Chemistry Course Description Western Kentucky University June 30

Total Page:16

File Type:pdf, Size:1020Kb

Chemistry Course Description Western Kentucky University June 30 AP Summer Institute – Chemistry Course Description Western Kentucky University June 30 – July 03, 2014 This APSI will outline selected topics in the redesigned AP Chemistry curriculum framework, with particular emphasis on Big Idea 6 (Chemical Equilibrium) and the foundational concepts of Big Ideas 4 (Chemical Thermodynamics) and 5 (Chemical Kinetics). Participants will engage in extensive guided inquiry laboratory work and will develop or refine a laboratory program appropriate to the redesigned AP Chemistry course. Additional, participants will be guided in syllabus development and will begin the process of preparing the course audit, as required by the College Board. Topics will include the following: • An introduction to the redesigned AP Chemistry Syllabus • Prior knowledge and Pre-AP Chemistry • Resources for AP Chemistry • Thermochemistry, Energy and Enthalpy in chemical and physical changes • Thermodynamics, Entropy, Free Energy, and Spontaneity • Chemical Kinetics and the Rates of Chemical Reactions • Chemical Equilibrium § Relation to Thermodynamics and Kinetics § General and gas phase equilibrium § Heterogeneous equilibrium § Aqueous equilibrium § Solubility equilibrium and Ksp § Acids, Bases, and Buffers What participants should bring: • AP Chemistry Textbook • Scientific calculator and lab safety glasses. Participants should be prepared with laboratory appropriate clothing (i.e. closed toe shoes). • Notes and laboratory exercises are provided for participants In addition, participants will find it convenient to bring a laptop computer or iPad equipped with a spreadsheet utility and capable of accessing on-line resources. Consultant After teaching AP Chemistry, Physics, and Calculus at independent schools in North Carolina, California, and Kentucky, Lew Acampora is currently the living in Louisville and acts as the statewide (KY) Science Content Director for the National Math and Science Initiative. Mr. Acampora has been involved in the AP Chemistry reading for 20 years, first as a reader, table leader, and most recently as a question leader. He has written questions for the AP Chemistry test, and has served on the PRAXIS test development committee. Mr. Acampora graduated with a B.A. in chemistry from Harvard University, and has done graduate work in chemistry at Brandeis University and the University of North Carolina at Charlotte. MONDAY MORNING Introduction to AP Chemistry • AP Chemistry Syllabus and Redesign o Why the redesign? o What’s new? What’s out? Breadth and depth • Laboratory expectations and resources o The AP Chemistry Lab Manual o Guided Inquiry – selecting appropriate laboratory exercises • The AP Audit o Expectations o Timeline Prior Knowledge and Fundamental Concepts • Pre-AP Expectations • AP Chemistry in the science sequence Thermochemistry • Enthalpy, energy, calorimetry • Moles of reaction and Units in Thermochemical Equations o • Calculating and interpreting ΔH Rxn LAB – Thermochemistry. Calibrating your Calorimeter Determination of ΔHsol’n of Ionic Compounds MONDAY AFTERNOON The AP Chemistry Exam • Resources for teachers, for students • Retired exams, practice exam Lab Resources and Inquiry • Selecting a laboratory program • Equipping the AP Chemistry lab Chemical Thermodynamics • Entropy and Free Energy in a Chemical or Physical Change o o • Calculating and interpreting ΔS Rxn and ΔG Rxn o • Spontaneity, ΔG Rxn vs. ΔGRxn • Addressing student misconceptions o LAB – Determination of ΔG Rxn for a chemical reaction Practice Exam Multiple Choice Questions 1-30 (in groups) TUESDAY MORNING Chemical Kinetics • Rates of Chemical Reactions • Integrated Rate Laws o Limitations and applications o Pseudo-first order reactions • Reaction Mechanisms and the Rate Laws LAB01 – The Landolt Clock Reaction LAB02 – Modeling Chemical Kinetics using Spreadsheets Practice Exam Multiple Choice Questions 31-60 (in groups) TUESDAY AFTERNOON Chemical Kinetics • Reaction progress o [X] vs. t – stoichiometry! • Integrated Rate Laws o 0th, 1st, 2nd order rate laws § Rate constants § Graphical interpretation o Limitations and applications o