Australasian Arachnology 75

Total Page:16

File Type:pdf, Size:1020Kb

Australasian Arachnology 75 AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7375 ISSN0811-3696 September2006 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology Issue 75 September 2006 Contents Editorial………………………………………………………. 3 Membership Updates………………………………………. 3 Feature Article: Spiders of the Pilbara, Western Australia by Brad Durrant………….……………………...………… 4 Postgraduate Progress Report: Systematics of the Western Australian Pirate Spiders (Araneae, Mimetidae) by Danilo Harms……….……………………...……...…… 5 Predation of Nephila sp. by Megadolomedes australianus (Araneae, Pisauridae) by Matthew Shaw……………………………………....... 10 Feature Article: The Huntsman Spiders (Sparassidae) of New Zealand by David Hirst, Julianne M. Waldock, Shaun J. Bennett and Grace Hall……...………………………....... 11 Recent Australasian Arachnological Publications………. 13 Australasian Arachnology No. 74 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL SOCIETY The newsletter depends on your contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals, and is Department of Terrestrial Invertebrates managed by our Administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute Yanco, New South Wales 2703. [email protected] Australia Format: i) typed or legibly printed on A4 email : [email protected] paper or ii) as text or MS Word file on CD, 3½ floppy disk, or via email. Membership fees in Australian dollars (per 4 issues): LIBRARY The AAS has a large number of *discount personal institutional reference books, scientific journals and Australia $8 $10 $12 papers available for loan or as NZ / Asia $10 $12 $14 photocopies, for those members who do elsewher $12 $14 $16 not have access to a scientific library. e Professional members are encouraged to There is no agency discount. send in their arachnological reprints. All postage is by airmail. *Discount rates apply to unemployed, pensioners Contact our librarian: and students (please provide proof of status). Jean-Claude Herremans Cheques are payable in Australian PO Box 291 dollars to “Australasian Arachnological Manly, New South Wales 1655. Society”. Any number of issues can be Australia paid for in advance. Receipts issued on email: [email protected] request. Status box on the envelope indicates the last issue paid for. PDF-recipients will COVER ILLUSTRATION: A mimetid spider feeding on theridiid prey. be notified by email and mail when their By Danilo Harms subscription expires. Previous issues of the newsletter are available at www.australasian- arachnology.org/newsletter/issues. Australasian Arachnology No. 74 Page 3 EDITORIAL MEMBERSHIP UPDATES Again, this issue is a bit late (September instead of August) but I hope New Members the diverse and exciting contents will make up for the delay. As per usual, the Allen Rix Australian Arachnological Society is 114 Arnold St grateful to all who contributed to this Holland Park, Qld 4121 issue! More excitingly, I already have [email protected] articles for the December issue. Stay Lauren Keim tuned for an update on the taxonomy of School of Botany Australian jumping spiders by Marek University of Melbourne Zabka. Parkville, Vic 3010 The date for the 17th International [email protected] Congress of Arachnology in São Pedro, Peter Lillywhite São Paulo, Brazil was announced Entomology/Arachnology recently. The meeting takes place from 5 Museum Victoria – 10 August 2007. Don’t miss out on early GPO Box 666E registration for this exciting event Melbourne, Vic 3001 (http://www.ib.usp.br/~ricrocha/ISA17/ISA [email protected] 17.htm). I have already bought a travel guide for Brazil and am taking Salsa Nick Drayson lessons in preparation! 9 Lailor St Ainslie, ACT 2602 Congratulations to Erik Volschenk and [email protected] Mark Harvey who snatched up a 3-year grant from the Australian Biological Wes Bancroft Resources Study (ABRS) for a project PO Box 1144 called ‘Systematic revision of the endemic Kalamunda, WA 6926 Australian scorpion genus Urodacus [email protected] (Scorpiones: Urodacidae)’. Erik will return to the Western Australian Museum Karen Edward towards the end of this year after a stint Department of Terrestrial Invertebrates at the American Museum of Natural Western Australian Museum History. Owen Seeman, Queensland Locked Bag 49 Museum, also pulled some money from Welshpool DC, WA 6986 ABRS for his project ‘Systematics of [email protected] Australian native and exotic Tetranychus Danilo Harms spider mites (Acari: Tetranychidae)’. Fakultät für Biologie, Chemie und Congratulations! Pharmazie Keep the contributions rolling in Freie Universität Berlin (deadline for the next issue: 30 November Königin-Luise-Str. 1-3 14195 Berlin 2006). Cheers for now Volker Germany [email protected] Australasian Arachnology No. 74 Page 4 Spiders of the Pilbara, Western a twelve month period. The samples were Australia then sorted to major groups and the various components identified to species level. Brad Durrant Department of Environment and Conservation, Western Australia [email protected] Since 2003, the Pilbara region of Western Australia has been the focus of a major biological survey being carried out by the Western Australian Department of Environment and Conservation (formerly CALM) with assistance from the Western Australian Museum. The survey is aimed at providing detailed systematic information on the biodiversity of the Fig. 1: The Pilbara region with the 306 region. This knowledge can then be used terrestrial sites. to better understand biogeographic patterning and ultimately improve the The task of identifying is obviously a approach and handling of conservation in mammoth one. The Western Australian the region. There are five major Museum (Mark Harvey, Julianne Waldock components of the survey: and Volker Framenau) will be identifying Oonopidae, Salticidae, and Lycosidae - Terrestrial fauna: vertebrates and the Queensland Museum (Robert and invertebrates Raven) is providing taxonomic assistance - Terrestrial flora with Miturgoidea. The American Museum - Wetland fauna: invertebrates of Natural History will be helping out with and waterbirds the soon to be released (and much - Wetland flora anticipated) revision of the Australian - Stygofauna Gnaphosidae (Vladimir Ovtsharenko) and the recently published revision of the Focal groups of the terrestrial Australasian Prodidomidae (Platnick and invertebrate fauna are ground-dwelling Baehr 2006). spiders, scorpions, beetles, bugs, ants The ground-dwelling spider and isopods. component is currently represented by 20 Throughout the 19 million hectares of families, dominated by Gnaphosidae, the Pilbara (almost the size of Victoria) Zodariidae and Zoridae (Table 1). It is 306 sites were chosen representing a anticipated that the final number will be cross-section of soil, climate and around 450-500 species, with around 80- vegetation types (Fig. 1). Five ethylene 90% of these unknown to science. Each glycol pitfall traps were installed at each site is expected to yield around 25-40 site to sample the invertebrate fauna over species. Australasian Arachnology No. 74 Page 5 Table 1: Pilbara ground-dwelling spider POSTGRADUATE families and their current proportions PROJECTS of species. (Number of species in the Lycosidae and Salticidae still unknown.) Systematics of the Western Family Species Australian Pirate Spiders Gnaphosidae 64 (Arachnida, Mimetidae) Zodariidae 60 Zoridae 37 Prodidomidae 29 Danilo Harms, Systematik und Evolution Lamponidae 18 der Tiere, Freie Universität Berlin, Miturgidae 18 Fakultät für Biologie, Chemie und Barychelidae 12 Pharmazie, Königin-Luise-Str. 1-3, 14195 others 29 Berlin, Germany [email protected] We still have a long way to go but we The Mimetidae, often referred to as Pirate envisage all our identifications will be Spiders due to the araneophagic completed in the first half of 2007, behaviour of most species, are an followed by data analyses and lots of enigmatic spider group with about 150 writing. Any taxonomic information that described species in twelve genera and a anyone feels may be of help to us would worldwide distribution (Platnick 2006). be greatly welcomed and if anyone has The Australian fauna is rich in species but any questions please feel free to contact is poorly known, both taxonomically and me. ecologically. Aggressive mimicry is part of the prey-catching behaviour of some References Queensland Australomimetus Heimer, 1986. It is characterised by a diverse Platnick, N.I. and Baehr, B.C. 2006. A array of vibratory behaviours to invade revision of the Australasian ground the webs of other spiders (Jackson and spiders of the family Prodidomidae Whitehouse 1986). Like most Mimetidae, (Araneae: Gnaphosoidea). Bulletin of Australian species prey mainly on Comb- the American Museum of Natural footed (Theridiidae) and Orb-weaving History 298, 1-287. Spiders (Araneidae) (Figure on title page of this issue), although insects may occasionally form part of their prey. Check Mimetidae build a typical, drop-like http://www.naturebase.net/science/pilbara eggsac (Fig. 1) and a careful search _biosurvey.html nearby may lead to finding the
Recommended publications
  • How Non-Nestmates Affect the Cohesion of Swarming Groups in Social Spiders
    Insect. Soc. 55 (2008) 355 – 359 0020-1812/08/040355-5 Insectes Sociaux DOI 10.1007/s00040-008-1011-8 Birkhäuser Verlag, Basel, 2008 Research article How non-nestmates affect the cohesion of swarming groups in social spiders A.-C. Mailleux1, R. Furey2, F. Saffre1, B. Krafft4 and J.-L. Deneubourg1 1 Service dÉcologie Sociale, Campus de la Plaine, CP 231, UniversitØ Libre de Bruxelles, 1050 Brussels, Belgium, e-mail: [email protected], [email protected], [email protected] 2 Harrisburg University of Science and Technology 866, HBG.UNIV 215, Market Street, Harrisburg, Pennsylvania 17101 USA, e-mail: [email protected] 3 UniversitØ Nancy 2, Rue Baron Louis, BP 454 Code postal 54001 Ville Nancy Cedex, France, e-mail: [email protected] Received 30 October 2007; revised 3 April and 19 May 2008; accepted 22 May 2008. Published Online First 17 June 2008 Abstract. In social biology, it is often considered that an Fletcher and Michener, 1987). Unlike most vertebrate organized society cannot exist without exclusion behav- and invertebrate societies (Hepper, 1986; Fletcher and iour towards newcomers from another nest. Unlike most Michener, 1987), social spiders accept artificially intro- vertebrate and invertebrate social species, social spiders duced immigrants without apparent discrimination or such as Anelosimus eximius accept unrelated migrants agonistic behaviour (Evans, 1999). This absence of group without agonistic behaviour. Does it imply that spiders closure prompts some authors to suggest that spiders cannot recognize non-nestmates from nestmates or is cannot identify newcomers (Buskirk, 1981; Howard, there any evidence of recognition without aggression ? In 1982; Darchen and Delage-Darchen, 1986; Pasquet et order to answer this question, we studied behavioural al., 1997).
    [Show full text]
  • Level 1 Fauna Survey of the Gruyere Gold Project Borefields (Harewood 2016)
    GOLD ROAD RESOURCES LIMITED GRUYERE PROJECT EPA REFERRAL SUPPORTING DOCUMENT APPENDIX 5: LEVEL 1 FAUNA SURVEY OF THE GRUYERE GOLD PROJECT BOREFIELDS (HAREWOOD 2016) Gruyere EPA Ref Support Doc Final Rev 1.docx Fauna Assessment (Level 1) Gruyere Borefield Project Gold Road Resources Limited January 2016 Version 3 On behalf of: Gold Road Resources Limited C/- Botanica Consulting PO Box 2027 BOULDER WA 6432 T: 08 9093 0024 F: 08 9093 1381 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 T/F: (08) 9725 0982 E: [email protected] GRUYERE BOREFIELD PROJECT –– GOLD ROAD RESOURCES LTD – FAUNA ASSESSMENT (L1) – JAN 2016 – V3 TABLE OF CONTENTS SUMMARY 1. INTRODUCTION .....................................................................................................1 2. SCOPE OF WORKS ...............................................................................................1 3. RELEVANT LEGISTALATION ................................................................................2 4. METHODS...............................................................................................................3 4.1 POTENTIAL VETEBRATE FAUNA INVENTORY - DESKTOP SURVEY ............. 3 4.1.1 Database Searches.......................................................................................3 4.1.2 Previous Fauna Surveys in the Area ............................................................3 4.1.3 Existing Publications .....................................................................................5 4.1.4 Fauna
    [Show full text]
  • Higher-Level Phylogenetics of Linyphiid Spiders (Araneae, Linyphiidae) Based on Morphological and Molecular Evidence
    Cladistics Cladistics 25 (2009) 231–262 10.1111/j.1096-0031.2009.00249.x Higher-level phylogenetics of linyphiid spiders (Araneae, Linyphiidae) based on morphological and molecular evidence Miquel A. Arnedoa,*, Gustavo Hormigab and Nikolaj Scharff c aDepartament Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-8028 Barcelona, Spain; bDepartment of Biological Sciences, The George Washington University, Washington, DC 20052, USA; cDepartment of Entomology, Natural History Museum of Denmark, Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark Accepted 19 November 2008 Abstract This study infers the higher-level cladistic relationships of linyphiid spiders from five genes (mitochondrial CO1, 16S; nuclear 28S, 18S, histone H3) and morphological data. In total, the character matrix includes 47 taxa: 35 linyphiids representing the currently used subfamilies of Linyphiidae (Stemonyphantinae, Mynogleninae, Erigoninae, and Linyphiinae (Micronetini plus Linyphiini)) and 12 outgroup species representing nine araneoid families (Pimoidae, Theridiidae, Nesticidae, Synotaxidae, Cyatholipidae, Mysmenidae, Theridiosomatidae, Tetragnathidae, and Araneidae). The morphological characters include those used in recent studies of linyphiid phylogenetics, covering both genitalic and somatic morphology. Different sequence alignments and analytical methods produce different cladistic hypotheses. Lack of congruence among different analyses is, in part, due to the shifting placement of Labulla, Pityohyphantes,
    [Show full text]
  • A Review of the Anti-Predator Devices of Spiders* Invaders Away Or Kill and Eat Them
    Bull. Br. arachnol. Soc. (1995) 10 (3), 81-96 81 A review of the anti-predator devices of spiders* invaders away or kill and eat them. The pirate spiders (Mimetidae) that have been studied feed almost J. L. Cloudsley-Thompson exclusively on other spiders, whilst certain Salticidae 10 Battishill Street, (Portia spp.) feed not only upon insects, but sometimes London Nl 1TE also on other jumping spiders, and even tackle large orb-weavers in their webs (see below). Several other Summary families and genera, including Archaeidae, Palpimanus (Palpimanidae), Argyrodes and Theridion (Theridiidae), The predators of spiders are mostly either about the and Chorizopes (Araneidae) contain species that include same size as their prey (arthropods) or much larger (vertebrates), against each of which different types of de- other spiders in their diet. Sexual cannibalism has been fence have evolved. Primary defences include anachoresis, reviewed by Elgar (1992). Other books in which the phenology, crypsis, protective resemblance and disguise, enemies of spiders are discussed include: Berland (1932), spines and warning coloration, mimicry (especially of ants), Bristowe (1958), Cloudsley-Thompson (1958, 1980), cocoons and retreats, barrier webs, web stabilimenta and Edmunds (1974), Gertsch (1949), Main (1976), Millot detritus, and communal webs. Secondary defences are flight, dropping to the ground, colour change and thanatosis, (1949), Preston-Mafham, R. & K. (1984), Savory (1928), web vibration, whirling and bouncing, autotomy, venoms Thomas (1953) and Wise (1993). (For earlier references, and defensive fluids, urticating setae, warning sounds and see Warburton, 1909). deimatic displays. The anti-predator adaptations of spiders The major predators of spiders fall into two cate- are extremely complex, and combinations of the devices gories: (a) those about the same size as their prey (mainly listed frequently occur.
    [Show full text]
  • Final Project Completion Report
    CEPF SMALL GRANT FINAL PROJECT COMPLETION REPORT Organization Legal Name: - Tarantula (Araneae: Theraphosidae) spider diversity, distribution and habitat-use: A study on Protected Area adequacy and Project Title: conservation planning at a landscape level in the Western Ghats of Uttara Kannada district, Karnataka Date of Report: 18 August 2011 Dr. Manju Siliwal Wildlife Information Liaison Development Society Report Author and Contact 9-A, Lal Bahadur Colony, Near Bharathi Colony Information Peelamedu Coimbatore 641004 Tamil Nadu, India CEPF Region: The Western Ghats Region (Sahyadri-Konkan and Malnad-Kodugu Corridors). 2. Strategic Direction: To improve the conservation of globally threatened species of the Western Ghats through systematic conservation planning and action. The present project aimed to improve the conservation status of two globally threatened (Molur et al. 2008b, Siliwal et al., 2008b) ground dwelling theraphosid species, Thrigmopoeus insignis and T. truculentus endemic to the Western Ghats through systematic conservation planning and action. Investment Priority 2.1 Monitor and assess the conservation status of globally threatened species with an emphasis on lesser-known organisms such as reptiles and fish. The present project was focused on an ignored or lesser-known group of spiders called Tarantulas/ Theraphosid spiders and provided valuable information on population status and potential conservation sites in Uttara Kannada district, which will help in future monitoring and assessment of conservation status of the two globally threatened theraphosid species T. insignis and Near Threatened T. truculentus. Investment Priority 2.3. Evaluate the existing protected area network for adequate globally threatened species representation and assess effectiveness of protected area types in biodiversity conservation.
    [Show full text]
  • Spiders in Africa - Hisham K
    ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K. El-Hennawy SPIDERS IN AFRICA Hisham K. El-Hennawy Arachnid Collection of Egypt, Cairo, Egypt Keywords: Spiders, Africa, habitats, behavior, predation, mating habits, spiders enemies, venomous spiders, biological control, language, folklore, spider studies. Contents 1. Introduction 1.1. Africa, the continent of the largest web spinning spider known 1.2. Africa, the continent of the largest orb-web ever known 2. Spiders in African languages and folklore 2.1. The names for “spider” in Africa 2.2. Spiders in African folklore 2.3. Scientific names of spider taxa derived from African languages 3. How many spider species are recorded from Africa? 3.1. Spider families represented in Africa by 75-100% of world species 3.2. Spider families represented in Africa by more than 400 species 4. Where do spiders live in Africa? 4.1. Agricultural lands 4.2. Deserts 4.3. Mountainous areas 4.4. Wetlands 4.5. Water spiders 4.6. Spider dispersal 4.7. Living with others – Commensalism 5. The behavior of spiders 5.1. Spiders are predatory animals 5.2. Mating habits of spiders 6. Enemies of spiders 6.1. The first case of the species Pseudopompilus humboldti: 6.2. The second case of the species Paracyphononyx ruficrus: 7. Development of spider studies in Africa 8. Venomous spiders of Africa 9. BeneficialUNESCO role of spiders in Africa – EOLSS 10. Conclusion AcknowledgmentsSAMPLE CHAPTERS Glossary Bibliography Biographical Sketch Summary There are 7935 species, 1116 genera, and 79 families of spiders recorded from Africa. This means that more than 72% of the known spider families of the world are represented in the continent, while only 19% of the described spider species are ©Encyclopedia of Life Support Systems (EOLSS) ANIMAL RESOURCES AND DIVERSITY IN AFRICA - Spiders In Africa - Hisham K.
    [Show full text]
  • Level 2 Fauna Survey.Pdf
    Fauna Survey (Level 2) Phase 1 (September 2016) and Phase 2 (April 2017) Lake Wells Potash Project Australian Potash Ltd September 2017 Report Number: 01-000017-1/2 VERSION 4 On behalf of: Australian Potash Limited PO Box 1941 WEST PERTH, WA 6872 Prepared by: Greg Harewood Zoologist PO Box 755 BUNBURY WA 6231 M: 0402 141 197 E: [email protected] LAKE WELLS POTASH PROJECT – AUSTRALIAN POTASH LTD – L2 FAUNA SURVEY - PHASE 1 & 2 – SEPTEMBER 2017 – V4 TABLE OF CONTENTS SUMMARY .............................................................................................................. III 1. INTRODUCTION ............................................................................................... 1 1.1 BACKGROUND ................................................................................................ 1 1.2 SURVEY AREA ................................................................................................. 1 1.3 SURVEY SCOPE .............................................................................................. 1 2. METHODS ........................................................................................................ 3 2.1 FAUNA INVENTORY - LITERATURE REVIEW ............................................... 3 2.1.1 Database Searches .................................................................................................................. 3 2.1.2 Previous Fauna Surveys in the Area ........................................................................................ 3 2.2 FAUNA INVENTORY – DETAILED
    [Show full text]
  • Arachnid Ecology in New Zealand, Exploring
    1 Arachnid ecology in New Zealand, exploring 2 unknown and poorly understood factors. 3 James Crofts-Bennett. 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 “A thesis submitted in fulfilment of the degree of Master of Science [1] in Botany [2] at the 21 University of Otago, Dunedin, New Zealand” 22 2020 23 1 24 Index 25 26 Abstract………………………………………………………………………………………5. 27 Chapter 1. Introduction……………………………………………………………………...7. 28 1.1 The importance of spiders………………………………………………………...7. 29 1.2 The influence of habitat structural complexity on spider distribution and 30 abundance…………………………………………………………………………......8. 31 1.3 Invasive rodents in the context of New Zealand Araneae………………………...9. 32 1.4 Thesis structure and aims………………………………………………………..14. 33 Chapter 2. The effect of habitat structural complexity on spider abundance and diversity..15. 