Feasibility of Biological Control of Solanaceous Weeds of Temperate Australia

Total Page:16

File Type:pdf, Size:1020Kb

Feasibility of Biological Control of Solanaceous Weeds of Temperate Australia finalreportp Project code: Weed.120 Prepared by: Raelene Kwong Victorian Department of Primary Industries Date published: May 2006 ISBN: 9781741914542 PUBLISHED BY Meat & Livestock Australia Locked Bag 991 NORTH SYDNEY NSW 2059 Feasibility of biological control of solanaceous weeds of temperate Australia Silverleaf nightshade, Solanum elaeagnifolium Cav. and prairie ground cherry, Physalis viscosa L. This publication is published by Meat & Livestock Australia Limited ABN 39 081 678 364 (MLA). Care is taken to ensure the accuracy of information in the publication. Reproduction in whole or in part of this publication is prohibited without the prior written consent of MLA. Contents Section Page Abstract………………………………………………………………………………………….1 1 Introduction ....................................................................................................... 7 1.1 Background....................................................................................................... 7 1.2 Objectives ......................................................................................................... 8 1.3 Methods ............................................................................................................ 8 2 Silverleaf Nightshade, Solanum elaeagnifolium Cav. ....................................... 9 2.1 Taxonomy ......................................................................................................... 9 2.2 Global Distribution........................................................................................... 10 2.3 Australian Distribution ..................................................................................... 10 2.4 Biology ............................................................................................................ 11 2.5 Economic Importance ..................................................................................... 13 2.6 Current Control Methods................................................................................. 15 2.7 Silverleaf Nightshade National Workshop....................................................... 17 2.8 Victorian Farmer Experiences with Silverleaf Nightshade Management ........ 18 3 Feasibility of Biological Control of Silverleaf Nightshade ................................ 20 3.1 History of surveys for natural enemies of silverleaf nightshade...................... 20 3.2 Analysis of potential agents for biological control of SLN ............................... 20 3.3 Benefit-Cost Analysis of a biological control program for SLN........................ 25 3.4 Discussion....................................................................................................... 34 3.5 Recommendations .......................................................................................... 35 4 Prairie Ground Cherry, Physalis viscosa L...................................................... 36 4.1 Taxonomy ....................................................................................................... 36 4.2 Global Distribution........................................................................................... 37 4.3 Australian Distribution ..................................................................................... 38 4.4 Biology ............................................................................................................ 38 4.5 Economic Importance ..................................................................................... 39 4.6 Current Control Methods................................................................................. 40 4.7 Victorian Farmer Experiences with PGC Management................................... 42 5 Feasibility of Biological Control of Prairie Ground Cherry............................... 42 5.1 Arthropods ...................................................................................................... 42 5.2 Fungi ............................................................................................................... 43 5.3 Benefit-Cost Analysis of a biological control program for PGC....................... 43 5.4 Discussion....................................................................................................... 45 5.5 Recommendations .......................................................................................... 45 6 References..................................................................................................... 47 7 Appendixes ..................................................................................................... 52 7.1 Appendix 1...................................................................................................... 52 7.2 Appendix 2...................................................................................................... 81 7.3 Appendix 3...................................................................................................... 84 7.4 Appendix 4...................................................................................................... 88 7.5 Appendix 5.................................................................................................... 125 Feasibility of biocontrol of solanaceous weeds of temperate Australia 7.6 Appendix 6.................................................................................................... 136 7.7 Appendix 7.................................................................................................... 