Pseudo-first order reactions • LAB – What Is the Rate Law of the Fading of Crystal Violet Using Beer’s Law? (AP Chemistry Lab Manual No. 11) or alternative Practice Exam Review/Scoring Free Response Questions (in groups) WEDNESDAY MORNING Chemical Equilibrium • Relation of Equilibrium to Thermodynamics & Kinetics • Law of Mass Action and the Equilibrium Constant • Equilibrium Calculations o Determination of Keq o Direction of Spontaneous Change, Q vs K LAB01 – Can We Make the Colors of the Rainbow? An Application of Le Chatelier’s Principle (AP Lab No. 13) LAB02 – Spectrophotometric Determination of Keq of a Complex Ion. Exam Deconstruction 2014 AP Chemistry Exam Q1, Q4, Q5 WEDNESDAY AFTERNOON Chemical Equilibrium and Heterogeneous Reactions • Phase change and evaporation, Vapor Pressure o ΔHo, ΔSo, ΔGo, ΔG o Clausius-Clapeyron Relation o Intermolecular Forces • Solubility equilibrium o ΔHo, ΔSo, ΔGo, ΔG o Saturated solutions and solubility curves LAB – Determination of Ksp of a Slightly Soluble Salt Exam Deconstruction 2014 AP Chemistry Exam Q2, Q6 THURSDAY MORNING Acids/Bases/ and Buffers • Strong, Weak, and Feeble Acids • Indicators and pH • Buffers (introduction) LAB01 – Acid/Base curves – Behavior of strong and weak acids and bases LAB02 – Acid/Base titrations, Determination of Ka of a weak acid Putting things together for AP • Building on the ideas and techniques presented throughout the week, we will conclude with reviewing the scope and depth of the AP curriculum. Participants will generate a syllabus appropriate to their course. Exam Deconstruction 2014 AP Chemistry Exam Q3, Q7 THURSDAY AFTERNOON Acids/Bases/ and Buffers • LeChatelier and Buffers • Buffer Behavior o What is a buffer? o How does a buffer work? o How can a buffer be prepared? LAB – Preparation and Testing of an Effective Buffer (AP Chemistry Lab Manual No. 16) or alternative Course Syllabus/Audit Development Putting things together for AP • Building on the ideas and techniques presented throughout the week, we will conclude with reviewing the scope and depth of the AP curriculum. Participants will generate a syllabus appropriate to their course. .
Recommended publications
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • Chemistry Courses 2005-2006
    Chemistry Courses 2005-2006 Autumn 2005 Chem 11101 General Chemistry I, Variant A Lee Chem 11102 General Chemistry I, Variant B Norris Chem 12200 Honors General Chemistry I Levy Chem 22000 Organic Chemistry I Yu Chem 22300 Intermediate Organic Chemistry Mrksich Chem 26100 Quantum Mechanics Mazziotti Chem 30100 Advanced Inorganic Chemistry Hopkins Chem 30900 Bioinorganic Chemistry He Chem 32100 Physical Organic Chemistry I Ismagilov Chem 32200 Organic Synthesis and Structure Rawal Chem 32600 Protein Fundamentals Piccirilli Chem 36100 Wave Mechanics & Spectroscopy Butler Chem 36400 Chemical Thermodynamics Dinner Winter 2006 Chem 11201 General Chemistry II, Variant A Scherer Chem 11202 General Chemistry II, Variant B Butler Chem 12300 Honors General Chemistry II Dinner Chem 20100 Inorganic Chemistry I Hillhouse Chem 22100 Organic Chemistry II Rawal Chem 23100 Honors Organic Chemistry II Kozmin Chem 26200 Thermodynamics Norris Chem 26700 Experimental Physical Chemistry Levy Chem 30200 Synthesis & Physical Methods in Inorganic Chemistry Jordan Chem 30400 Organometallic Chemistry Bosnich Chem 32300 Tactics of Organic Synthesis Yamamoto Chem 32400 Physical Organic Chemistry II Mrksich Chem 36200 Quantum Mechanics Freed Chem 36300 Statistical Mechanics Mazziotti Chem 38700 Biophysical Chemistry Lee Spring 2006 Chem 11301 General Chemistry III, Variant A Kozmin Chem 11302 General Chemistry III, Variant B Guyot-Sionnest Chem 20200 Inorganic Chemistry II Jordan Chem 22200 Organic Chemistry III Kent Chem 23200 Honors Organic Chemistry III Yamamoto Chem 22700 Advanced Organic / Inorganic Laboratory (8 students) He Chem 26300 Chemical Kinetics and Dynamics Sibner Chem 26800 Computational Chemistry & Biology Freed Chem 30600 Chemistry of the Elements Hillhouse Chem 31100 Supramolecular Chemistry Bosnich Chem 32500 Bioorganic Chemistry Piccirilli Chem 32900 Polymer Chemistry Yu Chem 33000 Complex Systems Ismagilov Chem 36500 Chemical Dynamics Scherer Chem 36800 Advanced Computational Chemistry & Biology Freed .
