nebula Planatary Neb. 1,250 M28 Sagittarius Map 10 Glob. Cluster 15,000 M29 Cygnus Map 8 Open Cluster 7,200 M30 Capricornus Map 11 Glob.
    [Show full text]
  • Touch the Universe with Skynet Images
    Touch the Universe! Skynet Junior Scholars Astronomy Images for Tactile Pictures skynetjuniorscholars.org [email protected] M2, NGC 7089 Globular Cluster Aquarius RA, Dec: 21:33:27.036 | -00:49:23.88 Observation ID: 1148681 SJS Scholar and Group: alpha08 | wv4Htaylorco14 Inverse Gray link: Telescope: Yerkes-41 Exposure Time: 30s Filter: Clear SEDS Wikipedia M3, NGC 7252 Globular Cluster Canes Venatici RA, Dec: 13:42:11.627 | 28:22:38.28 Observation ID: 1134612 SJS Scholar and Group: greatphoenix | ilHSwpcp14 Inverse Gray link: Telescope: Yerkes-41 Exposure Time: 30s Filter: Clear Wikipedia SEDS M13, NGC 6205 Globular Cluster Hercules RA, Dec: 16:41:41.64 | 36:27:40.68 Observation ID: 1153581 SJS Scholar and Group: y41operator | sjs Inverse Gray link: Telescope: Yerkes-41 Exposure Time: 30s Filter: Clear SEDS Wikipedia M15, NGC 7078 Globular Cluster in Pegasus RA, Dec: 21:29:58.329 | 12:10:01.199 Observation ID: 1028571 SJS Scholar and Group: paula.lauer | wiCAMPlions15 Inverse Gray link: Telescope: Yerkes-41 Exposure Time: 30s Filter: iprime SEDS Wikipedia M16, NGC 6611 Starforming Nebula Eagle Nebula in Serpens RA, Dec: 18:18:47.988 | -13:48:25.2 Observation ID: 1148608 SJS Scholar and Group: alpha12 | wv4Htaylorco14 Inverse Gray link: Telescope: Yerkes-41 Exposure Time: 30s Filter: clear SEDS Wikipedia M27, NGC 6853 Planetary Nebula Dumbbell Nebula in Vulpecula RA, Dec: 19:59:36.3 | 22:43:15.7 Observation ID: 1153626 SJS Scholar and Group: astudent | GrahamSchl15 Inverse Gray link Telescope: Yerkes-41 Exposure Time: 30s Filter:
    [Show full text]
  • Observer's Guide to Galaxies
    Observer’s Guide to Galaxies By Rob Horvat (WSAAG) Mar 2020 This document has evolved from a supplement to Night-Sky Objects for Southern Observers (Night-Sky Objects for short), which became available on the web in 2009. The document has now been split into two, this one being called the Observer’s Guide to Galaxies. The maps have been designed for those interested in locating galaxies by star-hopping around the constellations. However, like Night-Sky Objects, the resource can be used to simply identify interesting galaxies to GOTO. As with Night-Sky Objects, the maps have been designed and oriented for southern observers with the limit of observation being Declination +55 degrees. Facing north, the constellations are inverted so that they are the “right way up”. Facing south, constellations have the usual map orientation. Pages are A4 in size and can be read as a pdf on a computer or tablet. Note on copyright. This document may be freely reproduced without alteration for educational or personal use. Contributed images by WSAAG members remain the property of their authors. Types of Galaxies Spiral (S) galaxies consist of a rotating disk of stars, dust and gas that surround a central bulge or concentration of stars. Bulges often house a central supermassive black hole. Most spiral galaxies have two arms that are sites of ongoing star formation. Arms are brighter than the rest of the disk because of young hot OB class stars. Approx. 2/3 of spiral galaxies have a central bar (SB galaxies). Lenticular (S0) galaxies have a rather formless disk (no obvious spiral arms) with a prominent bulge.
    [Show full text]
  • OUR SOLAR SYSTEM Realms of Fire and Ice We Start Your Tour of the Cosmos with Gas and Ice Giants, a Lot of Rocks, and the Only Known Abode for Life
    © 2016 Kalmbach Publishing Co. This material may not be reproduced in any form without permission from the publisher. www.Astronomy.com OUR SOLAR SYSTEM Realms of fire and ice We start your tour of the cosmos with gas and ice giants, a lot of rocks, and the only known abode for life. by Francis Reddy cosmic perspective is always a correctly describe our planetary system The cosmic distance scale little unnerving. For example, we as consisting of Jupiter plus debris. It’s hard to imagine just how big occupy the third large rock from The star that brightens our days, the our universe is. To give a sense of its a middle-aged dwarf star we Sun, is the solar system’s source of heat vast scale, we’ve devoted the bot- call the Sun, which resides in a and light as well as its central mass, a tom of this and the next four stories Aquiet backwater of a barred spiral galaxy gravitational anchor holding everything to a linear scale of the cosmos. The known as the Milky Way, itself one of bil- together as we travel around the galaxy. distance to each object represents the amount of space its light has lions of galaxies. Yet at the same time, we Its warmth naturally divides the planetary traversed to reach Earth. Because can take heart in knowing that our little system into two zones of disparate size: the universe is expanding, a distant tract of the universe remains exceptional one hot, bright, and compact, and the body will have moved farther away as the only place where we know life other cold, dark, and sprawling.
    [Show full text]
  • Slide 1 New Hampshire's Dark Skies: a Natural Resource in Need Of
    Slide 1 New Hampshire’s Dark Skies: A Natural Resource in Need of Protection • A Few Easy Steps for Preserving Our Dark Skies – At No Cost Slide 2 There’s so much to see if the sky is dark! Slide 3 Visible in NH: Comet Macholz Skims by the Pleiades in January 2005 Slide 4 Making Star-Trails: Mount a digital camera on a tripod, point it at Polaris (the North Star) and leave the shutter open for an hour or two Slide 5 The Pinwheel Galaxy – Visible in small telescopes Slide 6 Saturn: Visible with a small telescope from a billion miles Slide 7 The Sombrero Galaxy: Visible with a small telescope from 27 million light-years away Slide 8 The Beehive Star Cluster in the Winter Sky – A Binocular View Slide 9 The Globular Cluster in Hercules – Visible with binoculars in summer Slide 10 “Eskimo Nebula” as seen by the Hubble Space Telescope Slide 11 Crab Nebula in Taurus: Shattered remains of an exploded star, visible in daytime in July, 1054 A.D. and by telescope now Slide 12 • The Great Nebula in Orion – The Middle Star in His “Sword” Slide 13 The Pleiades – Winter’s Brightest Star Cluster Slide 14 The Double Cluster in Perseus – Easy to see with binoculars all year Slide 15 The Andromeda Galaxy: Most distant object you can see with the unaided eye (2.5 million light years away) – and easy to find in our still-dark skies. Slide 16 Northern Lights on December 14, 2006: Visible only in dark skies – which are as easy to save as they are to lose.
    [Show full text]