138 Feasibility of biocontrol of solanaceous weeds of temperate Australia Abstract The solanaceous weeds, prairie ground cherry and silverleaf nightshade, are significant weeds in the cropping/pasture and perennial pasture zones of temperate Australia. The extensive and deep perennial root systems makes them extremely competitive, and the limited control techniques currently available are uneconomical for the treatment of large, dense infestations. Biological control is therefore considered a highly desirable option to reduce the impact of existing infestations and slow their rates of spread. This study aimed to determine the feasibility of commencing biological control programs for silverleaf nightshade and prairie ground cherry based on a review of natural enemies associated with these plant species in their native ranges and an assessment of the organisms’ potential for biological control. A total of 30 species were assessed for silverleaf nightshade but few of these showed much potential for biocontrol because of their apparent lack of specificity. In addition, many of the previous surveys on natural enemies associated with silverleaf nightshade were conducted in regions of the Americas, which have vastly different climates to the regions in Australia where silverleaf nightshade is problematic. No surveys had been conducted in the central regions of Argentina and Chile, where climate analysis indicated more comparable climates with Australia. For prairie ground cherry, no surveys have previously been conducted and therefore little is known about the natural enemies associated with this plant in its native range of South America. Due to this lack of information, combined with uncertainties regarding the origins of Australian populations of these weeds, it is difficult to predict the likelihood of undertaking successful biological control programs for these weeds. However, the reported success of biological control of silverleaf nightshade in South Africa attributed to just one defoliating beetle, provides some promise that the biological control of SLN is possible. The study concluded that investment in biological control of SLN and PGC is warranted and potentially economically viable, however preliminary research is needed to fill key knowledge gaps so that a re-evaluation of the prospects for biological control can be conducted more thoroughly. Executive Summary The weeds prairie ground cherry, Physalis viscosa L. and silverleaf nightshade, Solanum elaeagnifolium Cav. have been identified as Priority Weeds of cropping/pasture zones of temperate rangelands in “Weeds of Significance to the Grazing Industries of Australia” (Grice 2002). The deep and extensive perennial root system of these weeds makes them particularly difficult to control using herbicides and cultivation. As such, biological control is seen as a High Priority Research and Development need for these weeds. This study investigates the rationale for and feasibility of biological control of prairie ground cherry (PGC) and silverleaf nightshade (SLN) by: (1) reviewing the impact of these weeds, (2) current methods and deficiencies in control techniques, (3) reviewing the literature to identify natural enemies associated with these weed in their native ranges, and (4) discussing their potential as biological control agents. Based on the gaps in knowledge identified through this study, a biological control research project incorporating likely costs and time-lines is proposed for each weed. This information, combined with economic data on the current and projected costs of SLN and PGC to agriculture is used to provide an ex ante assessment of the potential economic benefits of an investment in biological control programs for PGC and SLN. 1 Feasibility of biocontrol of solanaceous weeds of temperate Australia A summary of the major findings is provided for each weed. SILVERLEAF NIGHTSHADE Weed impacts. Silverleaf nightshade in Australia is estimated to infest approximately 140,000 ha and is particularly problematic in South Australia,
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Of Physalis Longifolia in the U.S
    The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review1 ,2 3 2 2 KELLY KINDSCHER* ,QUINN LONG ,STEVE CORBETT ,KIRSTEN BOSNAK , 2 4 5 HILLARY LORING ,MARK COHEN , AND BARBARA N. TIMMERMANN 2Kansas Biological Survey, University of Kansas, Lawrence, KS, USA 3Missouri Botanical Garden, St. Louis, MO, USA 4Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA 5Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, USA *Corresponding author; e-mail: [email protected] The Ethnobotany and Ethnopharmacology of Wild Tomatillos, Physalis longifolia Nutt., and Related Physalis Species: A Review. The wild tomatillo, Physalis longifolia Nutt., and related species have been important wild-harvested foods and medicinal plants. This paper reviews their traditional use as food and medicine; it also discusses taxonomic difficulties and provides information on recent medicinal chemistry discoveries within this and related species. Subtle morphological differences recognized by taxonomists to distinguish this species from closely related taxa can be confusing to botanists and ethnobotanists, and many of these differences are not considered to be important by indigenous people. Therefore, the food and medicinal uses reported here include information for P. longifolia, as well as uses for several related taxa found north of Mexico. The importance of wild Physalis species as food is reported by many tribes, and its long history of use is evidenced by frequent discovery in archaeological sites. These plants may have been cultivated, or “tended,” by Pueblo farmers and other tribes. The importance of this plant as medicine is made evident through its historical ethnobotanical use, information in recent literature on Physalis species pharmacology, and our Native Medicinal Plant Research Program’s recent discovery of 14 new natural products, some of which have potent anti-cancer activity.
