MORACEAE 桑科 Sang Ke
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Antiaris Toxicaria Moraceae
Antiaris toxicaria Moraceae Indigenous Trade names: Antiaris, false iroko, false mvule, kirundo, upas tree. Common names: Ateso: Eloa Kwamba: Kesuba, kisuba Luganda: Kirundu Lugi- shu: Lulundu Lugwe: Mulundulundu Lunyuli: Musende Luo A: Olivaa Luo L: Elwa Madi: Ripi Runyankore: Mumaka Rutoro: Muhere, mbondo. Ecology: A forest tree with 3 varieties not clearly distinguished, especially when young. While one is found largely in wooded grassland, the others grow in rain forest, wetter forest, riverine and semi-swamp forests west to Sierra Leone, into southern Sudan and south to Zaire and Angola. It grows in all regions of Uganda except the North Eastern, 1,350-1,700 m. Uses: Timber (veneer, beer canoes), medicine (leaves, roots), bark cloth. Description: A magnificent deciduous tree of the forest canopy, often 20 m, up to 40 m, the crown rounded, branchlets drooping. A large tree may have a tall clear bole with some buttresses at the base. BARK: smooth, pale grey, marked with lenticel dots and ring marks. When cut thin cream latex drips out, becoming darker. LEAVES: variable, usually oval 5-16 cm x 4-11 cm, the upper half often widest to a blunt or pointed tip, the base unequal and rounded. Saplings and coppice shoots have long narrow leaves, the edge toothed—but rare in mature leaves. Leaves are rough, papery with stiff hairs above but softer below. FLOWERS: small male flowers, yellow-green, in clusters about 1.5 cm across, growing just below leaves. Female flowers in disc- or kidney- shaped heads to 3 cm across. FRUIT: bright red, dull and furry, 1.5 cm long, the swollen receptacle contains just one seed. -
Botanical Briefs: the Fig—Ficus Carica L
Close Encounters With the Environment Botanical Briefs: The Fig—Ficus carica L. Thomas W. McGovern, MD Clinical Importance Figs can cause irritant reactions with erythema, ulceration, or bullae; phototoxic reactions with bullae and hyperpigmentation sometimes followed by depigmentation and keloids; and chronic eczema with paronychia.1 These dermatoses occur in those who cultivate, gather, pack, or consume figs. The ability of fig plant extracts to stimulate pigmentation in vitiligo patients has been known for almost 2000 years,1 and in India fig extracts are used to treat eczema and psoriasis.2 In addition, the latex has been used as a treatment for warts.3 Family The family Moraceae (the mulberry family) contains 53 genera with about 1400 species, approximately 800 of which are in the genus Ficus. Family members include trees, shrubs, lianes, and herbs that usually have lacticifers with a milky latex.3 Distribution of Plant Ficus carica is probably a native of southwest Asia that rapidly spread to the Mediterranean region, where it was cultivated in Egypt at least 6000 years ago. Today the fig is cultivated mainly in temperate climates throughout the world but also thrives in tropical and subtropical regions. Ficus carica can grow among rocks, in woods, and in hot, dry soils. The first figs in the New World were planted in Figure 1. A young tree of Ficus carica L. about 3-feet Mexico in 1560. In 1669, Europeans sent figs to tall. Note the palmate leaves with “fingers” radiating as Virginia; they were brought to California in 1769. from the palm of a hand. -
Paperbark Park Bramston Beach
PAPERBARK PARK BRAMSTON BEACH Paperbark Park Bramston Beach This list contains plants observed during a visit 1st November 2020 by a combined outing of the Tablelands, Innisfail and the Cairns Branches of the Society for Growing Australian Plants, Queensland Region to Bramston Beach. Names used for family, genera and species are generally in accordance with the Census of the Queensland Flora 2020 by the Queensland Herbarium, Brisbane. * Introduced naturalised exotic species not native to Australia C3 Class 3 weed FERNS & ALLIES Aspleniaceae Asplenium nidus Birds Nest Fern Nephrolepidaceae Nephrolepis obliterata Polypodiaceae Drynaria rigidula Basket Fern Platycerium hillii Northern Elkhorn Fern Pyrrosia longifolia GYMNOSPERMS Podocarpaceae Podocarpus grayae Weeping Brown Pine FLOWERING PLANTS-BASAL GROUP Annonaceae *C3 Annona glabra Pond Apple Polyalthia nitidissima Canary Beech Lauraceae Beilschmiedia obtusifolia Blush Walnut; Hard Cassytha filiformis Dodder Laurel Cryptocarya hypospodia Northern Laurel Litsea fawcettiana Bollywood Monimiaceae Wilkiea pubescens Tetra Beech FLOWERING PLANTS-MONOCOTYLEDONS Arecaceae * Cocos nucifera Coconut Commelinaceae Commelina ensifolia Sailor's Purse; Scurvy Cyperaceae Cyperus pedunculatus Pineapple Sedge Fuirena umbellata Rhynchospora corymbosa Golden Beak Rush Scleria sphacelata R.L. Jago Last update 23 June 2021 Page 1 PAPERBARK PARK BRAMSTON BEACH Flagellariaceae Flagellaria indica Supplejack Heliconiaceae * Heliconia psittacorum Heliconia Hemerocallidaceae Dianella caerulea var. vannata Blue -
