Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, Mi 48106-1346 USA 800-521-0600 Bean pod mottle virus ecology and management in Iowa by Rayda Kathryn Krell A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Entomology Program of Study Committee: Larry P. Pedigo. Co-major professor Marlin E. Rice, Co-major professor John H. Hill Russell A. Jurenka Jon J. Tollefson Iowa State University Ames, Iowa 2002 UMI Number: 3073461 UMI UMI Microform 3073461 Copyright 2003 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 ii Graduate College Iowa State University This is to certify that the doctoral dissertation of Rayda Kathryn Krell has met the dissertation requirements of Iowa State University Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. For the Major Program iii TABLE OF CONTENTS ABSTRACT CHAPTER 1. GENERAL INTRODUCTION 1 Dissertation Organization 1 Introduction 1 Objectives 3 Literature Review 4 Bean leaf beetle 4 Bean pod mottle virus 5 Relationship between virus, vector, and host plant 8 Current BPMV management recommendations 16 Literature Cited 19 CHAPTER 2. CHARACTERIZATION OF BEAN LEAF BEETLE (COLEOPTERA: CHRYSOMELIDAE) FLIGHT CAPACITY 33 Abstract 33 Introduction 33 Materials and Methods 35 Results 38 Discussion 39 Acknowledgements 44 Literature Cited 45 CHAPTER 3. PRIMARY INOCULUM SORUCES OF BEAN POD MOTTLE VIRUS IN IOWA 57 Abstract 57 Introduction 58 Materials and Methods 59 Results and Discussion 64 Acknowledgements 72 References Cited 73 CHAPTER 4. BEAN LEAF BEETLE (COLEOPTERA: CHRYSOMELIDAE) MANAGEMENT FOR REDUCTION OF BEAN POD MOTTLE VIRUS 87 Abstract 87 Introduction 88 Materials and Methods 91 Results and Discussion 95 Acknowledgements 103 References Cited 104 iv CHAPTER 5. SOYBEAN PLANTING DATE AS A POTENTIAL MANAGEMENT TACTIC FOR BEAN POD MOTTLE VIRUS 121 Abstract 121 Introduction 122 Materials and Methods 124 Results and Discussion 126 Acknowledgements 131 Literature Cited 132 CHAPTER 6. GENERAL CONCLUSIONS 146 Literature Cited 150 ACKNOWLEDGEMENTS 151 V ABSTRACT Bean pod mottle virus (BPMV) is a new disease problem for North Central states soybean (Glycine max (L.)) growers. The bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is the primary BPMV vector. The main objectives of this research were to understand BPMV ecology and explore possibilities for management. Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), flight capacity was measured and seventy-one percent of beetles flew <51 m and 11.76% flew >301 m. The mean of flights <51 m was 11 m. The farthest flight made by an individual beetle was 4.9 km. A survey of Iowa counties confirmed BPMV was present throughout the state. In 2002, populations of the bean leaf beetle reached the highest abundance recorded in 14 years. Three BPMV primary inoculum sources in Iowa were confirmed. Seed transmission of BPMV was 0.037%, 1.5% of overwintered bean leaf beetles transmitted BPMV, and Desmodium canadense (L.) was identified as a naturally occurring host. Application of lambda-cyhalothrin (Warrior®) (Syngenta, Wilmington, DE) after soybean emergence and again as first-generation bean leaf beetles emerged, reduced beetle densities for four and seven weeks, reduced BPMV field incidence by 26% and 27%, and reduced seed coat mottling by 10% and 19%, at locations in central and northwest Iowa respectively. Yield was 440.48 kg/ha (6.5 bu/acre) higher in the early followed by mid-season insecticide treatment at the northwest site. Four planting dates and two soybean cultivars were examined in relation to BPMV incidence. In 2000, the lowest BPMV incidence occurred in the third planting date, but the incidence was not significantly different than in the other planting dates. For all years, yield was occasionally highest (although not significantly) in the third planting date and lowest in the last planting date. In 2000, seed coat mottling was vi lowest in the third planting date. This research provides new information on BPMV ecology and experimental evidence to support management recommendations for growers. 