    [Show full text]
  • Aqueous and Ethanolic Plant Extracts As Bio-Insecticides—Establishing a Bridge Between Raw Scientific Data and Practical Reality
    plants Review Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality Wilson R. Tavares 1 , Maria do Carmo Barreto 1,* and Ana M. L. Seca 1,2,* 1 cE3c—Centre for Ecology, Evolution and Environmental Changes/Azorean Biodiversity Group & Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus, 9501-321 Ponta Delgada, Portugal; [email protected] 2 LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal * Correspondence: [email protected] (M.d.C.B.); [email protected] (A.M.L.S.); Tel.: +351-296-650-184 (M.d.C.B.); +351-296-650-172 (A.M.L.S.) Abstract: Global demand for food production is causing pressure to produce faster and bigger crop yields, leading to a rampant use of synthetical pesticides. To combat the nefarious consequences of its uses, a search for effective alternatives began in the last decades and is currently ongoing. Nature is seen as the main source of answers to crop protection problems, supported by several examples of plants/extracts used for this purpose in traditional agriculture. The literature reviewed allowed the identification of 95 plants whose extracts exhibit insecticide activity and can be used as bio-pesticides contributing to sustainable agriculture. The option for ethanol and/or water extracts is more environmentally friendly and resorts to easily accessible solvents, which can be reproduced by farmers themselves. This enables a bridge to be established between raw scientific data and Citation: Tavares, W.R.; Barreto, a more practical reality.
    [Show full text]
  • The Morelloid Clade of Solanum L. (Solanaceae) in Argentina: Nomenclatural Changes, Three New Species and an Updated Key to All Taxa
    A peer-reviewed open-access journal PhytoKeys 164: 33–66 (2020) Morelloids in Argentina 33 doi: 10.3897/phytokeys.164.54504 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research The Morelloid clade of Solanum L. (Solanaceae) in Argentina: nomenclatural changes, three new species and an updated key to all taxa Sandra Knapp1, Franco Chiarini2, Juan J. Cantero2,3, Gloria E. Barboza2 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK 2 Museo Botánico, IMBIV (Instituto Multidisciplinario de Biología Vegetal), Universidad Nacional de Córdoba, Casilla de Correo 495, 5000, Córdoba, Argentina 3 Departamento de Biología Agrícola, Facultad de Agronomía y Ve- terinaria, Universidad Nacional de Rio Cuarto, Ruta Nac. 36, km 601, 5804, Río Cuarto, Córdoba, Argentina Corresponding author: Sandra Knapp ([email protected]) Academic editor: L. Giacomin | Received 20 May 2020 | Accepted 28 August 2020 | Published 21 October 2020 Citation: Knapp S, Chiarini F, Cantero JJ, Barboza GE (2020) The Morelloid clade of Solanum L. (Solanaceae) in Argentina: nomenclatural changes, three new species and an updated key to all taxa. PhytoKeys 164: 33–66. https://doi. org/10.3897/phytokeys.164.54504 Abstract Since the publication of the Solanaceae treatment in “Flora Argentina” in 2013 exploration in the coun- try and resolution of outstanding nomenclatural and circumscription issues has resulted in a number of changes to the species of the Morelloid clade of Solanum L. (Solanaceae) for Argentina. Here we describe three new species: Solanum hunzikeri Chiarini & Cantero, sp. nov., from wet high elevation areas in Argentina (Catamarca, Salta and Tucumán) and Bolivia (Chuquisaca and Tarija), S.
