Logical Methods in Computer Science Vol. 11(4:10)2015, pp. 1–35 Submitted Mar. 11, 2015 www.lmcs-online.org Published Dec. 14, 2015 PROBLEMS IN NUMBER THEORY FROM BUSY BEAVER COMPETITION PASCAL MICHEL Equipe´ de Logique Math´ematique, Institut de Math´ematiques de Jussieu–Paris Rive Gauche, UMR 7586, Bˆatiment Sophie Germain, case 7012, 75205 Paris Cedex 13, France and Universit´ede Cergy- Pontoise, IUFM, F-95000 Cergy-Pontoise, France e-mail address:
[email protected] Abstract. By introducing the busy beaver competition of Turing machines, in 1962, Rado defined noncomputable functions on positive integers. The study of these functions and variants leads to many mathematical challenges. This article takes up the following one: How can a small Turing machine manage to produce very big numbers? It provides the following answer: mostly by simulating Collatz-like functions, that are generalizations of the famous 3x+1 function. These functions, like the 3x+1 function, lead to new unsolved problems in number theory. 1. Introduction 1.1. A well defined noncomputable function. It is easy to define a noncomputable function on nonnegative integers. Indeed, given a programming language, you produce a systematic list of the programs for functions, and, by diagonalization, you define a function whose output, on input n, is different from the output of the nth program. This simple definition raises many problems: Which programming language? How to list the programs? How to choose the output? In 1962, Rado [Ra62] gave a practical solution by defining the busy beaver game, also called now the busy beaver competition.