1 CHAPTER 1. GENERAL INTRODUCTION Dissertation Organization This dissertation is organized in six chapters. The first chapter is a general introduction, which includes the objectives of this dissertation and a review of literature on the bean leaf beetle (Cerotoma trifurcata Forster) and Bean pod mottle virus (BPMV). Chapters two through five are written for submission to scientific journals. Chapter two reports the findings of a study characterizing bean leaf beetle flight capacity. In chapter three, the results of a study to elucidate the primary sources of BPMV inoculum are presented. Chapter four presents the results of an experiment to evaluate a management tactic using insecticides for bean leaf beetle and BPMV management. Chapter five reports the results of research examining the effect of soybean planting date on incidence of BPMV. Chapter six describes the general conclusions from this dissertation, followed by acknowledgements. Introduction The relationship between a virus, its host, and the environment is extremely complex. For plant viruses that are primarily vectored by insects, the relationship is even more complex because abiotic factors act on the vector in addition to the host plant. Pest management of a virus must be based on an understanding of these interactions. To dissect the relationship between virus, vector, and host plant, it is useful to begin by investigating what is known about the cycle of these interactions. If the cycle can be understood, then finding ways to break the cycle can become the focus of management. A virus that has recently become a concern in Iowa is Bean pod mottle virus (BPMV). This virus has been prevalent in the southern United States, but is becoming more 2 widespread in the North Central states (Marking 2000, Giesler et al. 2002). There are sporadic reports of the virus in the North Central states, including a report of "widespread" disease in Kansas in 1979 (Schwenk and Nickell 1980) (Table 1). Yield losses from bean pod mottle virus have been documented as high as 52% (Hopkins and Mueller 1984) and the seed coat mottling caused by the virus can reduce seed value. The bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is considered the primary vector of this virus (Newsom et al. 1980, Hopkins and Mueller 1983, Pitre 1989). Populations of the bean leaf beetle have reached the highest levels recorded in the past 14 years (Fig. 1). Large populations of the bean leaf beetle in the North Central states may be contributing to the increased incidence of BPMV. Two factors that are known to affect bean leaf beetle densities, winter temperature and planting date, have been favorable in recent years for encouraging large populations. Recently, winter temperatures in Iowa have been above normal (www.iowa- counties.com/weather/). At warmer overwintering temperatures more beetles survive for a longer period of time (Lam 1999). The other main factor thought to encourage large beetle populations is planting date. Early planting of soybeans favors early colonization of plants by beetles. Early colonization of soybean fields is beneficial for beetles because fecundity and survivorship are greater, the longer they feed on soybeans (Zeiss and Pedigo 1996). Despite this knowledge, many farmers are planting soybeans early to increase yield and avoid wet fields in April and May (Whigham 2000). The increase in early-planted soybean fields promotes large and fecund bean leaf beetle populations. High bean leaf beetle densities can cause economic damage to soybeans through feeding. Beetle feeding in combination with BPMV can produce even greater yield and seed 3 quality reductions. No study has examined the BPMV-bean leaf beetle relationship in Iowa. The following literature review describes what is known about the virus-beetle relationship and discusses areas for research into breaking the disease cycle. Objectives This research focused on accomplishing two major objectives: 1) identify sources of bean pod mottle virus inoculum in Iowa, and 2) develop management recommendations for bean pod mottle virus to reduce its impact on soybean quality and yield. 1. Source of BPMV Inoculum • Determine the extent of BPMV in Iowa. To better understand the potential impact of BPMV a map of its distribution is needed. • Determine whether BPMV is seed transmitted. Previous studies have shown that BPMV can be seed transmitted, but no study has examined seed transmission in soybean from Iowa. Seed should be evaluated to determine whether it can serve as a primary inoculum source. • Determine whether overwintered beetles can transmit virus. There is limited information on whether overwintered bean leaf beetles can transmit BPMV. This information is needed to determine how early in the season soybean plants may be exposed to BPMV by beetles in Iowa.