    [Show full text]
  • Solanum Elaeagnifolium Cav. R.J
    R.A. Stanton J.W. Heap Solanum elaeagnifolium Cav. R.J. Carter H. Wu Name Lower leaves c. 10 × 4 cm, oblong-lanceolate, distinctly sinuate-undulate, upper leaves smaller, Solanum elaeagnifolium Cav. is commonly known oblong, entire, venation usually prominent in in Australia as silverleaf nightshade. Solanum is dried specimens, base rounded or cuneate, apex from the Latin solamen, ‘solace’ or ‘comfort’, in acute or obtuse; petiole 0.5–2 cm long, with reference to the narcotic effects of some Solanum or without prickles. Inflorescence a few (1–4)- species. The species name, elaeagnifolium, is flowered raceme at first terminal, soon lateral; Latin for ‘leaves like Elaeagnus’, in reference peduncle 0.5–1 cm long; floral rachis 2–3 cm to olive-like shrubs in the family Elaeagnaceae. long; pedicels 1 cm long at anthesis, reflexed ‘Silverleaf’ refers to the silvery appearance of and lengthened to 2–3 cm long in fruit. Calyx the leaves and ‘nightshade’ is derived from the c. 1 cm long at anthesis; tube 5 mm long, more Anglo-Saxon name for nightshades, ‘nihtscada’ or less 5-ribbed by nerves of 5 subulate lobes, (Parsons and Cuthbertson 1992). Other vernacu- whole enlarging in fruit. Corolla 2–3 cm diam- lar names are meloncillo del campo, tomatillo, eter, rotate-stellate, often reflexed, blue, rarely white horsenettle, bullnettle, silver-leaf horsenet- pale blue, white, deep purple, or pinkish. Anthers tle, tomato weed, sand brier, trompillo, melon- 5–8 mm long, slender, tapered towards apex, cillo, revienta caballo, silver-leaf nettle, purple yellow, conspicuous, erect, not coherent; fila- nightshade, white-weed, western horsenettle, ments 3–4 mm long.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century.
    [Show full text]
  • Threatened and Endangered Species Coorespondence
    APPENDIXF THREATENED AND ENDANGERED SPECIES CORRESPONDENCE INTRODUCTION Forest Service policy regarding Biological Evaluaitons is summarized in Forest Service Manual (FSM) 2672.4. The intent of the Bilogical Evaluation process is to assess the potential impacts of propsed management activities, and ensure that such activities will not jeopardize the continued existence of: 1. Species listed, or proposed to be listed, as Engangered or Threatened by the U. S. Fish and Wildlife Service and 2. Species designated as sensitive by the Regional Forester. AFFECTED ENVIRONMENT Project Area The Sioux Ranger District proposes to update allotment management plans for 11 domestic livestock allotments on National Forest System lands in the North and South Cave Hills and East Short Pine land units. The decision associated with this proposal and analysis wi" determine where livestock can graze, when grazing wi" occur and what specific guidelines will be established to regulate the intensity (timing and duration) of grazing. The analysis area includes about 17,700 National Forest acres. The climate is continental and semi-arid, with large seasonal and daily temperature variations being common. Most of the rainfall during the summer is from thunderstorms; flash flooding can occur form the more severe thunderstorms. Streamflow is erratic with most streams being intermittant in nature. Ecological units include hardwood draws, Ponderosa bench and slope, upland, rolling, and table top grassland, rockland, and rimrocks. Detailed information regarding plant community composition and location is found elsewhere in the environmental analysis for this proposed action. Field surveys have been conducted within or adjacent to the project area by Linda Spencer, Kim Reid, Jeff DiBenedetto, and Tim McGarvey during the 2001 field season (s).
    [Show full text]
  • Solanum Capsicoides Click on Images to Enlarge
    Species information Abo ut Reso urces Hom e A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Solanum capsicoides Click on images to enlarge Family Solanaceae Scientific Name Solanum capsicoides All. Allioni, C. (1773) Auctuarium ad Synopsim Methodicam Stirpium Horti Regii Taurensis : 12. Type: Cultivated Flower. Copyright G. Sankowsky at Turin, origin unknown; holo: TO. Common name Devil's Apple; Nightshade; Apple, Devil's Weed * Leaves and flowers. Copyright G. Sankowsky Stem Usually flowers and fruits as a shrub about 1-2 m tall but also flowers when smaller. Leaves Leaf blades about 4-8 x 4-7 cm, hairy on both the upper and lower surfaces also with erect, straight about 4- 10 mm long spines present on both surfaces particularly along the midrib and main lateral veins. Petioles about 1.5-2.5 cm long. Leaf blade margins coarsely lobed with 2 or 3 lobes on each side. Twigs and petioles also armed with spines. Leaves and flowers. Copyright G. Sankowsky Flowers Inflorescence axis, pedicels and calyx armed with straight spines. Pedicels about 10-25 mm long. Calyx about 4-6 mm long, lobes about 2-3 mm long. Corolla about 20-30 mm diam. Anthers orange, about 5-7 mm long, filaments somewhat flattened or winged. Ovary clothed in fine short glandular hairs. Style short. Fruit Fruit, side views, cross section and seeds. Copyright W. T. Cooper Fruits depressed globular, about 20-35 mm diam. Pedicels spiny. Calyx green, spiny, persistent at the base of the fruit.