    [Show full text]
  • Entropy and Life
    Entropy and life Research concerning the relationship between the thermodynamics textbook, states, after speaking about thermodynamic quantity entropy and the evolution of the laws of the physical world, that “there are none that life began around the turn of the 20th century. In 1910, are established on a firmer basis than the two general American historian Henry Adams printed and distributed propositions of Joule and Carnot; which constitute the to university libraries and history professors the small vol- fundamental laws of our subject.” McCulloch then goes ume A Letter to American Teachers of History proposing on to show that these two laws may be combined in a sin- a theory of history based on the second law of thermo- gle expression as follows: dynamics and on the principle of entropy.[1][2] The 1944 book What is Life? by Nobel-laureate physicist Erwin Schrödinger stimulated research in the field. In his book, Z dQ Schrödinger originally stated that life feeds on negative S = entropy, or negentropy as it is sometimes called, but in a τ later edition corrected himself in response to complaints and stated the true source is free energy. More recent where work has restricted the discussion to Gibbs free energy because biological processes on Earth normally occur at S = entropy a constant temperature and pressure, such as in the atmo- dQ = a differential amount of heat sphere or at the bottom of an ocean, but not across both passed into a thermodynamic sys- over short periods of time for individual organisms. tem τ = absolute temperature 1 Origin McCulloch then declares that the applications of these two laws, i.e.
    [Show full text]
  • Chemical Thermodynamics and Staged Unit Operations
    Beginning of Course Memorandum (BOCM) University of Virginia Fall, 2013 CHE 3316 Chemical Thermodynamics and Staged Unit Operations Revised October 22 Instructor: John O'Connell: Office Chemical Engineering 310; Voice (434) 924-3428; E-mail: [email protected] Office Hours: TR1400-1730, Others TBA GTA: Sabra Hanspal: Office CHE 217A; Voice 4-1476; E-mail: [email protected]; Office Hours: MF 12-2 PM Class Meetings: CHE 005, TR 0930-1045, T 1300-1350 Texts: "Lectures in Thermodynamics, Volume 2 (Beta Version)", by J.M. Haile & J.P. O'Connell, 2008 - 12, Electronic copy on CD available from instructor for $15. Total 641 pages. "Separation Process Engineering, 3rd Ed.", by P.C. Wankat, Prentice Hall, 2012. References: “Physical and Chemical Equilibrium for Chemical Engineers, 2nd Ed.” by N. de Nevers, Wiley-Interscience, New York, 2012. "Introduction to Chemical Engineering Thermodynamics, 7th Ed.," by J.M. Smith, H.C. Van Ness, and M.M. Abbott (SVNA). McGraw-Hill, New York, 2005. "Chemical, Biochemical, & Engineering Thermodynamics, 4th Ed.," by S.I. Sandler, John Wiley, 2006. "Schaum's Outline of Thermodynamics with Chemical Applications, 2nd Ed.," by H.C. Van Ness & M.M.Abbott, Schaum's Outlines, McGraw-Hill, 1989. "Lectures in Thermodynamics, Volume 1," by J.M. Haile, Macatea Productions, 2002. “Unit Operations of Chemical Engineering, 7th Ed.”, W. McCabe, J. Smith, & P. Harriott, New York, McGraw-Hill, 2004. “Principles of Chemical Separations with Environmental Applications,” R.D. Noble & P.A. Terry, Cambridge, UK, Cambridge University Press, 2004. “Perry’s Chemical Engineers’ Handbook, 8th Ed.,” D. Green & R. Perry, New York, McGraw-Hill, 2007.