Recommended publications
  • Bean Pod Mottle Virus Biology and Management in Iowa Jeffrey Donald Bradshaw Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Bean pod mottle virus biology and management in Iowa Jeffrey Donald Bradshaw Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons, and the Plant Pathology Commons Recommended Citation Bradshaw, Jeffrey Donald, "Bean pod mottle virus biology and management in Iowa" (2007). Retrospective Theses and Dissertations. 15938. https://lib.dr.iastate.edu/rtd/15938 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Bean pod mottle virus biology and management in Iowa by Jeffrey Donald Bradshaw A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Entomology; Plant Pathology Program of Study Committee: Marlin E. Rice, Co-major Professor John. H. Hill, Co-major Professor Larry P. Pedigo Matthew E. O’Neal Gary P. Munkvold Daniel S. Nettleton Iowa State University Ames, Iowa 2007 Copyright © Jeffrey Donald Bradshaw, 2007. All rights reserved. UMI Number: 3274880 Copyright 2007 by Bradshaw, Jeffrey Donald All rights reserved. UMI Microform 3274880 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O.
    [Show full text]
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • Common Defoliating Beetles in Soybean
    W 392 COMMON DEFOLIATING BEETLES IN SOYBEAN Scott Graham, Graduate Research Assistant Scott Stewart, Professor Department of Entomology and Plant Pathology typically emerge from eggs in less than two weeks JAPANESE BEETLE and then feed on grass roots. The larvae go through three instars, becoming fully grown by nine weeks Classification and Description after hatch. Full-grown, third instar white grubs tun- nel down in the soil to overwinter. After winter, white The Japanese beetle, Popillia japonica, is a scarab grubs crawl back up in the root zone to continue beetle commonly found in Tennessee. This beetle feeding until they enter a prepupal stage for roughly can be a pest of gardens, trees, shrubs, turfgrass 10 days. Adults emerge after an 8-20 day pupation and agricultural fields. Adults have a bright metallic period, depending on weather conditions. green head and thorax with copper-colored elytra (hardened wings) and a row of five spots of white Pest Status and Injury hairs on each side of the abdomen below the wings. They are oval shaped and vary in length from 8 to 11 Japanese beetles primarily feed on the upper foli- millimeters and a width of 5 to 7 millimeters. Larvae age of plants or on blooms, consuming leaf tissue or “white grubs” are found in the soil and vary in col- between veins leaving a lace-like skeleton. Although or from white to light gray and have a brown head. not a common problem, Japanese beetles may cause Japanese beetle white grubs have three pairs of legs. significant defoliation of soybean in Tennessee.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Viral Diseases of Soybeans
    SoybeaniGrow BEST MANAGEMENT PRACTICES Chapter 60: Viral Diseases of Soybeans Marie A.C. Langham ([email protected]) Connie L. Strunk ([email protected]) Four soybean viruses infect South Dakota soybeans. Bean Pod Mottle Virus (BPMV) is the most prominent and causes significant yield losses. Soybean Mosaic Virus (SMV) is the second most commonly identified soybean virus in South Dakota. It causes significant losses either in single infection or in dual infection with BPMV. Tobacco Ringspot Virus (TRSV) and Alfalfa Mosaic Virus (AMV) are found less commonly than BPMV or SMV. Managing soybean viruses requires that the living bridge of hosts be broken. Key components for managing viral diseases are provided in Table 60.1. The purpose of this chapter is to discuss the symptoms, vectors, and management of BPMV, SMV, TRSV, and AMV. Table 60.1. Key components to consider in viral management. 1. Viruses are obligate pathogens that cannot be grown in artificial culture and must always pass from living host to living host in what is referred to as a “living or green” bridge. 2. Breaking this “living bridge” is key in soybean virus management. a. Use planting dates to avoid peak populations of insect vectors (bean leaf beetle for BPMV and aphids for SMV). b. Use appropriate rotations. 3. Use disease-free seed, and select tolerant varieties when available. 4. Accurate diagnosis is critical. Contact Connie L. Strunk for information. (605-782-3290 or [email protected]) 5. Fungicides and bactericides cannot be used to manage viral problems. 60-541 extension.sdstate.edu | © 2019, South Dakota Board of Regents What are viruses? Viruses that infect soybeans present unique challenges to soybean producers, crop consultants, breeders, and other professionals.