    [Show full text]
  • In Mississippi
    Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi By TITLE PAGE Ryan J. Whitehouse Approved by: Richard L. Brown (Major Professor) Robert S. Anderson Gerald T. Baker Kenneth Willeford (Graduate Coordinator) George M. Hopper (Dean, College of Agriculture and Life Sciences) A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences in the Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology Mississippi State, Mississippi May 2020 Copyright by COPYRIGHT PAGE Ryan J. Whitehouse 2020 Name: Ryan J. Whitehouse ABSTRACT Date of Degree: May 1, 2020 Institution: Mississippi State University Major Field: Agricultural Life Sciences Major Professor: Richard L. Brown Title of Study: Biodiversity of Bariditae (Coleoptera: Curculionidae: Conoderinae) in Mississippi Pages in Study: 262 Candidate for Degree of Master of Science A survey of Bariditae in Mississippi resulted in records of 75 species in 32 genera and included two undescribed species and 36 new state records. An additional two species were recognized as possibly occurring in Mississippi as well. Diagnoses for all of the genera and species in the state are provided and keys to the genera as well as all of the species were made. Species were found in every county within Mississippi and are representative of the Bariditae fauna of the southeastern United States. Open, prairie-like habitats and aquatic wetland habitats were the habitats with the highest biodiversity of Bariditae in the state. Species of Baris, Geraeus, Linogeraeus, and Odontocorynus, were found in the highest numbers and Linogeraeus and Sibariops were found to be the most speciose genera in the state.
    [Show full text]
  • Anatomical Study of Seed and Fruit Morphology of an Invasive Weed Buffalobur (Solanum Rostratum Dunal)
    Pak. J. Bot., DOI: 10.30848/PJB2019-1(12) ANATOMICAL STUDY OF SEED AND FRUIT MORPHOLOGY OF AN INVASIVE WEED BUFFALOBUR (SOLANUM ROSTRATUM DUNAL) LONG YANG1,2†, HONGJUAN HUANG1†, MUHAMMAD SAEED3, ZHAOFENG HUANG1, CUILAN JIANG1, CHAOXIAN ZHANG1, MUHAMMAD ISHFAQ KHAN3, IMTIAZ KHAN3 AND SHOUHUI WEI1* 1Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing-China 2Plant Protection and Quarantine Station of Tianjin, Tianjin-China 3Department of Weed Science, The University of Agriculture, Peshawar-Pakistan †The first two authors contributed equally to this work *Corresponding author’s email: [email protected] Abstract Solanum rostratum Dunal, commonly known as buffalobur, is an invasive species in China. It caused significant damage to natural ecosystem, agricultural production and human health in many countries. Seed and fruit morphology of S. rostratum were examined using Scanning Electron Microscopy (SEM) and stereomicroscope. The seed surface of S. rostratum was characterized by palisading hair-like structures which surrounded each depressed cellular reticula. Two types of ultrastructure were firstly observed on the surface of reticula, differing in arrangements of fingerlike projections and the number of tilted holes. A visible cavity was found between endosperm and micropyle region. Knowledge obtained in this study would provide useful information in identification of Solanum species in plant quarantine and understanding its wide adaption to the environments. Key words: Solanaceae, Solanum rostratum, Seed coat, Reticula, Ultrastructure. Introduction microstructure of seed coat and inner structures related to germination and to provide useful guidance for Solanum rostratum Dunal is a member of Solanaceae identification and classification of this species. family and is commonly known as buffalobur, Kansas thistle and Texas thistle (Anon., 2018).