Broussonetia Papyrifera Moraceae (L.) Vent
Broussonetia papyrifera (L.) Vent. Moraceae paper mulberry LOCAL NAMES Burmese (malaing); English (paper mulberry tree,paper mulberry); French (mûrier à papier,murier a papier); German (papiermaulbeerbaum); Hindi (kachnar); Indonesian (saeh); Italian (gelso papirifero del giappone,moro della China); Japanese (aka,kodzu,kename kowso,pokasa,aka kowso); Portuguese (amoreira do papel); Spanish (morera de papel); Tongan (hiapo); Trade name (paper mulberry) BOTANIC DESCRIPTION B. papyrifera is a small tree or shrub which grows naturally in Asian and Male inflorescences (Gerald D. Carr, pacific countries (Thailand, China, Myanmar, Laos, Japan, Korea). It University of Hawaii, grows to 21 m high and 70 cm dbh, with a round and spreading crown. www.forestryimages.org) The spreading, grey-brown branches, marked with stipular scars are brittle, making it susceptible to wind damage. The bark is light grey, smooth, with shallow fissures or ridges. Leaves alternate or sub-opposite, mulberry-like and papery. Some leaves are distinctly deep lobed, while others are un-lobed and several different shapes of leaves may appear on the same shoot. Petioles are 3-10 cm long while stipules are 1.6-2.0 cm long. Male flower 3.5-7.5 cm long, yellowish-white, with pendulous catkin-like spikes; perianth campanulate, hairy, 4-fid, and its segments are valvate. Habit at Keanae Arboretum Maui, Hawaii (Forest & Kim Starr) Female flowers in rounded clusters, globose pedunculate heads about 1.3 cm in diameter; persistent, hairy, clavate bracts subtend flowers. Fruit shiny-reddish, fleshy, globose and compound with the achenes 1-2 cm long and wide hanging on long fleshy stalks. -
WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall ......................................................................................................... -
The Framework Species Approach to Forest Restoration: Using Functional Traits As Predictors of Species Performance
- 1 - The Framework Species Approach to forest restoration: using functional traits as predictors of species performance. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Hannah Betts July 2013 - 2 - - 3 - Abstract Due to forest degradation and loss, the use of ecological restoration techniques has become of particular interest in recent years. One such method is the Framework Species Approach (FSA), which was developed in Queensland, Australia. The Framework Species Approach involves a single planting (approximately 30 species) of both early and late successional species. Species planted must survive in the harsh conditions of an open site as well as fulfilling the functions of; (a) fast growth of a broad dense canopy to shade out weeds and reduce the chance of forest fire, (b) early production of flowers or fleshy fruits to attract seed dispersers and kick start animal-mediated seed distribution to the degraded site. The Framework Species Approach has recently been used as part of a restoration project in Doi Suthep-Pui National Park in northern Thailand by the Forest Restoration Research Unit (FORRU) of Chiang Mai University. FORRU have undertaken a number of trials on species performance in the nursery and the field to select appropriate species. However, this has been time-consuming and labour- intensive. It has been suggested that the need for such trials may be reduced by the pre-selection of species using their functional traits as predictors of future performance. Here, seed, leaf and wood functional traits were analysed against predictions from ecological models such as the CSR Triangle and the pioneer concept to assess the extent to which such models described the ecological strategies exhibited by woody species in the seasonally-dry tropical forests of northern Thailand. -
Phenology of Ficus Variegata in a Seasonal Wet Tropical Forest At