    [Show full text]
  • Insectos Asociados a La Flor De Caesalpinia Pulcherrima (L.) Swartz, En Un Sitio Urbano De Tabasco, México
    ISSN 1021-0296 REVISTA NICARAGUENSE DE ENTOMOLOGIA N° 130. ___________ __ Julio 2017 Insectos asociados a la flor de Caesalpinia pulcherrima (L.) Swartz, en un sitio urbano de Tabasco, México Por Concepción Hernández Mayo & Saúl Sánchez Soto PUBLICACIÓN DEL MUSEO ENTOMOLÓGICO ASOCIACIÓN NICARAGÜENSE DE ENTOMOLOGÍA LEON - - - NICARAGUA Revista Nicaragüense de Entomología. Número 130. 2017. La Revista Nicaragüense de Entomología (ISSN 1021-0296) es una publicación reconocida en la Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Red ALyC) e indexada en los índices: Zoological Record, Entomological Abstracts, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. Los artículos de esta publicación están reportados en las Páginas de Contenido de CATIE, Costa Rica y en las Páginas de Contenido de CIAT, Colombia. Todos los artículos que en ella se publican son sometidos a un sistema de doble arbitraje por especialistas en el tema. The Revista Nicaragüense de Entomología (ISSN 1021-0296) is a journal listed in the Latin-American Index of Scientific Journals. It is indexed in: Zoological Records, Entomological, Life Sciences Collections, Review of Medical and Veterinary Entomology and Review of Agricultural Entomology. Reported in CATIE, Costa Rica and CIAT, Colombia. Two independent specialists referee all published papers. Consejo Editorial Jean Michel Maes Fernando Hernández-Baz Editor General Editor Asociado Museo Entomológico Universidad Veracruzana Nicaragua México José Clavijo Albertos Silvia A. Mazzucconi Universidad Central de Universidad de Buenos Aires Venezuela Argentina Weston Opitz Don Windsor Kansas Wesleyan University Smithsonian Tropical Research United States of America Institute, Panama Miguel Ángel Morón Ríos Jack Schuster Instituto de Ecología, A.C.
    [Show full text]
  • Bean Pod Mottle Virus (BPMV) Is Wide­ Ies Each of a Large (L) and Small (S) Coat Reported (13,49)
    Loren J. Giesler University of Nebraska, Lincoln A Threat Bean pod Said A. Ghabrial to U.S. University of Kentucky, Lexington mottle Thomas E. Hunt Soybean University of Nebraska, Lincoln John H. Hill virus Production Iowa State University, Ames Bean pod mottle virus (BPMV) is wide­ ies each of a large (L) and small (S) coat reported (13,49). BPMV RNA-1 encodes spread in the major soybean-growing areas protein (CP) of 41 kDa and 22 kDa, re­ five mature proteins required for replica­ in the southern and southeastern United spectively. The S-CP occurs in two major tion (from 5' to 3': a protease cofactor States. A severe outbreak of BPMV in the size classes, the intact protein and a C- [32K], a putative helicase [58K], a viral north central and northern Great Plains terminus truncated version. As a conse­ genome-linked protein [VPg], a protease states is currently causing serious concern quence of this heterogeneity, BPMV viri­ [24K], and a putative RNA-dependent to soybean growers and to the soybean ons have two electrophoretic forms, a RNA polymerase, RdRp [87K]), whereas industry in this region (30). BPMV is effi­ slow- and a fast-migrating form, each con­ RNA-2 encodes a putative cell-to-cell ciently transmitted in nature, within and taining both M and B nucleoprotein com­ movement protein and the two coat pro­ between soybean fields, by several species ponents. Intact S-CP converts to the C­ teins (13,49). of leaf-feeding beetles. The deleterious terminus-truncated form with ageing of the effects of BPMV infection not only reduce virions and involves a specific, yet little Historical Perspective yield but also reduce seed quality, as seeds understood, proteolytic processing at the Zaumeyer and Thomas first described from infected plants may be discolored.
    [Show full text]
  • Case Study – Pests and Diseases Date: ______
    Name: _______________ Student Handout 5: Case Study – Pests and Diseases Date: ________________ Instructions: Split the class into two groups and assign each group a case study to research. Case Study 1: Farmers: Bob & Sally Jenson Location: Minnesota, USA Crop: Soybeans Problem: Bean Leaf Beetle1 Agronomist Report: An agronomist inspected this crop and noticed that all stages of plant growth were impacted. There is a decrease in crop yield and poor seed quality. The beetles are feeding on pods and breaking the pods, as well as scarring the leaves allowing for fungal pathogens to enter. Last, the agronomist report said this beetle was carrying a virus to the plant called bean pod mottle virus, which is mainly a concern if the Jenson’s are selling their soybeans for food because it affects the seed coat quality. 1. Research the Bean Leaf Beetle 2. Identify at least one solution to address this pest Case Study 2: Farmers: Shad & Lita Meena Location: Kenya, Africa Crop: Maize Problem: Maize Lethal Necrosis Disease (MLND)2 Agronomist Report: An agronomist inspected this crop and noticed a 30 percent loss in yields! The agronomist could see the leaves were dry, there were malformed ears, sometimes even no ears on the plants and some of the the ears were rotting. The agronomist let the Meena family know the disease was likely from a long drought, poor soil fertility and poor agricultural practices. 1. Research the Maize Lethal Necrosis Disease 2. Identify at least one solution to address this disease Answer Key Student Handout 5: Case Study - Pests and Diseases Case Study 1: Bean Leaf Beetle Possible solutions: Cold winters can be an asset in reducing the beetle population.
    [Show full text]
  • The Literature of Arthropods Associated with Soybeans : III, a Bibliography of the Bean Leaf Beetles, Cerotoma Trifurcata
    LIBRARY OF THE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Y\o.(oG ' €)£) Lz^lQ^^^J SURVEY The Literature of Arthropods Associated—with Soybeans III. A BIBLIOGRAPHY OF THE r u. BEAN LEAF BEETLES Cerotoma trifurcata (Forster) and C. ruficornis (Olivier) (Coleoptera: Chrysomelidae) M. P. NICHOLS • M. KOGAN • G. P. WALDBAUER Biological Notes No. 85 ILLINOIS NATURAL HISTORY SURVEY Urbana, Illinois- February, 1974 STATE OF ILLINOIS Department of Registration and Education Natural History Survey Division The Literature of Arthropods Associated with Soybeans III. A BIBLIOGRAPHY OF THE BEAN LEAF BEETLES Cerotoma trifurcato (Forster) and C. ruficornis (Olivier) (Goleoptera: Ghrysomelidae) M. P. Nichols, M. Kogan, and G. P. Waldbauer Two SPECIES of the genus Ceroioma Chevrolat, (Horn, 1872)' as the synonyms of C. ruficornis. Her- 1837,' are important agricultural pests and have be- zog (1968)' made a detailed study of the color varia- come significant elements of the arthropod fauna asso- tions of C trifiircata. ciated with soybeans in the World. C. trifitrcata New The distribution of each species is known only in (Forster, the only species of the known 1771)Ms genus general terms. C. trifiircata is found from southern to attack soybeans in the continental United States, Canada to the Gulf states, extending from the Atlan- while C. ruficornis (Olivier, 1791)^ occurs primarily tic coast westward to South Dakota in the north and south of the United States. to Arizona in the south. It is also found in Puerto Both species are well defined taxonomically, and Rico. C. ruficornis is widely distributed in the West despite considerable variation in their color and pat- Indies and, on the mainland, occurs in Florida and tem the synonymy is not extensi\e.
    [Show full text]
  • Literature on the Chrysomelidae from CHRYSOMELA Newsletter, Numbers 1-41 October 1979 Through April 2001 May 18, 2001 (Rev
    Literature on the Chrysomelidae From CHRYSOMELA Newsletter, numbers 1-41 October 1979 through April 2001 May 18, 2001 (rev. 1)—(2,635 citations) Terry N. Seeno, Editor The following citations appeared in the CHRYSOMELA process and rechecked for accuracy, the list undoubtedly newsletter beginning with the first issue published in 1979. contains errors. Revisions and additions are planned and will be numbered sequentially. Because the literature on leaf beetles is so expansive, these citations focus mainly on biosystematic references. They Adobe Acrobat® 4.0 was used to distill the list into a PDF were taken directly from the publication, reprint, or file, which is searchable using standard search procedures. author’s notes and not copied from other bibliographies. If you want to add to the literature in this bibliography, Even though great care was taken during the data entering please contact me. All contributors will be acknowledged. Abdullah, M. and A. Abdullah. 1968. Phyllobrotica decorata de Gratiana spadicea (Klug, 1829) (Coleoptera, Chrysomelidae, DuPortei, a new sub-species of the Galerucinae (Coleoptera: Chrysomel- Cassidinae) em condições de laboratório. Rev. Bras. Entomol. idae) with a review of the species of Phyllobrotica in the Lyman 30(1):105-113, 7 figs., 2 tabs. Museum Collection. Entomol. Mon. Mag. 104(1244-1246):4-9, 32 figs. Alegre, C. and E. Petitpierre. 1982. Chromosomal findings on eight Abdullah, M. and A. Abdullah. 1969. Abnormal elytra, wings and species of European Cryptocephalus. Experientia 38:774-775, 11 figs. other structures in a female Trirhabda virgata (Chrysomelidae) with a summary of similar teratological observations in the Coleoptera.
    [Show full text]
  • Bean Leaf Beetle Michael L
    Insects and Diseases AGRICULTURAL MU Guide PUBLISHED BY MU EXTENSION, UNIVERSITY OF MISSOURI-COLUMBIA muextension.missouri.edu/xplor/ Soybean Pest Management: Bean Leaf Beetle Michael L. Boyd and Wayne C. Bailey State Extension Entomology Specialists The bean leaf beetle, Cerotoma trifurcata (Forster), is Facts at a Glance one of the most important soybean pests in the United • There are two generations of bean leaf beetle per States. It is tied for second among all pest species attack- year in Missouri. ing soybean foliage, pods and seeds. This insect was • Both larvae and adults are soybean pests. Larvae once an infrequent soybean pest in the Midwest; attack the roots; adults, the foliage and pods. however, in the 1970s, soybean growers began reporting • Adult foliar damage (rounded holes) differs from increased incidence of bean leaf beetle feeding damage. caterpillar damage (ragged edges); whereas, direct Description and life cycle pod damage (outer pod wall) is less severe than that 1 caused by grasshoppers (seeds destroyed). This small beetle (at least ⁄4-inch in length) over- • Pod damage by adults is most crucial because also winters as adults beneath leaf litter in wood lots adjacent it can lead to secondary disease infections of the to soybean fields. Once spring temperatures reach 50–55 pods and seeds and thereby lower seed quality and degrees F, adults become active and seek available host quantity. plants (such as grasses, soybean plants and other legumes). Adult coloration (red, orange, tan or gray) and markings (dots, strips, or both) may vary among indi- viduals or populations; however, all adults possess a black triangle at the base of their forewings (Figures 1 and 2).
    [Show full text]
  • A Review of the Natural Enemies of Beetles in the Subtribe Diabroticina (Coleoptera: Chrysomelidae): Implications for Sustainable Pest Management S
    This article was downloaded by: [USDA National Agricultural Library] On: 13 May 2009 Access details: Access Details: [subscription number 908592637] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 A review of the natural enemies of beetles in the subtribe Diabroticina (Coleoptera: Chrysomelidae): implications for sustainable pest management S. Toepfer a; T. Haye a; M. Erlandson b; M. Goettel c; J. G. Lundgren d; R. G. Kleespies e; D. C. Weber f; G. Cabrera Walsh g; A. Peters h; R. -U. Ehlers i; H. Strasser j; D. Moore k; S. Keller l; S. Vidal m; U. Kuhlmann a a CABI Europe-Switzerland, Delémont, Switzerland b Agriculture & Agri-Food Canada, Saskatoon, SK, Canada c Agriculture & Agri-Food Canada, Lethbridge, AB, Canada d NCARL, USDA-ARS, Brookings, SD, USA e Julius Kühn-Institute, Institute for Biological Control, Darmstadt, Germany f IIBBL, USDA-ARS, Beltsville, MD, USA g South American USDA-ARS, Buenos Aires, Argentina h e-nema, Schwentinental, Germany i Christian-Albrechts-University, Kiel, Germany j University of Innsbruck, Austria k CABI, Egham, UK l Agroscope ART, Reckenholz, Switzerland m University of Goettingen, Germany Online Publication Date: 01 January 2009 To cite this Article Toepfer, S., Haye, T., Erlandson, M., Goettel, M., Lundgren, J. G., Kleespies, R. G., Weber, D. C., Walsh, G. Cabrera, Peters, A., Ehlers, R. -U., Strasser, H., Moore, D., Keller, S., Vidal, S.
    [Show full text]