    [Show full text]
  • (Coleoptera: Curculionidae) in Southeastern Brazil Tomato Crops Agronomía Colombiana, Vol
    Agronomía Colombiana ISSN: 0120-9965 [email protected] Universidad Nacional de Colombia Colombia Dias de Almeida, Gustavo; Santos Andrade, Gilberto; Vicentini, Victor Bernardo; Faria Barbosa, Wagner; Moreira Sobreira, Fabio; Pratissoli, Dirceu Occurrence of Faustinus sp. (Coleoptera: Curculionidae) in Southeastern Brazil tomato crops Agronomía Colombiana, vol. 27, núm. 3, 2009, pp. 417-419 Universidad Nacional de Colombia Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=180316242016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative NOTA CIENTÍFICA Occurrence of Faustinus sp. (Coleoptera: Curculionidae) in Southeastern Brazil tomato crops Ocurrencia de Faustinus sp. (Coleoptera: Curculionidae) en tomate en el Sureste del Brasil Gustavo Dias de Almeida1, 5, Gilberto Santos Andrade2, Victor Bernardo Vicentini3, Wagner Faria Barbosa4, Fabio Moreira Sobreira1 and Dirceu Pratissoli3 ABSTRACT RESUMEN Occurrence of Faustinus sp. (Coleoptera: Curculionidae) in Se constató la aparición de Faustinus sp. (Coleoptera: Curcu- tomato (Solanum lycopersicum L.) plantations in the State of lionidae) atacando hojas y tallos de tomate (Solanum lycopersi- Espirito Santo, Brazil, was confirmed through field observa- cum L.) en el estado de Espíritu Santo, en el sureste del Brasil, tions carried out between April 2006 and March 2008. Larvae entre los meses de abril de 2006 y marzo de 2008. Las larvas of Faustinus sp. bore the stems of tomato plants, whereas adults de Faustinus sp. perforan los tallos de la planta, mientras que feed on the leaves.
    [Show full text]
  • Ti:Br. J. M. Grayson
    ~IOLOGY AND ECOLOGY OF FRUMENTA NUNDINELLA (ZELLER) (LEPIDJPI'ERA: GELECHIIDAE) AND ITS IMPACT ON HORSENETTLE (SOLANUM CAROLINENSE 1.), / by Thomas Ear1 \\ BaileY,, . / Thesis submitted to the Graduate Faculty of Virginia Polytechnic Institute and State University in partial fulfillment for the degree of Master of Science in Entomology APPROVED: Dr. L. T. Kok, Chairman 1 Dr. R. L. Pienkowski Dr. E. c. Turner ti:br. J. M. Grayson May, 1978 Blacksburg, Virginia ACKNOWLEICEMENTS I would like to express my gratitude to Dr. L. T. Kok for his assistance with the project and to Dr. R. L. Pienkowski for his interest and helpful suggestions. I would like to thank the members of my graduate committee: Dr, Kok, Dr. Pienkowski, Dro E.C. Turner and Dr. J.M. Grayson, for their critical reading of the manuscript. I thank Dr. W. H. Robinson and taxonomists of the United States National Museum for identification of specimens and Mr. R.D. Blakesly for his valuable technical assistance with laboratory and field work. My sincere appreciation goes to my dear friend Barbara for helping in many ways. ii TABLE OF CONTENTS ACKNOWLED:;EMENTS ii LIST OF TABLES v LIST OF FIGURES . VI INTRODUCTION 1 LITERATURE REVIEW I. Solanum carolinense L. 2 Taxonomic Position 2 Biology 2 Pest Status 2 Attempts at Control 4 II, Suitability of Horsenettle for Biocontrol 5 III. Frumenta nundinella (Zeller) (Lepidoptera: Gelechiidae) Taxonomic Position 9 Distribution 10 Biology 10 IV. Other Insects Associated with Horsenettle 11 MATERIALS AND METHODS I. Frumenta nundinella (Zeller) Study Sites 14 Host Propagation 14 Distribution and Abundance 15 Overwintering Stage 17 Life History 19 Impact on Horsenettle 22 Host Specificity 2.3 II.
    [Show full text]