Joumalof Biogeography (I1996) 23, 467-475 Phenologyof Ficusvariegata in a seasonalwet tropicalforest at Cape Tribulation,Australia HUGH SPENCER', GEORGE WEIBLENI 2* AND BRIGITTA FLICK' 'Cape TribulationResearch Station, Private Mail Bag5, Cape Tribulationvia Mossman,Queensland 4873, Australiaand 2 The Harvard UniversityHerbaria, 22 Divinity Avenue,Cambridge, Massachusetts 02138, USA Abstract. We studiedthe phenologyof 198 maturetrees dioecious species, female and male trees initiatedtheir of the dioecious figFicus variegataBlume (Moraceae) in a maximalfig crops at differenttimes and floweringwas to seasonally wet tropical rain forestat Cape Tribulation, some extentsynchronized within sexes. Fig productionin Australia, from March 1988 to February 1993. Leaf the female (seed-producing)trees was typicallyconfined productionwas highlyseasonal and correlatedwith rainfall. to the wet season. Male (wasp-producing)trees were less Treeswere annually deciduous, with a pronouncedleaf drop synchronizedthan femaletrees but reacheda peak level of and a pulse of new growthduring the August-September figproduction in the monthsprior to the onset of female drought. At the population level, figs were produced figproduction. Male treeswere also morelikely to produce continuallythroughout the study but there were pronounced figscontinually. Asynchrony among male figcrops during annual cyclesin figabundance. Figs were least abundant the dry season could maintainthe pollinatorpopulation duringthe early dry period (June-September)and most under adverseconditions -
Corner, Mainly Melanesian
New species of Streblus and Ficus (Moraceae) E.J.H. Corner Botany School, University of Cambridge, U.K. Summary New — Lour. S. Taxa. Streblus sect. Protostreblus, sect. nov., with the single species ascendens sp. nov. (Solomon Isl.); S. sclerophyllus sp. nou. (sect. Paratrophis, New Caledonia). Ficus F. cristobalensis var. malaitana var. nov. (subgen. Pharmacosycea, Solomon Isl.); hesperia sp. nov. (sect. Solomon servula and Sycidium, Isl.); F. sp. nov. F. lapidaria sp. nov. (sect. Adenosperma, New Guinea); F. novahibernica and F. cryptosyce (sect. Sycocarpus, New Ireland, New Guinea). Notes are given on Streblus pendulinus, S. solomonensis, Ficus illiberalis, F. subtrinervia (Solomon Isl.), F. adenosperma (Rotuma), and F. subcuneata with a key to its allies. Streblus Lour. sect. Protostreblus sect. nov. Folia spiraliter disposita; lamina ovata v. subcordata, costis basalibus ad mediam laminam elongatis, intercostis transversalibus numerosis. Inflorescentia ut in sect. Paratro- phis; embryo radicula incumbenti elongata, cotyledonibus foliaceis subincrassatis con- duplicatis. Cystolitha nulla. — Typus: S. ascendens, Insulis Solomonensibus. The structural peculiarity of this new section lies in the combinationof the Moras-like leafwith the reproductive characters of Streblus sect. Paratrophis. The ovate subcordate lamina with prominent basal veins and numerous transverse intercostals is unknown in Streblus. the rest of The lax spiral arrangement of the leaves is clearly antecedent to the distichous which also the of the prevails in rest genus. In various Moraceae, such as Ficus, Artocarpus, Maclura, and Broussonetia in the broad sense in which I understand them (Corner, 1962), the transition from the spiral arrangement to the distichous is manifest as the twig becomes more horizontal in its growth and develops applanate, in contrast with Thus this section be of the ascending, foliage. -
Homestead Plant Diversity in the South-Central Coastal Saline Region of Bangladesh: Utilization and Conservation
IJETST- Vol.||03||Issue||05||Pages 4029-4041||May||ISSN 2348-9480 2016 International Journal of Emerging Trends in Science and Technology Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/v3i05.26 Homestead plant diversity in the south-central coastal saline region of Bangladesh: utilization and conservation Authors Atikullah, S. M1, Hossain, A.B.M. E2, Miah, G.U3, M. Oliur Rahman4 1Assistant Professor, Dept of Agribusiness, Atish Dipankar University of Science and Technology, Banani, Dhaka-1000 Email: [email protected], 01552418718 2Retd. Professor, Department of Botany, Jahangirnagr University, Savar, Dhaka-1342 3Professor, Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agriculture University, Salna, Gazipur-1706 4Professor, Dhaka University, Department of Botany, Dhaka-1205 Abstract The present study has found a total of 189 plant species belonging to 152 genera and 74 families growing in homesteads in the south-central coastal region of Bangladesh. Despite variation of species diversity was found in different saline zones the highest numbers of species were recorded in moderately saline zone. Distribution of existing plant species were recorded as 67.20% trees and 32.80% were woody, non-woody and climber types. The family Euphorbiaceae followed by Poaceae and Fabaceae represented highest number of species. On an average, 181 species existed per homestead. Distribution of species in different saline zones varied and it was highest in less saline zone (37.16%) followed by strongly saline (32.55%), and moderately saline (30.29%) zones. The most prevalent timber tree species are Albizia richardiana, Swietenia macrophylla and Samanea saman. Adaptation of different species in various saline zones widely varied due to different levels of salinity while Cocos nucifera as fruit species was almost equally dominant in all saline zones. -