34 2.1 Introduction ……………………………………………………………………..15. 35 Figure 2.1: Seasonal deciduous vegetation cover…………………………...16. 36 Figure 2.2: Seasonal deciduous vegetation cover with mistletoe parasites…16. 37 2.2 Methods…………………………………………………………………………17. 38 Figure 2.3: Examples of foliage samples……………………………………18. 39 Table 2.1: Sampling locations, dates and host data…………………………19. 40 2.2.1 Statistical Analyses……………………………………………………………20. 41 2.3 Results…………………………………………………………………………...20. 42 Figure 2.4: Total invertebrates sampled in summer, plotted………………..22. 43 Figure 2.5: Total invertebrates sampled in winter, plotted………………….23. 44 Table 2.2: Paired t-tests of host plant invertebrate populations……………..25. 45 2.4 Discussion……………………………………………………………………….26. 46 Chapter 3. A novel non-kill Araneae trap: test with regards to vegetation type versus 47 location 48 effects………………………………………………………………………………………..28. 49 3.1 Introduction……………………………………………………………………...28.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Banded Huntsman, Holconia Immanis
    Care guide Giant Banded Huntsman, Holconia immanis Giant Banded Huntsmen are one of Australia’s largest spiders, growing up to body length of 45 mm and a leg span of 160 mm. They are found in the warmer parts of eastern Australia, and range from NSW to Queensland. They feed on a wide range of other invertebrates including moths, crickets, cockroaches and other spiders. They have also been known to feed on small vertebrates such as frogs and geckos in the wild. These spiders are extremely fast, and have the ability to run sideways and squeeze into very narrow crevices. They are covered in fine sensory hairs which are extremely sensitive to air movement. This assists them in detecting the movement of prey and the approach of predators. Like other huntsmen, this species lays its eggs encased within a flattened white silk egg sac. They usually secure this in a dark place such as under loose tree bark and stay with their eggs until after they hatch. The young emerge 30 - 60 days after being laid (they will develop faster in warmer conditions) and several hundred spiderlings may emerge from a single egg sac. The spiderlings will cluster around their mother for several weeks after they emerge and will tolerate each other during this stage. Once they disperse any chance meetings of the siblings will often result in one eating the other. These spiders grow by shedding their outer skeleton (exoskeleton). This process is called ecdysis or moulting. To moult successfully they need to hang uninterrupted beneath a leaf or branch.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Arachnids) Physical Identification Spiders (Order Araneae
    SPIDERS (Arachnids) Physical Identification Spiders (order Araneae) are air-breathing arthropods that have eight legs and chelicerae with fangs that inject venom. They are the largest order of arachnids and rank seventh in total species diversity among all other orders of organisms. Spiders are found worldwide on every continent except for Antarctica, and have become established in nearly every habitat with the exceptions of air and sea colonization. As of November 2015, at least 45,700 spider species, and 113 families have been recorded by taxonomists. However, there has been dissension within the scientific community as to how all these families should be classified, as evidenced by the over 20 different classifications that have been proposed since 1900. Anatomically, spiders differ from other arthropods in that the usual body segments are fused into two tagmata, the cephalothorax and abdomen, and joined by a small, cylindrical pedicel. Unlike insects, spiders do not have antennae. In all except the most primitive group, the Mesothelae, spiders have the most centralized nervous systems of all arthropods, as all their ganglia are fused into one mass in the cephalothorax. Unlike most arthropods, spiders have no extensor muscles in their limbs and instead extend them by hydraulic pressure. Their abdomens bear appendages that have been modified into spinnerets that extrude silk from up to six types of glands. Spider webs vary widely in size, shape and the amount of sticky thread used. It now appears that the spiral orb web may be one of the earliest forms, and spiders that produce tangled cobwebs are more abundant and diverse than orb-web spiders.
    [Show full text]