    [Show full text]
  • Chapter 19 Chemical Thermodynamics
    Chapter 19 Chemical Thermodynamics Entropy and free energy Learning goals and key skills: Explain and apply the terms spontaneous process, reversible process, irreversible process, and isothermal process. Define entropy and state the second law of thermodynamics. Calculate DS for a phase change. Explain how the entropy of a system is related to the number of possible microstates. Describe the kinds of molecular motion that a molecule can possess. Predict the sign of DS for physical and chemical processes. State the third law of thermodynamics. Compare the values of standard molar entropies. Calculate standard entropy changes for a system from standard molar entropies. Calculate the Gibbs free energy from the enthalpy change and entropy change at a given temperature. Use free energy changes to predict whether reactions are spontaneous. Calculate standard free energy changes using standard free energies of formation. Predict the effect of temperature on spontaneity given DH and DS. Calculate DG under nonstandard conditions. Relate DG°and equilibrium constant (K). Review Chapter 5: energy, enthalpy, 1st law of thermo Thermodynamics: the science of heat and work Thermochemistry: the relationship between chemical reactions and energy changes Energy (E) The capacity to do work or to transfer heat. Work (w) The energy expended to move an object against an opposing force. w = F d Heat (q) Derived from the movements of atoms and molecules (including vibrations and rotations). Enthalpy (H) Enthalpy is the heat absorbed (or released) by a system during a constant-pressure process. 1 0th Law of Thermodynamics If A is in thermal equilibrium with B, and B is in thermal equilibrium with C, then C is also in thermal equilibrium with A.
    [Show full text]
  • Analyzing Binding Data UNIT 7.5 Harvey J
    Analyzing Binding Data UNIT 7.5 Harvey J. Motulsky1 and Richard R. Neubig2 1GraphPad Software, La Jolla, California 2University of Michigan, Ann Arbor, Michigan ABSTRACT Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their afÞnity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments. Curr. Protoc. Neurosci. 52:7.5.1-7.5.65. C 2010 by John Wiley & Sons, Inc. Keywords: binding r radioligand r radioligand binding r Scatchard plot r r r r r r receptor binding competitive binding curve IC50 Kd Bmax nonlinear regression r curve Þtting r ßuorescence INTRODUCTION A radioligand is a radioactively labeled drug that can associate with a receptor, trans- porter, enzyme, or any protein of interest. The term ligand derives from the Latin word ligo, which means to bind or tie. Measuring the rate and extent of binding provides information on the number, afÞnity, and accessibility of these binding sites for various drugs. While physiological or biochemical measurements of tissue responses to drugs can prove the existence of receptors, only ligand binding studies (or possibly quantitative immunochemical studies) can determine the actual receptor concentration. Radioligand binding experiments are easy to perform, and provide useful data in many Þelds. For example, radioligand binding studies are used to: 1. Study receptor regulation, for example during development, in diseases, or in response to a drug treatment. 2. Discover new drugs by screening for compounds that compete with high afÞnity for radioligand binding to a particular receptor.
    [Show full text]
  • CHEMISTRY (CHGN) - (2021-2022 Catalog) 1
    CHEMISTRY (CHGN) - (2021-2022 Catalog) 1 CHGN209. INTRODUCTION TO CHEMICAL THERMODYNAMICS. 3.0 CHEMISTRY (CHGN) Semester Hrs. (I, II, S) Introduction to the fundamental principles of classical CHGN111. INTRODUCTORY CHEMISTRY. 3.0 Semester Hrs. thermodynamics, with particular emphasis on chemical and phase (S) Introductory college chemistry. Elementary atomic structure and the equilibria. Volume-temperature-pressure relationships for solids, liquids, periodic chart, chemical bonding, chemical reactions and stoichiometry and gases; ideal and non-ideal gases. Introduction to kineticmolecular of chemical reactions, chemical equilibrium, thermochemistry, and theory of ideal gases and the Maxwell-Boltzmann distributions. Work, properties of gases. Must not be used for elective credit. Does not apply heat, and application of the First Law to closed systems, including toward undergraduate degree or g.p.a. 3 hours lecture and 3 hours lab; 3 chemical reactions. Entropy and the Second and Third Laws; Gibbs Free semester hours. Energy. Chemical equilibrium and the equilibrium constant; introduction to activities & fugacities. One- and two-component phase diagrams; Gibbs CHGN121. PRINCIPLES OF CHEMISTRY I. 4.0 Semester Hrs. Phase Rule. May not also receive credit for CBEN210 or GEGN330. Study of matter and energy based on atomic structure, correlation Prerequisites: CHGN121, CHGN122 or CHGN125, MATH111, MATH112, of properties of elements with position in periodic chart, chemical PHGN100. 3 hours lecture; 3 semester hours. bonding, geometry of molecules, phase changes, stoichiometry, solution chemistry, gas laws, and thermochemistry. 3 hours lecture, 3 hours lab; 4 CHGN221. ORGANIC CHEMISTRY I. 3.0 Semester Hrs. semester hours. Approved for Colorado Guaranteed General Education (I,S) Structure, properties, and reactions of the important classes of transfer.
    [Show full text]
  • Chemistry (CHEM) 1
    Chemistry (CHEM) 1 Chemistry (CHEM) CHEM 117. Chemical Concepts and Applications. 3 Credits. Introduction to general and organic chemistry, with applications drawn from the health, environmental, and materials sciences. Prereq or Coreq: MATH 103, MATH 104 or MATH 107 or Math placement. CHEM 117L. Chem Concepts and Applications Lab. 1 Credit. Introduction to general and organic chemistry, with applications drawn from the health, environmental, and materials sciences. Prereq or Coreq: MATH 103, MATH 104, MATH 107 or Math placement. CHEM 121L. General Chemistry I Laboratory. 1 Credit. Matter, measurement, atoms, ions, molecules, reactions, chemical calculations, thermochemistry, bonding, molecular geometry, periodicity, and gases. Prereq or Coreq: MATH 103 or MATH 107 or Math placement. CHEM 121. General Chemistry I. 3 Credits. Matter, measurement, atoms, ions, molecules, reactions, chemical calculations, thermochemistry, bonding, molecular geometry, periodicity, and gases. Prereq or Coreq: MATH 103 or MATH 107 or Math placement. CHEM 122L. General Chemistry II Laboratory. 1 Credit. Intermolecular forces, liquids, solids, kinetics, equilibria, acids and bases, solution chemistry, precipitation, thermodynamics, and electrochemistry. Prereq: CHEM 121L. CHEM 122. General Chemistry II. 3 Credits. Intermolecular forces, liquids, solids, kinetics, equilibria, acids and bases, solution chemistry, precipitation, thermodynamics, and electrochemistry. Prereq: CHEM 121. CHEM 140. Organic Chemical Concepts and Applications. 1 Credit. Introduction to organic chemistry for pre-nursing and other students who need to meet the prerequisite for CHEM 260. CHEM 150. Principles of Chemistry I. 3 Credits. Chemistry for students with good high school preparation in mathematics and science. Electronic structure, stoichiometry, molecular geometry, ionic and covalent bonding, energetics of chemical reactions, gases, transition metal chemistry.
    [Show full text]
  • Fugacity Nov 2 2011.Pdf
    Fugacity - Wikipedia, the free encyclopedia 頁 1 / 5 Fugacity From Wikipedia, the free encyclopedia In chemical thermodynamics, the fugacity (f) of a real gas is an effective pressure which replaces the true mechanical pressure in accurate chemical equilibrium calculations. It is equal to the pressure of an ideal gas which has the same chemical potential as the real gas. For example, [1] nitrogen gas (N2) at 0°C and a pressure of 100 atm has a fugacity of 97.03 atm. This means that the chemical potential of real nitrogen at a pressure of 100 atm has the value which ideal nitrogen would have at a pressure of 97.03 atm. Fugacities are determined experimentally or estimated for various models such as a Van der Waals gas that are closer to reality than an ideal gas. The ideal gas pressure and fugacity are related through the dimensionless fugacity coefficient .[2] For nitrogen at 100 atm, the fugacity coefficient is 97.03 atm / 100 atm = 0.9703. For an ideal gas, fugacity and pressure are equal so is 1. The fugacity is closely related to the thermodynamic activity. For a gas, the activity is simply the fugacity divided by a reference pressure to give a dimensionless quantity. This reference pressure is called the standard state and normally chosen as 1 atmosphere or 1 bar, Again using nitrogen at 100 atm as an example, since the fugacity is 97.03 atm, the activity is just 97.03 with no units. Accurate calculations of chemical equilibrium for real gases should use the fugacity rather than the pressure.
    [Show full text]
  • 6. Chemical Thermodynamics and Energetics
    6. CHEMICAL THERMODYNAMICS AND ENERGETICS 1. THERMODYNAMICS 4.2 Intensive Properties It is the study of flow of energy. It encompasses the study of flow Such properties of a system which depends on concentration of heat as well as mass. and does not depend on the mass or the total number of particles in the system are categorized as Intensive properties. eg. Pressure, 2. THERMODYNAMICS TERMINOLOGY Density, Reractive Index. 5. STATE AND PATH FUNCTIONS 2.1 System Such thermodynamic functions which depend only on the initial and final states of the system and not on the path followed are The part of the Universe under observation is called system. called state functions eg. Internal energy, Enthalpy and the functions which depend on the path followed while changing 2.2 Surrounding from one state to the other are called path functions. eg. work heat. The part of the Universe not under observation is called Surrounding. 6. THERMODYNAMIC EQUILIBRIUM System + Surrounding = Universe A system is said to be under thermodynamic equilibrium when 2.3 Types of system none of the state variables are changing and it satisfies the three equilibriums. 2.3.1 Open System : A system in which both flow of mass and heat is possible. 6.1 Mechanical Equilibrium 2.3.2 Closed System : A system in which flow of heat is possible but flow of mass is not possible. There is no mechanical motion and the pressure and the volume of the system is not changing. 2.3.3 Isolated System : A system in which neither heat nor mass can flow in or out.
    [Show full text]
  • Lecture 1. Chemical Thermodynamics and Bioenergetics. Fundamentals of Thermochemistry
    Lecture 1. Chemical thermodynamics and bioenergetics. Fundamentals of thermochemistry. Lecture plan . 1. Types of thermodynamic systems. 2. Thermodynamics functions and parameters of system. 3. The first law of thermodynamics. Internal energy. Enthalpy. 4. Heat of isobaric and isochoric process. Standard heats of the substance formation and combustion. 5. Thermochemistry. Hess law. Thermochemical transformation. 6. Thermochemical calculation and their use for energetic characteristics of biochemical process. 7. Second law of thermodynamic. Entropy. Subject of thermodynamics All chemical reactions are accompanied by transformation of chemical energy to other forms of energy - thermal, electrical, mechanical, etc. Thermodynamics is the branch of physical science that studies all forms of energy and their mutual transformations; therefore it is sometimes called energetics. Bioenergetics is a field of thermodynamics that deals with biosystems. Classical thermodynamics is based on propositions which are confirmed by experiment and does not use knowledge about the molecular structure of substances.The energy of reactions is studied by the branch of thermodynamics which is called thermochemistry or chemical thermodynamics. In thermochemistry two types of chemical reactions are distinguished: exothermic (are accompanied by heat release) and endothermic (are accompanied by heat absorption). There are reactions (not so numerous), which are not accompanied by heat exchange. Chemical reactions can occur at a constant pressure (for example in an open flask) - these are isobaric processes, at a constant volume (in a closed flask or an autoclave) - these are isochoric processes, or at a constant temperature - these are isothermal processes (the names are derived from the Greek words isos - identical, baros - pressure, chorus - space, thermos - heat). Thermodynamics deals with the study of properties of various thermodynamic systems and processes occurring in them.
    [Show full text]
  • Chemical Kinetics I: Basics
    2 CHEMICAL KINETICS I: BASICS c1 In the previous chapter, we c2discussed some the fundamental biological pro- cesses c3undertaken by cells such as transcription and translation. The purpose of this chapter is to introduce the basic concepts needed to model the dynamics of such processes. c4These next two chapters explain how to describe chemical re- actions mathematically, both at a deterministic level where stochastic effects are ignored, as well as probabilistically where stochasticity is explicitly incorporated. 2.1 Law of mass action Consider a reaction where two kinds of molecules, c5 A and B, irreversibly re- act to produce a third kind c6of molecule, C. Schematically, such a reaction is represented as k A+B C. (2.1) ! The parameter k is the rate of the reaction. c7In general, kinetic parameters such as k depend on the environment through thermodynamic quantities such as the pressure and temperature. However, since cells often operate in environments where these quantities do not vary much, for simplicity, we will neglect these dependencies in what follows. According to the law of mass action,the rate of increase of the concentration of the product is given by d[C] = k[A][B] (2.2) dt where we follow the standard convention in chemistry texts: the concentration of the chemical X is represented by [X]. Note that the accompanied decrease of the concentrations of A and B is given by the same expression: k[A][B]. Namely, d[A] d[B] = = k[A][B] (2.3) dt dt − c1Pankaj: This is a test c2Pankaj: have introduced some of the basic c3Pankaj: Text added.
    [Show full text]