Isolation and Evaluation of Antioxidant and Antibacterial Activity of Flavonoid from Ficus Variegata Blume
538 Indones. J. Chem., 2019, 19 (2), 538 - 543 NOTE: Isolation and Evaluation of Antioxidant and Antibacterial Activity of Flavonoid from Ficus variegata Blume Rolan Rusli*, Bela Apriliana Ningsih, Agung Rahmadani, Lizma Febrina, Vina Maulidya, and Jaka Fadraersada Pharmacotropics Laboratory, Faculty of Pharmacy, University of Mulawarman, Gunung Kelua, Samarinda 75119, East Kalimantan, Indonesia * Corresponding author: Abstract: Ficus variegata Blume is a specific plant of East Kalimantan. Flavonoid compound of F. variegata Blume was isolated by vacuum liquid and column tel: +62-85222221907 chromatography, with previously extracted by maceration method using n-hexane and email: [email protected] methanol, and fractionation using ethyl acetate solvent. The eluent used in isolation were Received: April 12, 2017 n-hexane:ethyl acetate (8:2). Based on the results of elucidation structure using Accepted: January 29, 2018 spectroscopy methods (GC-MS, NMR, and FTIR), 5-hydroxy-2-(4-methoxy-phenyl)-8,8- DOI: 10.22146/ijc.23947 dimethyl-8H-pyrano[2,3-f] chromen-4-one was obtained. This compound has antibacterial and antioxidant activity. Keywords: Ficus variegata Blume; flavonoid; antibacterial activities; antioxidant activity ■ INTRODUCTION much every time it produces fruit. Due that, this plant is a potential plant to be used as medicinal plant. Ficus is a genus that has unique characteristics, and F. variegata Blume is usually used as traditional it grows mainly in tropical rainforest [1-3]. Secondary medicine for treatment of various illnesses, i.e., metabolite of the genus Ficus is rich in polyphenolic dysentery and ulceration. Our research group has been compounds, and flavonoids, therefore, the genus Ficus is reported the bioactivity of a secondary metabolite from usually used as traditional medicine for treatment of leaves, stem bark, and fruit of F. -
The Unknown Followers: Discovery of a New Species of Sycobia Walker (Hymenoptera: Epichrysomallinae) Associated with Ficus Benjamina L
JHR 67: 85–102 (2018)The unknown followers: Discovery of a new species of Sycobia Walker... 85 doi: 10.3897/jhr.67.29733 RESEARCH ARTICLE http://jhr.pensoft.net The unknown followers: Discovery of a new species of Sycobia Walker (Hymenoptera: Epichrysomallinae) associated with Ficus benjamina L. (Moraceae) in the Neotropical region Fernando Henrique Antoniolli Farache1, Cecilia Bernardo Pereira2, Cristiana Koschnitzke2, Levi Oliveira Barros1, Elmecelli Moraes de Castro Souza1, Daniel Tirapeli Felício3, Fabián Gatti4, William Cardona5, Jean-Yves Rasplus6, Rodrigo Augusto Santinelo Pereira1 1 Departamento de Biologia, FFCLRP – USP, 14040-901, Bairro Monte Alegre, Ribeirão Preto, SP, Bra- zil 2 Departamento de Botânica, Museu Nacional – UFRJ, 20940-040, São Cristovão, Rio de Janeiro, RJ, Brazil 3 Departamento de Ciências Biológicas, Faculdade de Ciências, UNESP, 17033-360, Vargem Limpa, Bauru, SP, Brazil 4 Centro de Pesquisa Ecológica Subtropical, DRNEA-Administração e Parques Nacionais, Av. Victoria Aguirre 66, Pto Iguazú, Misiones, Argentina 5 Departamento de Biología, Universidad del Valle, Calle 13 No. 100 – 00, Cali, Colombia 6 INRA, UMR 1062 CBGP, Centre de Biologie pour la Gestion des Populations, Montferrier-sur-Lez, France Corresponding author: Fernando Farache ([email protected]) Academic editor: P. Jansta | Received 14 September 2018 | Accepted 27 November 2018 | Published 31 December 2018 http://zoobank.org/320FF83E-A982-4A5B-8523-BEAD93993EE5 Citation: Farache FHA, Pereira CB, Koschnitzke C, Barros LO, Souza EMC, Felício DT, Gatti F, Cardona W, Rasplus J-Y, Pereira RAS (2018) The unknown followers: Discovery of a new species ofSycobia Walker (Hymenoptera: Epichrysomallinae) associated with Ficus benjamina L. (Moraceae) in the Neotropical region. Journal of Hymenoptera Research 67: 85–102. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation.